1
|
Gorges DM, Filippin-Monteiro FB. Genetic variants in the LRP5 gene associated with gain and loss of bone mineral density. In Silico Pharmacol 2025; 13:61. [PMID: 40255261 PMCID: PMC12003225 DOI: 10.1007/s40203-025-00341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
The low-density lipoprotein receptor-related protein 5 (LRP5) plays a pivotal role in bone formation, influencing the proliferation and differentiation of osteoblasts and thereby impacting overall bone mass. Genetic variations stemming from non-synonymous single nucleotide polymorphisms (nsSNPs) within the LRP5 gene can lead to either enhanced or diminished function of the resultant protein, culminating in distinct phenotypic expressions such as osteoporosis-pseudoglioma syndrome (OPPG) and high bone mass (HBM). Through in silico analysis of 17 identified nsSNPs, it was observed that 14 of these variants induced damage at highly conserved sites, resulting in the destabilization of both protein function and structure. Notably, the functional alteration, be it a gain or loss, is primarily dictated by the interaction between the molecule and LRP5, rather than the specific amino acid substitution. This research offers an identification of detrimental nsSNPs within the LRP5 protein and serves as a foundation for population-based investigations into the phenotypic repercussions on a broader scale.
Collapse
Affiliation(s)
- Daphany Marah Gorges
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC 88040900 Brazil
| | - Fabíola Branco Filippin-Monteiro
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC 88040900 Brazil
| |
Collapse
|
2
|
Mehta P, Sharma A, Goswami A, Gupta SK, Singhal V, Srivastava KR, Chattopadhyay N, Singh R. Case report: exome sequencing identified mutations in the LRP5 and LGR4 genes in a case of osteoporosis with recurrent fractures and extraskeletal manifestations. Front Endocrinol (Lausanne) 2024; 15:1475446. [PMID: 39525853 PMCID: PMC11549668 DOI: 10.3389/fendo.2024.1475446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Background Genetic mutations have been reported in a number of bone disorders with or without extra-skeletal manifestations. The purpose of the present study was to investigate the genetic cause in a middle-aged woman with osteoporosis, recurrent fractures and extraskeletal manifestations. Methods A 56-year-old Indian woman presented to the clinic with complaints of difficulty in walking, recurrent fractures, limb bending, progressive skeletal deformities, and poor overall health. At the age of 37, she had experienced severe anemia with diarrhea, significant weight loss, knuckle pigmentation, and a significant loss of scalp hair. She had received multiple blood transfusions and parenteral iron supplementation with normalization of hemoglobin. Subsequently, she had premature menopause at the age of 37. She died at the age of 61 due to liver failure. Exome sequencing followed by Sanger sequencing were undertaken to identify the potential pathogenic mutations. Results Genetic investigation identified likely pathogenic mutations in the LRP5 and LGR4 genes. Out of the two mutations, the heterozygous mutation (c.1199C>T) in the LRP5 gene resulted in a non-synonymous substitution of alanine with valine at the 400th position, and the second mutation (c.1403A>C) in the LGR4 gene led to a non-synonymous substitution of tyrosine with serine at the 468th residue of the protein. The minor allele frequencies of the c.1199C>T (LRP5) substitution in the 1000 genomes and IndiGenomes databases are 0.0003 and 0.001, while the c.1403A>C (LGR4) substitution has not been reported in these databases. Various in silico prediction tools suggested LGR4 mutation to be pathogenic and LRP5 mutation to be likely pathogenic. Conclusion Heterozygous mutations in the LRP5 and LGR4 genes had additive deteriorative effects on BMD, resulting in recurrent fractures and bone deformities, and extended the effect to extraskeletal sites, contributing to the poor overall health in this patient.
Collapse
Affiliation(s)
- Poonam Mehta
- Division of Endocrinology, The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Aakriti Sharma
- Division of Endocrinology, The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Anupam Goswami
- Division of Endocrinology, The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Sushil Kumar Gupta
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Vaibhav Singhal
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Kinshuk Raj Srivastava
- Division of Endocrinology, The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Rajender Singh
- Division of Endocrinology, The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
3
|
Extracellular Vesicles Secreted by TGF-β1-Treated Mesenchymal Stem Cells Promote Fracture Healing by SCD1-Regulated Transference of LRP5. Stem Cells Int 2023; 2023:4980871. [PMID: 36970598 PMCID: PMC10033213 DOI: 10.1155/2023/4980871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/26/2022] [Accepted: 02/03/2023] [Indexed: 03/17/2023] Open
Abstract
Bone fracture repair is a multiphased regenerative process requiring paracrine intervention throughout the healing process. Mesenchymal stem cells (MSCs) play a crucial role in cell-to-cell communication and the regeneration of tissue, but their transplantation is difficult to regulate. The paracrine processes that occur in MSC-derived extracellular vesicles (MSC-EVs) have been exploited for this study. The primary goal was to determine whether EVs secreted by TGF-β1-stimulated MSCs (MSCTGF-β1-EVs) exhibit greater effects on bone fracture healing than EVs secreted by PBS-treated MSCs (MSCPBS-EVs). Our research was conducted using an in vivo bone fracture model and in vitro experiments, which included assays to measure cell proliferation, migration, and angiogenesis, as well as in vivo and in vitro gain/loss of function studies. In this study, we were able to confirm that SCD1 expression and MSC-EVs can be induced by TGF-β1. After MSCTGF-β1-EVs are transplanted in mice, bone fracture repair is accelerated. MSCTGF-β1-EV administration stimulates human umbilical vein endothelial cell (HUVEC) angiogenesis, proliferation, and migration in vitro. Furthermore, we were able to demonstrate that SCD1 plays a functional role in the process of MSCTGF-β1-EV-mediated bone fracture healing and HUVEC angiogenesis, proliferation, and migration. Additionally, using a luciferase reporter assay and chromatin immunoprecipitation studies, we discovered that SREBP-1 targets the promoter of the SCD1 gene specifically. We also discovered that the EV-SCD1 protein could stimulate proliferation, angiogenesis, and migration in HUVECs through interactions with LRP5. Our findings provide evidence of a mechanism whereby MSCTGF-β1-EVs enhance bone fracture repair by regulating the expression of SCD1. The use of TGF-β1 preconditioning has the potential to maximize the therapeutic effects of MSC-EVs in the treatment of bone fractures.
Collapse
|
4
|
Zhong H, Yang X, Li S, Lei X. Effects of Stress on Osteoblast Proliferation and Differentiation Based on Endoplasmic Reticulum Stress and Wnt β-Catenin Signaling Pathway. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8521051. [PMID: 36262983 PMCID: PMC9553479 DOI: 10.1155/2022/8521051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/20/2022] [Accepted: 09/08/2022] [Indexed: 01/26/2023]
Abstract
In order to investigate the effect of fluid shear stress on the proliferation of osteoblasts and the regulatory role of the Wnt/β-catenin signaling pathway in cell proliferation, a new method based on endoplasmic reticulum stress and Wnt/β-catenin signaling pathway stress-mediated was proposed. Taking MG63 osteoblasts as the research object, they were inoculated on glass slides (G group), polished titanium sheets (P group), and sandblasted acid-base treated pure titanium sheets (S group). In addition, FSS of 0 dunes/cm2 (static group) and 12 dunes/cm2 (stress group) were given, respectively. Then, quantitative reverse transcription-PCR (RT-qPCR) and western blot were used to detect the mRNA and protein expressions of low-density lipoprotein receptor-related protein 5 (LRP5) and β-catenin in MG63 cells. The results showed that the expression levels of β-catenin mRNA and protein in cells in the stress group were significantly increased (P < 0.05), and the protein expression level of LRP5 was significantly decreased (P < 0.05). The expression level of LRP5 in group S was greatly inhibited, while the expression level of β-catenin was significantly upregulated. Therefore, FSS can stimulate the expression of LRP5 and β-catenin in osteoblasts. Fluid shear stress can promote osteoblast proliferation in vitro; the Wnt/β-catenin signaling pathway is involved in regulating fluid shear stress to promote osteoblast proliferation.
Collapse
Affiliation(s)
- Hanming Zhong
- Stomatology Department, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523000, China
| | - Xiaoyu Yang
- Center of Oral Implantology, Stomatological Hospital,Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Shitie Li
- Center of Oral Implantology, Stomatological Hospital,Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xin Lei
- Department of Stomatology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, China
| |
Collapse
|
5
|
Khrystoforova I, Shochat-Carvalho C, Harari R, Henke K, Woronowicz K, Harris MP, Karasik D. Zebrafish mutants reveal unexpected role of Lrp5 in osteoclast regulation. Front Endocrinol (Lausanne) 2022; 13:985304. [PMID: 36120446 PMCID: PMC9478031 DOI: 10.3389/fendo.2022.985304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Low-density Lipoprotein Receptor-related Protein 5 (LRP5) functions as a co-receptor for Wnt ligands, controlling expression of genes involved in osteogenesis. In humans, loss-of-function mutations in LRP5 cause Osteoporosis-Pseudoglioma syndrome, a low bone mass disorder, while gain-of-function missense mutations have been observed in individuals with high bone mass. Zebrafish (Danio rerio) is a popular model for human disease research, as genetic determinants that control bone formation are generally conserved between zebrafish and mammals. We generated lrp5- knock-out zebrafish to study its role in skeletogenesis and homeostasis. Loss of lrp5 in zebrafish leads to craniofacial deformities and low bone mineral density (total body and head) at adult ages. To understand the mechanism and consequences of the observed phenotypes, we performed transcriptome analysis of the cranium of adult lrp5 mutants and siblings. Enrichment analysis revealed upregulation of genes significantly associated with hydrolase activity: mmp9, mmp13a, acp5a. acp5a encodes Tartrate-resistant acid phosphatase (TRAP) which is commonly used as an osteoclast marker, while Matrix metalloprotease 9, Mmp9, is known to be secreted by osteoclasts and stimulate bone resorption. These genes point to changes in osteoclast differentiation regulated by lrp5. To analyze these changes functionally, we assessed osteoclast dynamics in mutants and observed increased TRAP staining, significantly larger resorption areas, and developmental skeletal dysmorphologies in the mutant, suggesting higher resorptive activity in the absence of Lrp5 signaling. Our findings support a conserved role of Lrp5 in maintaining bone mineral density and revealed unexpected insights into the function of Lrp5 in bone homeostasis through moderation of osteoclast function.
Collapse
Affiliation(s)
| | | | - Ram Harari
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Katrin Henke
- Department of Orthopedics, Emory University, Atlanta, GA, United States
| | - Katherine Woronowicz
- Department of Orthopaedics, Boston Children’s Hospital, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Matthew P. Harris
- Department of Orthopaedics, Boston Children’s Hospital, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
6
|
Combined Transcriptomic and Protein Array Cytokine Profiling of Human Stem Cells from Dental Apical Papilla Modulated by Oral Bacteria. Int J Mol Sci 2022; 23:ijms23095098. [PMID: 35563488 PMCID: PMC9103834 DOI: 10.3390/ijms23095098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 11/18/2022] Open
Abstract
Stem cells from the apical papilla (SCAP) are a promising resource for use in regenerative endodontic treatment (RET) that may be adversely affected by oral bacteria, which in turn can exert an effect on the success of RET. Our work aims to study the cytokine profile of SCAP upon exposure to oral bacteria and their supernatants—Fusobacterium nucleatum and Enterococcus faecalis—as well as to establish their effect on the osteogenic and immunogenic potentials of SCAP. Further, we target the presence of key proteins of the Wnt/β-Catenin, TGF-β, and NF-κB signaling pathways, which play a crucial role in adult osteogenic differentiation of mesenchymal stem cells, using the Western blot (WB) technique. The membrane-based sandwich immunoassay and transcriptomic analysis showed that, under the influence of F. nucleatum (both bacteria and supernatant), the production of pro-inflammatory cytokines IL-6, IL-8, and MCP-1 occurred, which was also confirmed at the mRNA level. Conversely, E. faecalis reduced the secretion of the aforementioned cytokines at both mRNA and protein levels. WB analysis showed that SCAP co-cultivation with E. faecalis led to a decrease in the level of the key proteins of the Wnt/β-Catenin and NF-κB signaling pathways: β-Catenin (p = 0.0068 *), LRP-5 (p = 0.0059 **), and LRP-6 (p = 0.0329 *), as well as NF-kB (p = 0.0034 **) and TRAF6 (p = 0.0285 *). These results suggest that oral bacteria can up- and downregulate the immune and inflammatory responses of SCAP, as well as influence the osteogenic potential of SCAP, which may negatively regulate the success of RET.
Collapse
|
7
|
Liu P, Tu J, Wang W, Li Z, Li Y, Yu X, Zhang Z. Effects of Mechanical Stress Stimulation on Function and Expression Mechanism of Osteoblasts. Front Bioeng Biotechnol 2022; 10:830722. [PMID: 35252138 PMCID: PMC8893233 DOI: 10.3389/fbioe.2022.830722] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoclasts and osteoblasts play a major role in bone tissue homeostasis. The homeostasis and integrity of bone tissue are maintained by ensuring a balance between osteoclastic and osteogenic activities. The remodeling of bone tissue is a continuous ongoing process. Osteoclasts mainly play a role in bone resorption, whereas osteoblasts are mainly involved in bone remodeling processes, such as bone cell formation, mineralization, and secretion. These cell types balance and restrict each other to maintain bone tissue metabolism. Bone tissue is very sensitive to mechanical stress stimulation. Unloading and loading of mechanical stress are closely related to the differentiation and formation of osteoclasts and bone resorption function as well as the differentiation and formation of osteoblasts and bone formation function. Consequently, mechanical stress exerts an important influence on the bone microenvironment and bone metabolism. This review focuses on the effects of different forms of mechanical stress stimulation (including gravity, continuously compressive pressure, tensile strain, and fluid shear stress) on osteoclast and osteoblast function and expression mechanism. This article highlights the involvement of osteoclasts and osteoblasts in activating different mechanical transduction pathways and reports changings in their differentiation, formation, and functional mechanism induced by the application of different types of mechanical stress to bone tissue. This review could provide new ideas for further microscopic studies of bone health, disease, and tissue damage reconstruction.
Collapse
Affiliation(s)
- Pan Liu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ji Tu
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Wenzhao Wang
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, China
| | - Zheng Li
- People’s Hospital of Jiulongpo District, Chongqing, China
| | - Yao Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoping Yu
- School of Public Health, Chengdu Medical College, Chengdu, China
- Basic Medical College of Chengdu University, Chengdu, China
- *Correspondence: Xiaoping Yu, ; Zhengdong Zhang,
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- *Correspondence: Xiaoping Yu, ; Zhengdong Zhang,
| |
Collapse
|
8
|
Oton-Gonzalez L, Mazziotta C, Iaquinta MR, Mazzoni E, Nocini R, Trevisiol L, D’Agostino A, Tognon M, Rotondo JC, Martini F. Genetics and Epigenetics of Bone Remodeling and Metabolic Bone Diseases. Int J Mol Sci 2022; 23:1500. [PMID: 35163424 PMCID: PMC8836080 DOI: 10.3390/ijms23031500] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Bone metabolism consists of a balance between bone formation and bone resorption, which is mediated by osteoblast and osteoclast activity, respectively. In order to ensure bone plasticity, the bone remodeling process needs to function properly. Mesenchymal stem cells differentiate into the osteoblast lineage by activating different signaling pathways, including transforming growth factor β (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1 (Wnt)/β-catenin pathways. Recent data indicate that bone remodeling processes are also epigenetically regulated by DNA methylation, histone post-translational modifications, and non-coding RNA expressions, such as micro-RNAs, long non-coding RNAs, and circular RNAs. Mutations and dysfunctions in pathways regulating the osteoblast differentiation might influence the bone remodeling process, ultimately leading to a large variety of metabolic bone diseases. In this review, we aim to summarize and describe the genetics and epigenetics of the bone remodeling process. Moreover, the current findings behind the genetics of metabolic bone diseases are also reported.
Collapse
Affiliation(s)
- Lucia Oton-Gonzalez
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Riccardo Nocini
- Unit of Otolaryngology, University of Verona, 37134 Verona, Italy;
| | - Lorenzo Trevisiol
- Unit of Maxillo-Facial Surgery and Dentistry, University of Verona, 37134 Verona, Italy; (L.T.); (A.D.)
| | - Antonio D’Agostino
- Unit of Maxillo-Facial Surgery and Dentistry, University of Verona, 37134 Verona, Italy; (L.T.); (A.D.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Estrogen receptor alpha and NFATc1 bind to a bone mineral density-associated SNP to repress WNT5B in osteoblasts. Am J Hum Genet 2022; 109:97-115. [PMID: 34906330 DOI: 10.1016/j.ajhg.2021.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022] Open
Abstract
Genetic factors and estrogen deficiency contribute to the development of osteoporosis. The single-nucleotide polymorphism (SNP) rs2887571 is predicted from genome-wide association studies (GWASs) to associate with osteoporosis but has had an unknown mechanism. Analysis of osteoblasts from 110 different individuals who underwent joint replacement revealed that the genotype of rs2887571 correlates with WNT5B expression. Analysis of our ChIP-sequencing data revealed that SNP rs2887571 overlaps with an estrogen receptor alpha (ERα) binding site. Here we show that 17β-estradiol (E2) suppresses WNT5B expression and further demonstrate the mechanism of ERα binding at the enhancer containing rs2887571 to suppress WNT5B expression differentially in each genotype. ERα interacts with NFATc1, which is predicted to bind directly at rs2887571. CRISPR-Cas9 and ChIP-qPCR experiments confirm differential regulation of WNT5B between each allele. Homozygous GG has a higher binding affinity for ERα than homozygous AA and results in greater suppression of WNT5B expression. Functionally, WNT5B represses alkaline phosphatase expression and activity, decreasing osteoblast differentiation and mineralization. Furthermore, WNT5B increases interleukin-6 expression and suppresses E2-induced expression of alkaline phosphatase during osteoblast differentiation. We show that WNT5B suppresses the differentiation of osteoblasts via receptor tyrosine kinase-like orphan receptor 1/2 (ROR1/2), which activates DVL2/3/RAC1/CDC42/JNK/SIN3A signaling and inhibits β-catenin activity. Together, our data provide mechanistic insight into how ERα and NFATc1 regulate the non-coding SNP rs2887571, as well as the function of WNT5B on osteoblasts, which could provide alternative therapeutic targets for osteoporosis.
Collapse
|
10
|
Ekici O, Aslan E, Guzel H, Korkmaz OA, Sadi G, Gurol AM, Boyaci MG, Pektas MB. Kefir alters craniomandibular bone development in rats fed excess dose of high fructose corn syrup. J Bone Miner Metab 2022; 40:56-65. [PMID: 34613434 DOI: 10.1007/s00774-021-01273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Dietary high fructose corn syrup (HFCS) is involved in the pathogenesis of oral diseases as well as metabolic diseases. The aim of this study was to investigate the effects of HFCS-feeding on the craniomandibular bone development at an early age and also the potential of milk kefir for preventive treatment. MATERIALS AND METHODS In this study, Control, Kefir, HFCS, and HFCS plus Kefir groups were formed; kefir was given by gastric gavage, while HFCS (20% beverages) was given in drinking water; for 8 weeks. RESULTS Based on morphological evaluations, immunohistochemical, and gene expression results, it was clearly determined that excess dose of HFCS consumption decreased osteoblastic activity in craniomandibular bones while increasing osteoclastic activity. However, it has been determined that the intake of kefir with the HFCS-feeding greatly suppresses the effects of HFCS on bone tissues. CONCLUSION In conclusion, dietary the excess dose of HFCS at an early age has been observed to pose a risk for cranial and mandible bone development. The healing effects of kefir may be a new approach to the treatment via kefir consumption in young's.
Collapse
Affiliation(s)
- O Ekici
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, 03200, Afyonkarahisar, Turkey
| | - E Aslan
- Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200, Afyonkarahisar, Turkey
| | - H Guzel
- Department of Anatomy, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200, Afyonkarahisar, Turkey
| | - O A Korkmaz
- Department of Chemistry, Faculty of Science, Yildiz Technical University, 34220, Istanbul, Turkey
| | - G Sadi
- Department of Biology, K.O. Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - A M Gurol
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, 03200, Afyonkarahisar, Turkey
| | - M G Boyaci
- Department of Neurosurgery, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200, Afyonkarahisar, Turkey
| | - M B Pektas
- Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200, Afyonkarahisar, Turkey.
| |
Collapse
|
11
|
Butscheidt S, Tsourdi E, Rolvien T, Delsmann A, Stürznickel J, Barvencik F, Jakob F, Hofbauer LC, Mundlos S, Kornak U, Seefried L, Oheim R. Relevant genetic variants are common in women with pregnancy and lactation-associated osteoporosis (PLO) and predispose to more severe clinical manifestations. Bone 2021; 147:115911. [PMID: 33716164 DOI: 10.1016/j.bone.2021.115911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/19/2021] [Accepted: 03/08/2021] [Indexed: 12/17/2022]
Abstract
Pregnancy and lactation-associated osteoporosis (PLO) is a rare skeletal disorder characterized by early-onset osteoporosis typically manifestating with vertebral compression fractures or transient osteoporosis of the hip. We hypothesized that genetic variants may play a role in the development of PLO. This study aimed to analyze the presence of genetic variants and a potential association with the clinical presentation in PLO. 42 women with PLO were included from 2013 to 2019 in a multicenter study in Germany. All cases underwent comprehensive genetic analysis based on a custom-designed gene panel including genes relevant for skeletal disorders. The skeletal status was assessed using dual-energy X-ray absorptiometry (DXA). Subgroups were further analyzed by serum bone turnover markers (n = 31) and high-resolution peripheral computed tomography (HR-pQCT; n = 23). We detected relevant genetic variants in 21 women (50%), with LRP5, WNT1 and COL1A1/A2 being the most commonly involved genes. The mean number of vertebral compression fractures was 3.3 ± 3.4 per case with a significantly higher occurrence in the subgroup with genetic variants (4.8 ± 3.7 vs. 1.8 ± 2.3, p = 0.02). Among the total cohort, DXA Z-scores were significantly lower at the lumbar spine compared to the femoral neck (p = 0.002). HR-pQCT revealed a pronounced reduction of trabecular and cortical thickness, while trabecular number was within the reference range. Eighteen women (43%) received a bone-specific therapy (primarily teriparatide). Overall, a steep increase in bone mass (+37.7%) was observed after 3 years. In conclusion, pregnancy and lactation represent skeletal risk factors, which may unmask hereditary bone disorders leading to PLO. These cases were affected more severely. Nevertheless, a timely diagnosis and adequate treatment can ensure a substantial recovery potential even without specific therapy. Patients with genetically induced low bone turnover (e.g.; LRP5, WNT1) may especially benefit from osteo-anabolic medication.
Collapse
Affiliation(s)
- Sebastian Butscheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alena Delsmann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Institute of Human Genetics, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Lothar Seefried
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
12
|
Hamstra-Wright KL, Huxel Bliven KC, Napier C. Training Load Capacity, Cumulative Risk, and Bone Stress Injuries: A Narrative Review of a Holistic Approach. Front Sports Act Living 2021; 3:665683. [PMID: 34124660 PMCID: PMC8192811 DOI: 10.3389/fspor.2021.665683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/14/2021] [Indexed: 01/09/2023] Open
Abstract
Bone stress injuries (BSIs) are a common orthopedic injury with short-term, and potentially long-term, effects. Training load capacity, influenced by risk factors, plays a critical role in the occurrence of BSIs. Many factors determine how one's body responds to repetitive loads that have the potential to increase the risk of a BSI. As a scientific community, we have identified numerous isolated BSI risk factors. However, we have not adequately analyzed the integrative, holistic, and cumulative nature of the risk factors, which is essential to determine an individual's specific capacity. In this narrative review, we advocate for a personalized approach to monitor training load so that individuals can optimize their health and performance. We define “cumulative risk profile” as a subjective clinical determination of the number of risk factors with thoughtful consideration of their interaction and propose that athletes have their own cumulative risk profile that influences their capacity to withstand specific training loads. In our narrative review, we outline BSI risk factors, discuss the relationship between BSIs and training load, highlight the importance of individualizing training load, and emphasize the use of a holistic assessment as a training load guide.
Collapse
Affiliation(s)
- Karrie L Hamstra-Wright
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States
| | - Kellie C Huxel Bliven
- Department of Interdisciplinary Health Sciences, Arizona School of Health Sciences, A.T. Still University, Mesa, AZ, United States
| | - Christopher Napier
- Menrva Research Group, Faculty of Applied Science, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Vancouver, BC, Canada.,Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Stürznickel J, Rolvien T, Delsmann A, Butscheidt S, Barvencik F, Mundlos S, Schinke T, Kornak U, Amling M, Oheim R. Clinical Phenotype and Relevance of LRP5 and LRP6 Variants in Patients With Early-Onset Osteoporosis (EOOP). J Bone Miner Res 2021; 36:271-282. [PMID: 33118644 DOI: 10.1002/jbmr.4197] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Reduced bone mineral density (BMD; ie, Z-score ≤-2.0) occurring at a young age (ie, premenopausal women and men <50 years) in the absence of secondary osteoporosis is considered early-onset osteoporosis (EOOP). Mutations affecting the WNT signaling pathway are of special interest because of their key role in bone mass regulation. Here, we analyzed the effects of relevant LRP5 and LRP6 variants on the clinical phenotype, bone turnover, BMD, and bone microarchitecture. After exclusion of secondary osteoporosis, EOOP patients (n = 372) were genotyped by gene panel sequencing, and segregation analysis of variants in LRP5/LRP6 was performed. The clinical assessment included the evaluation of bone turnover parameters, BMD by dual-energy X-ray absorptiometry, and microarchitecture via high-resolution peripheral quantitative computed tomography (HR-pQCT). In 50 individuals (31 EOOP index patients, 19 family members), relevant variants affecting LRP5 or LRP6 were detected (42 LRP5 and 8 LRP6 variants), including 10 novel variants. Seventeen variants were classified as disease causing, 14 were variants of unknown significance, and 19 were BMD-associated single-nucleotide polymorphisms (SNPs). One patient harbored compound heterozygous LRP5 mutations causing osteoporosis-pseudoglioma syndrome. Fractures were reported in 37 of 50 individuals, consisting of vertebral (18 of 50) and peripheral (29 of 50) fractures. Low bone formation was revealed in all individuals. A Z-score ≤-2.0 was detected in 31 of 50 individuals, and values at the spine were significantly lower than those at the hip (-2.1 ± 1.3 versus -1.6 ± 0.8; p = .003). HR-pQCT analysis (n = 34) showed impaired microarchitecture in trabecular and cortical compartments. Significant differences regarding the clinical phenotype were detectable between index patients and family members but not between different variant classes. Relevant variants in LRP5 and LRP6 contribute to EOOP in a substantial number of individuals, leading to a high number of fractures, low bone formation, reduced Z-scores, and impaired microarchitecture. This detailed skeletal characterization improves the interpretation of known and novel LRP5 and LRP6 variants. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alena Delsmann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Butscheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Feng Y, Liu S, Zha R, Sun X, Li K, Robling A, Li B, Yokota H. Mechanical Loading-Driven Tumor Suppression Is Mediated by Lrp5-Dependent and Independent Mechanisms. Cancers (Basel) 2021; 13:cancers13020267. [PMID: 33450808 PMCID: PMC7828232 DOI: 10.3390/cancers13020267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Advanced breast cancer and prostate cancer metastasize to varying organs including the bone. We show here that mechanical loading to the knee suppresses tumor growth in the loaded bone and the non-loaded mammary pad. Although lipoprotein receptor-related protein 5 (Lrp5) in osteocytes is necessary to induce loading-driven bone formation, loading-driven tumor suppression is regulated by Lrp5-dependent and independent mechanisms. Lrp5 overexpression in osteocytes enhances tumor suppression, but without Lrp5 in osteocytes, mechanical loading elevates dopamine, chemerin, p53, and TNF-related apoptosis-inducing ligand (TRAIL) and reduces cholesterol and nexin. Their systemic changes contribute to inhibiting tumors without Lrp5. Osteoclast development is also inhibited by the load-driven regulation of chemerin and nexin. Abstract Bone is mechanosensitive and lipoprotein receptor-related protein 5 (Lrp5)-mediated Wnt signaling promotes loading-driven bone formation. While mechanical loading can suppress tumor growth, the question is whether Lrp5 mediates loading-driven tumor suppression. Herein, we examined the effect of Lrp5 using osteocyte-specific Lrp5 conditional knockout mice. All mice presented noticeable loading-driven tumor suppression in the loaded tibia and non-loaded mammary pad. The degree of suppression was more significant in wild-type than knockout mice. In all male and female mice, knee loading reduced cholesterol and elevated dopamine. It reduced tumor-promoting nexin, which was elevated by cholesterol and reduced by dopamine. By contrast, it elevated p53, TNF-related apoptosis-inducing ligand (TRAIL), and chemerin, and they were regulated reversely by dopamine and cholesterol. Notably, Lrp5 overexpression in osteocytes enhanced tumor suppression, and osteoclast development was inhibited by chemerin. Collectively, this study identified Lrp5-dependent and independent mechanisms for tumor suppression. Lrp5 in osteocytes contributed to the loaded bone, while the Lrp5-independent regulation of dopamine- and cholesterol-induced systemic suppression.
Collapse
Affiliation(s)
- Yan Feng
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (Y.F.); (R.Z.); (X.S.); (K.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Shengzhi Liu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Rongrong Zha
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (Y.F.); (R.Z.); (X.S.); (K.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Xun Sun
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (Y.F.); (R.Z.); (X.S.); (K.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Kexin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (Y.F.); (R.Z.); (X.S.); (K.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Alexander Robling
- Department of Anatomy Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Baiyan Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (Y.F.); (R.Z.); (X.S.); (K.L.)
- Correspondence: (B.L.); (H.Y.); Tel.: +86-451-8667-1354 (B.L.); +317-278-5177 (H.Y.); Fax: +86-451-8667-1354 (B.L.); +317-278-2455 (H.Y.)
| | - Hiroki Yokota
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (Y.F.); (R.Z.); (X.S.); (K.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
- Department of Anatomy Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (B.L.); (H.Y.); Tel.: +86-451-8667-1354 (B.L.); +317-278-5177 (H.Y.); Fax: +86-451-8667-1354 (B.L.); +317-278-2455 (H.Y.)
| |
Collapse
|
15
|
|
16
|
Carina V, Della Bella E, Costa V, Bellavia D, Veronesi F, Cepollaro S, Fini M, Giavaresi G. Bone's Response to Mechanical Loading in Aging and Osteoporosis: Molecular Mechanisms. Calcif Tissue Int 2020; 107:301-318. [PMID: 32710266 DOI: 10.1007/s00223-020-00724-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Mechanotransduction is pivotal in the maintenance of homeostasis in different tissues and involves multiple cell signaling pathways. In bone, mechanical stimuli regulate the balance between bone formation and resorption; osteocytes play a central role in this regulation. Dysfunctions in mechanotransduction signaling or in osteocytes response lead to an imbalance in bone homeostasis. This alteration is very relevant in some conditions such as osteoporosis and aging. Both are characterized by increased bone weakness due to different causes, for example, the increase of osteocyte apoptosis that cause an alteration of fluid space, or the alteration of molecular pathways. There are intertwined yet very different mechanisms involved among the cell-intrinsic effects of aging on bone, the cell-intrinsic and tissue-level effects of estrogen/androgen withdrawal on bone, and the effects of reduced mechanical loading on bone, which are all involved to some degree in how aged bone fails to respond properly to stress/strain compared to younger bone. This review aims at clarifying how the cellular and molecular pathways regulated and induced in bone by mechanical stimulation are altered with aging and in osteoporosis, to highlight new possible targets for antiresorptive or anabolic bone therapeutic approaches.
Collapse
Affiliation(s)
- Valeria Carina
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy.
| | | | - Viviana Costa
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Daniele Bellavia
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Francesca Veronesi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Simona Cepollaro
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| |
Collapse
|
17
|
Exome sequencing in a familial form of anorexia nervosa supports multigenic etiology. J Neural Transm (Vienna) 2019; 126:1505-1511. [DOI: 10.1007/s00702-019-02056-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
|