1
|
Sun R, Yang X, Liu S, Wang T, Du P, Yang Y, Hua Z, Zha Z, Fan M, Yang M, Yin H. A novel long-acting recombinant follicle-stimulating hormone with hyperglycosylation exhibits improved pharmacokinetic and bioactivity on promoting follicle growth. Biochem Pharmacol 2025; 237:116944. [PMID: 40228639 DOI: 10.1016/j.bcp.2025.116944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Follicle-stimulating hormone (FSH) plays an indispensable role in fertility. Although Recombinant human FSH (rh-FSH) and long-acting FSH analogs, such as FSH-CTP (Elonva), have been used to treat infertility for many years. The need for multiple injections remains inconvenient and uncomfortable. Therefore, long-acting FSH with optimized metabolic properties and bioactivity is urgently required. In this study, we designed a new long-acting FSH by fusing mucin domain II of CD164 to the β-subunit of FSH, which was then combined with the α-subunit, generating FSH164. SDS-PAGE and a series of liquid chromatography analyses showed the changed physicochemical properties, in which the MW of FSH164 was 2-fold greater than that of rh-FSH, and exceeded the MW of Elonva. Glycosylation analysis via ultra-performance liquid chromatography (UPLC) demonstrated an abundance of O-glycans and N-glycans, with sialic acid in the extremities. In vitro experiments suggested that FSH164 improved efficacy in addressing the attenuation of downstream signaling activation associated with sustained-action FSH modifications compared with Elonva. Pharmacokinetic results suggested that, compared with Elonva, FSH164 had a 1.5-fold longer half-life in rats. Furthermore, increased activities in terms of ovary weight gain and superovulations were verified in rats and mice. In conclusion, the designed hyperglycosylated FSH164 exhibits a prolonged metabolic duration, with a single dose of FSH164 possessing bioactivity comparable to that of multiple rh-FSH injections, suggesting that it has great potential as a therapy for infertility.
Collapse
Affiliation(s)
- Rongchen Sun
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Xue Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Shang Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Ting Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Pei Du
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Youyou Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Zhen Hua
- Jiangsu Cell Tech Medical Research Institute CO., LTD., Nanjing, PR China
| | - Zhengqi Zha
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Mingtao Fan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Meijia Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China; Jiangsu Cell Tech Medical Research Institute CO., LTD., Nanjing, PR China.
| | - Hongping Yin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
2
|
Kiose KI, Storr A, Kolibianakis EM, Mol BW, Venetis CA. Biosimilars versus the originator of follitropin alfa for ovarian stimulation in ART: a systematic review and meta-analysis. Hum Reprod 2025; 40:343-359. [PMID: 39719046 PMCID: PMC11788201 DOI: 10.1093/humrep/deae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/13/2024] [Indexed: 12/26/2024] Open
Abstract
STUDY QUESTION Is the probability of pregnancy different between women using biosimilars versus the originator of follitropin alfa for ovarian stimulation in ART? SUMMARY ANSWER Meta-analysis of eight randomized clinical trials (RCTs) suggests that live birth, clinical, and ongoing pregnancy rates are significantly lower with biosimilars of follitropin alfa compared to the originator. WHAT IS KNOWN ALREADY All biosimilars of follitropin alfa have received regulatory approval by demonstrating non-inferiority in the number of retrieved oocytes compared to the originator. Nevertheless, the most clinically relevant outcome in ART for both clinicians and patients is live birth. A meta-analysis published in 2021 suggested that biosimilars of follitropin alfa are associated with lower live birth rates compared to the originator. Since then, more relevant RCTs have been published, and thus an updated critical synthesis of the available evidence is urgently warranted. STUDY DESIGN, SIZE, DURATION A systematic review and meta-analysis were performed to compare biosimilars versus the originator of follitropin alfa in women undergoing ovarian stimulation for ART. A literature search was conducted until January 2024 in MEDLINE, Embase, Cochrane CENTRAL, Scopus, Web of Science, WHO, Clinicaltrials.gov, and others to identify eligible RCTs. The primary outcome was live birth. Secondary outcomes included clinical and ongoing pregnancy, duration of gonadotrophin administration and total FSH dose, number of oocytes retrieved, and ovarian hyperstimulation syndrome (OHSS). PARTICIPANTS/MATERIALS, SETTING, METHODS Data were extracted independently by two reviewers. Quality was assessed using the RoB-2 Tool by Cochrane, and a sensitivity analysis was performed by excluding studies having high risk of bias. Meta-analysis was performed using the random or fixed effects model depending on the presence or not of significant (>50%) statistical heterogeneity (I2). Results were combined using the intention-to-treat principle and are reported as risk ratio (RR) or weighted-mean-difference (WMD) with 95% CIs. MAIN RESULTS AND THE ROLE OF CHANCE Eight RCTs (n = 2987) (published between 2015 and 2023) were identified, assessing seven biosimilar products of follitropin alfa. The number of patients included in the eligible studies ranged from 100 to 1100. Three of the RCTs were deemed to be at high risk of bias. The duration of gonadotrophin administration was shorter in the biosimilars group (WMD: -0.19 days, 95% CI: -0.34 to -0.05; I2 = 0%, 5 studies, n = 2081), while no difference was observed in the total dose of FSH (WMD: -34.69 IUs, 95% CI: -74.54 to 5.16; I2 = 15.53%, 5 studies, n = 2081). No difference was observed in the number of oocytes retrieved (WMD: 0.27, 95% CI: -0.43 to 0.96; I2 = 10.7%, 6 studies, n = 1527) and OHSS rates (RR: 1.17, 95% CI: 0.90-1.52; I2 = 0%, 8 studies, n = 2986) between the two groups. A significantly lower live birth rate was observed using the biosimilars of follitropin alfa compared to the originator in women undergoing ovarian stimulation for ART (RR: 0.83, 95% CI: 0.72-0.96; I2 = 0%, 6 studies, n = 2335; moderate certainty of evidence). Similarly, clinical pregnancy (RR: 0.82, 95% CI: 0.73-0.92; I2 = 0%, 7 studies, n = 2876; low certainty of evidence) and ongoing pregnancy rates (RR: 0.81, 95% CI: 0.70-0.94; I2 = 0%, 7 studies, n = 1886; low certainty of evidence) were lower in the biosimilars group. These results were not materially altered in the sensitivity analyses performed where studies deemed at high risk of bias were excluded. LIMITATIONS, REASONS FOR CAUTION This meta-analysis included RCTs evaluating seven different biosimilars of follitropin alfa; however, pooled data appeared to be homogeneous. No data were available comparing biosimilars of follitropin alfa with the originator regarding cumulative live birth rate per aspiration or the probability of live birth in frozen thawed cycles. The population examined in the eligible RCTs includes mainly normal responders and no RCTs were identified focusing on poor or high responders. WIDER IMPLICATIONS OF THE FINDINGS Clinicians should be informed that although biosimilars of follitropin alfa produce similar number of oocytes with the originator, pregnancy rates after a fresh transfer are likely to be lower. Future research should focus on optimizing the production and use of biosimilars of follitropin alfa, so that they lead to pregnancy rates comparable to the originator. STUDY FUNDING/COMPETING INTEREST(S) No external funding was used for this study. K.I.K. and A.S. have no competing interest to disclose. E.M.K. reports personal fees and non-financial support from Merck, Ferring, IBSA, and Vianex. B.W.M. has been supported by an investigator grant from NHMRC, has received consulting fees from Organon, Merck, and Norgine, research support and non-financial support from Merck KGaA, Darmstadt, Germany. B.W.M. also reports having stocks from OBsEva. C.A.V. reports grants, personal fees, and non-financial support from Merck KGaA, Darmstadt, Germany, personal fees, and non-financial support from Merck, Sharpe and Dohme, personal fees and non-financial support from Organon, grants and non-financial support from Ferring, personal fees from IBSA, and personal fees and non-financial support from Gedeon Richter and Vianex. REGISTRATION NUMBER Protocol for the systematic review registered in The International Prospective Register of Systematic Reviews (PROSPERO; CRD42024498237).
Collapse
Affiliation(s)
- Kokkoni I Kiose
- Unit for Human Reproduction, 1st Dept of Obstetrics and Gynaecology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Efstratios M Kolibianakis
- Unit for Human Reproduction, 1st Dept of Obstetrics and Gynaecology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ben W Mol
- Department of Obstetrics and Gynecology, University of Monash, Monash, Clayton, VIC, Australia
| | - Christos A Venetis
- Unit for Human Reproduction, 1st Dept of Obstetrics and Gynaecology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Centre for Big Data Research in Health, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Goumenou A, Chendo C, Combès A, Fournier T, Pichon V, Delaunay N. Evaluation of Jacalin lectin sorbents for the extraction of the human chorionic gonadotropin glycoforms prior to analysis by nano liquid chromatography-high resolution mass spectrometry. J Pharm Biomed Anal 2025; 252:116525. [PMID: 39447420 DOI: 10.1016/j.jpba.2024.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Human chorionic gonadotropin (hCG) is a dimeric, highly glycosylated hormone with a total of 4 N- and 4 O-glycosylation sites in its two subunits, hCGα and hCGβ. Recently, we developed a novel nano liquid chromatography coupled to high resolution mass spectrometry (nanoLC-HRMS) method for the analysis and thus the detection of the intact glycoforms of hCG. Here, a sorbent functionalized with the Jacalin lectin was evaluated in solid-phase extraction (SPE) for its potential to fractionate the hCG glycoforms prior to their nanoLC-HRMS analysis at the intact level, which may facilitate the detection of low-abundance glycoforms and may lead to a more detailed characterization of the hormone glycosylation. A commercial sorbent based on Jacalin immobilized on Sepharose and having a lectin density of 4.5 mg per ml of gel was selected to carry out SPE and its capacity was estimated to be of some tens of μg of hCG per ml of lectin sorbent. Next, the SPE protocol was modified to improve the extraction recoveries. Especially, it was noticed that an extensive pre-conditioning procedure prior to the first use of a cartridge was necessary to remove the residual non-grafted lectins. Indeed, if non-grafted lectins are not eliminated, they may bind a part of hCG glycoforms preventing their retention by the sorbent, leading to low extraction recoveries (around 10 %). With the extensive pre-conditioning procedure, the average extraction recoveries for both hCGα and hCGβ glycoforms were about 50 %, with either recombinant or urinary hCG. Qualitatively, the fractionation of hCG glycoforms between the washing and elution fractions was achieved with the urinary hCG sample by determining the number of glycoforms detected in each fraction. It appears that 12 hCGα glycoforms have a low affinity (detected only in the washing fraction), 1 a low-medium affinity (detected in washing and elution 1 fractions), 16 a medium affinity (detected in washing, elution 1 and 2 fractions), and 12 a high affinity (detected only in elution 1 and 2 fractions). For the hCGβ glycoforms, similarly, 3 have a low affinity and 12 a low-medium affinity. Additionally, the 3 hCGβ glycoforms were detected better. A different behavior was observed with the recombinant hCG sample, which indicates glycosylation differences between the two hCG samples. This shows the potential of lectin-based affinity fractionation before nanoLC-HRMS analysis to better characterize the glycosylation state of hCG at the intact level.
Collapse
Affiliation(s)
- Anastasia Goumenou
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Christophe Chendo
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Audrey Combès
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Thierry Fournier
- "Pathophysiology & Pharmacotoxicology of the Human Placenta, pre & postnatal Microbiota", UMR-S 1139, Université Paris Cité, INSERM, Paris, France
| | - Valérie Pichon
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France; Sorbonne Université, Paris, France
| | - Nathalie Delaunay
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France.
| |
Collapse
|
4
|
Ulloa-Aguirre A, Llamosas R, Dias JA. Follicle-Stimulating Hormone Sweetness: How Carbohydrate Structures Impact on the Biological Function of the Hormone. Arch Med Res 2024; 55:103091. [PMID: 39369583 DOI: 10.1016/j.arcmed.2024.103091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Follicle-stimulating hormone (FSH), or follitropin, exists in multiple molecular forms due largely to its protein-carbohydrate composition and the complexity of the glycans attached to the protein core. The heterogeneity of gonadotropins exists in two forms, macroheterogeneity, which results from the absence of one or two oligosaccharide chains in the ß-subunit, and microheterogeneity which results from variation in the structures and complexity of the glycans attached to the hormone. In the clinical arena, FSH compounds are widely used by fertility specialists to promote ovarian follicle growth and maturation to a preovulatory follicle containing a fertilization-competent oocyte. Several genetically engineered recombinant human FSH preparations have been added to the arsenal of follitropin preparations in several countries for the treatment of infertility, particularly in women attending assisted reproduction clinics. Although the primary structure of these recombinant proteins is identical to that of naturally occurring FSH, the cell context and variations in the production and purification processes may impact the glycosidic profile of the recombinant FSH macro- and micro-heterogeneity, which may potentially influence the pharmacokinetics and pharmacodynamics of the compound. This review concentrates on the structure-function correlates of follitropin, with emphasis on the physiological and biological importance of the carbohydrates attached to its protein core, including its pharmacokinetics and biological activity. Emphasis is placed on pituitary FSH, and the available data on the various recombinant FSH preparations employed in therapeutics are also discussed, considering that this gonadotropin represents the cornerstone for the treatment of infertility in modern assisted reproduction.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| | - Regina Llamosas
- Department of Endocrinology and Lipid Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - James A Dias
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA
| |
Collapse
|
5
|
Rocca MS, Pannella M, Bayraktar E, Marino S, Bortolozzi M, Di Nisio A, Foresta C, Ferlin A. Extragonadal function of follicle-stimulating hormone: Evidence for a role in endothelial physiology and dysfunction. Mol Cell Endocrinol 2024; 594:112378. [PMID: 39332467 DOI: 10.1016/j.mce.2024.112378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
AIMS Follicle-stimulating hormone (FSH) plays a fundamental role in reproduction stimulating ovarian folliculogenesis, Sertoli cells function and spermatogenesis. However, the recent identification of FSH receptor (FSHR) also in extra-gonadal tissues has suggested that FSH activity may not be limited only to fertility regulation, with conflicting results on the possible role of FSH in endothelial cells. The aim of this study was to investigate FSH role on endothelial function in Human Umbilical Vein Endothelial Cells (HUVECs). RESULTS Endothelial Nitric oxide synthase (eNOS) expression, eNOS phosphorylation and Nitric Oxide (NO) production resulted increased after the stimulation of HUVEC with recombinant human FSH (rhFSH) at 3.6x103 ng/ml, with increasing Calcium release from intracellular stores. Furthermore, IP3 production increased after rhFSH stimulation despite PTX treatment and NFAT1 was observed prevalently in nucleus. We observed a statistical difference between untreated cells and cells stimulated with 0.36x103 ng/ml and between cells stimulated with 0.36x103 ng/ml and cells stimulated with 1.8x103 ng/ml at 4 and 8 h by Wound healing assay, respectively. Furthermore, a higher cellular permeability was observed in stimulated cells, with atypical VE-cadherin distribution, as well as filamentous actin. CONCLUSIONS Our findings suggest that FSH at high concentrations elicits a signalling that could compromise the endothelial membrane. Indeed, VE-cadherin anomalies may severely affect the endothelial barrier, resulting in an increased membrane permeability. Although NO is an important vasodilatation factor, probably an excessive production could impact on endothelial functionality, partially explaining the increased risk of cardiovascular diseases in menopausal women and men with hypogonadism.
Collapse
Affiliation(s)
- Maria Santa Rocca
- University Hospital of Padua, Unit of Andrology and Reproductive Medicine, Padua, Italy
| | | | - Erva Bayraktar
- University of Padua, Department of Physics and Astronomy "G. Galilei", Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129, Padua, Italy
| | - Saralea Marino
- University of Padua, Department of Physics and Astronomy "G. Galilei", Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129, Padua, Italy
| | - Mario Bortolozzi
- University of Padua, Department of Physics and Astronomy "G. Galilei", Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129, Padua, Italy
| | - Andrea Di Nisio
- University of Padua, Department of Medicine, Padua, Italy; Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Centro Direzionale Isola F2, Naples, Italy
| | - Carlo Foresta
- University of Padua, Department of Medicine, Padua, Italy
| | - Alberto Ferlin
- University Hospital of Padua, Unit of Andrology and Reproductive Medicine, Padua, Italy; University of Padua, Department of Medicine, Padua, Italy.
| |
Collapse
|
6
|
Cannarella R, Leanza C, Crafa A, Aversa A, Condorelli RA, Calogero AE, La Vignera S. Effects of Switching FSH Preparations on Sperm Parameters and Pregnancy: A Prospective Controlled Study. J Clin Med 2024; 13:5666. [PMID: 39407726 PMCID: PMC11477313 DOI: 10.3390/jcm13195666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Objective: To study the effect of switching to a follicle-stimulating hormone (FSH) preparation other than that to which infertile male patients have not had an effective response. Patients and methods: Seventy-four normogonadotropinemic, non-obstructive, oligozoospermic patients who were poor responders to the administration of highly purified FSH (hpFSH) (Group 1 (n = 22) and Group 3 (n = 15)) or to recombinant human FSH (rhFSH) (Group 2 (n = 22) and Group 4 (n = 15)) were selected for this prospective study. After 3 months of washout from treatment with the first FSH preparation of choice, rhFSH was administered to patients in Groups 1 and 4 and hpFSH to those in Groups 2 and 3. Serum luteinizing hormone, FSH, total testosterone levels, conventional sperm parameters, testicular volume, and the number of pregnancies were evaluated at study entry and after the first and second treatment cycles. Results: Comparing treatment groups, the greatest improvement in sperm parameters was recorded in the groups of patients prescribed the switch in FSH preparation. Group 1 had the greatest benefit from therapy, with the highest pregnancy rate after the second treatment cycle. Indeed, eight couples achieved pregnancy (36.4%), compared to Groups 2 (n = 4; 18.2%), 3 (n = 1; 6.7%), and 4 (n = 2; 13.3%) (p = 0.04). Conclusions: The results of this study suggest that a therapeutic scheme involving the "switching" of the FSH preparation yields better results than a protocol using the same FSH preparation for six months. These findings, if confirmed by further studies, will help us better design a treatment strategy with FSH for infertile patients with oligozoospermia.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.C.); (C.L.); (R.A.C.); (A.E.C.); (S.L.V.)
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Claudia Leanza
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.C.); (C.L.); (R.A.C.); (A.E.C.); (S.L.V.)
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.C.); (C.L.); (R.A.C.); (A.E.C.); (S.L.V.)
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.C.); (C.L.); (R.A.C.); (A.E.C.); (S.L.V.)
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.C.); (C.L.); (R.A.C.); (A.E.C.); (S.L.V.)
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.C.); (C.L.); (R.A.C.); (A.E.C.); (S.L.V.)
| |
Collapse
|
7
|
Zariñán T, Espinal-Enriquez J, De Anda-Jáuregui G, Lira-Albarrán S, Hernández-Montes G, Gutiérrez-Sagal R, Rebollar-Vega RG, Bousfield GR, Butnev VY, Hernández-Lemus E, Ulloa-Aguirre A. Differential effects of follicle-stimulating hormone glycoforms on the transcriptome profile of cultured rat granulosa cells as disclosed by RNA-seq. PLoS One 2024; 19:e0293688. [PMID: 38843139 PMCID: PMC11156319 DOI: 10.1371/journal.pone.0293688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/16/2024] [Indexed: 06/09/2024] Open
Abstract
It has been documented that variations in glycosylation on glycoprotein hormones, confer distinctly different biological features to the corresponding glycoforms when multiple in vitro biochemical readings are analyzed. We here applied next generation RNA sequencing to explore changes in the transcriptome of rat granulosa cells exposed for 0, 6, and 12 h to 100 ng/ml of four highly purified follicle-stimulating hormone (FSH) glycoforms, each exhibiting different glycosylation patterns: a. human pituitary FSH18/21 (hypo-glycosylated); b. human pituitary FSH24 (fully glycosylated); c. Equine FSH (eqFSH) (hypo-glycosylated); and d. Chinese-hamster ovary cell-derived human recombinant FSH (recFSH) (fully-glycosylated). Total RNA from triplicate incubations was prepared from FSH glycoform-exposed cultured granulosa cells obtained from DES-pretreated immature female rats, and RNA libraries were sequenced in a HighSeq 2500 sequencer (2 x 125 bp paired-end format, 10-15 x 106 reads/sample). The computational workflow focused on investigating differences among the four FSH glycoforms at three levels: gene expression, enriched biological processes, and perturbed pathways. Among the top 200 differentially expressed genes, only 4 (0.6%) were shared by all 4 glycoforms at 6 h, whereas 118 genes (40%) were shared at 12 h. Follicle-stimulating hormone glycocoforms stimulated different patterns of exclusive and associated up regulated biological processes in a glycoform and time-dependent fashion with more shared biological processes after 12 h of exposure and fewer treatment-specific ones, except for recFSH, which exhibited stronger responses with more specifically associated processes at this time. Similar results were found for down-regulated processes, with a greater number of processes at 6 h or 12 h, depending on the particular glycoform. In general, there were fewer downregulated than upregulated processes at both 6 h and 12 h, with FSH18/21 exhibiting the largest number of down-regulated associated processes at 6 h while eqFSH exhibited the greatest number at 12 h. Signaling cascades, largely linked to cAMP-PKA, MAPK, and PI3/AKT pathways were detected as differentially activated by the glycoforms, with each glycoform exhibiting its own molecular signature. These data extend previous observations demonstrating glycosylation-dependent distinctly different regulation of gene expression and intracellular signaling pathways triggered by FSH in granulosa cells. The results also suggest the importance of individual FSH glycoform glycosylation for the conformation of the ligand-receptor complex and induced signalling pathways.
Collapse
Affiliation(s)
- Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | | | | | - Saúl Lira-Albarrán
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Georgina Hernández-Montes
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Rosa G. Rebollar-Vega
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - George R. Bousfield
- Department of Biological Sciences, Wichita State University, Wichita Kansas, Kansas, United States of America
| | - Viktor Y. Butnev
- Department of Biological Sciences, Wichita State University, Wichita Kansas, Kansas, United States of America
| | | | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| |
Collapse
|
8
|
Lazzaretti C, Roy N, Paradiso E, Capponi C, Ferrari T, Reggianini F, Sperduti S, Perri C, Baschieri L, Mascolo E, Varani M, Canu G, Trenti T, Nicoli A, Morini D, Iannotti F, Villani MT, Vicini E, Simoni M, Casarini L. Benzo[a]pyrene disrupts LH/hCG-dependent mouse Leydig cell steroidogenesis through receptor/Gαs protein targeting. Sci Rep 2024; 14:844. [PMID: 38191651 PMCID: PMC10774265 DOI: 10.1038/s41598-024-51516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/06/2024] [Indexed: 01/10/2024] Open
Abstract
Steroidogenesis of gonadal cells is tightly regulated by gonadotropins. However, certain polycyclic aromatic hydrocarbons, including Benzo[a]pyrene (BaP), induce reproductive toxicity. Several existing studies have considered higher than environmentally relevant concentrations of BaP on male and female steroidogenesis following long-term exposure. Also, the impact of short-term exposure to BaP on gonadotropin-stimulated cells is understudied. Therefore, we evaluated the effect of 1 nM and 1 µM BaP on luteinizing hormone/choriogonadotropin (LH/hCG)-mediated signalling in two steroidogenic cell models, i.e. the mouse tumor Leydig cell line mLTC1, and the human primary granulosa lutein cells (hGLC) post 8- and 24-h exposure. Cell signalling studies were performed by homogeneous time-resolved fluorescence (HTRF) assay, bioluminescence energy transfer (BRET) and Western blotting, while immunostainings and immunoassays were used for intracellular protein expression and steroidogenesis analyses, respectively. BaP decreased cAMP production in gonadotropin-stimulated mLTC1 interfering with Gαs activation. Therefore, decrease in gonadotropin-mediated CREB phosphorylation in mLTC1 treated with 1 μM BaP was observed, while StAR protein levels in gonadotropin-stimulated mLTC1 cells were unaffected by BaP. Further, BaP decreased LH- and hCG-mediated progesterone production in mLTC1. Contrastingly, BaP failed to mediate any change in cAMP, genes and proteins of steroidogenic machinery and steroidogenesis of gonadotropin-treated hGLC. Our results indicate that short-term exposure to BaP significantly impairs steroidogenic signalling in mLTC1 interfering with Gαs. These findings could have a significant impact on our understanding of the mechanism of reproductive toxicity by endocrine disruptors.
Collapse
Affiliation(s)
- Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy.
| | - Neena Roy
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
| | - Chiara Capponi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Tommaso Ferrari
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
| | - Francesca Reggianini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy
| | - Carmela Perri
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
| | - Lara Baschieri
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy
| | - Elisa Mascolo
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
| | - Manuela Varani
- Department of Laboratory Medicine and Pathology, Azienda USL/Azienda Ospedaliero-Universitaria di Modena, 41126, Modena, Italy
| | - Giulia Canu
- Department of Laboratory Medicine and Pathology, Azienda USL/Azienda Ospedaliero-Universitaria di Modena, 41126, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Azienda USL/Azienda Ospedaliero-Universitaria di Modena, 41126, Modena, Italy
| | - Alessia Nicoli
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Daria Morini
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Francesca Iannotti
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Maria Teresa Villani
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Elena Vicini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, La Sapienza University, Rome, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy
| |
Collapse
|
9
|
Paradiso E, Lazzaretti C, Sperduti S, Melli B, Trenti T, Tagliavini S, Roli L, D'Achille F, Beltrán-Frutos E, Simoni M, Casarini L. Protein kinase B (Akt) blockade inhibits LH/hCG-mediated 17,20-lyase, but not 17α-hydroxylase activity of Cyp17a1 in mouse Leydig cell steroidogenesis. Cell Signal 2023; 111:110872. [PMID: 37640196 DOI: 10.1016/j.cellsig.2023.110872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Androgens are produced by adrenal and gonadal cells thanks to the action of specific enzymes. We investigated the role of protein kinase B (Akt) in the modulation of Δ4 steroidogenic enzymes' activity, in the mouse Leydig tumor cell line mLTC1. Cells were treated for 0-24 h with the 3 × 50% effective concentration of human luteinizing hormone (LH) and choriogonadotropin (hCG), in the presence and in the absence of the specific Akt inhibitor 3CAI. Cell signaling analysis was performed by bioluminescence resonance energy transfer (BRET) and Western blotting, while the expression of key target genes was investigated by real-time PCR. The synthesis of progesterone, 17α-hydroxy (OH)-progesterone and testosterone was measured by immunoassay. Control experiments for cell viability and caspase 3 activation were performed as well. We found that both hormones activated cAMP and downstream effectors, such as extracellularly-regulated kinase 1/2 (Erk1/2) and cAMP response element-binding protein (Creb), as well as Akt, and the transcription of Stard1, Hsd3b1, Cyp17a1 and Hsd17b3 genes, boosting the Δ4 steroidogenic pathway. Interestingly, Akt blockade decreased selectively Cyp17a1 expression levels, inhibiting its 17,20-lyase, but not the 17-hydroxylase activity. This effect is consistent with lower Cyp17a1 affinity to 17α-OH-progesterone than progesterone. As a result, cell treatment with 3CAI resulted in 17α-OH-progesterone accumulation at 16-24 h and decreased testosterone levels after 24 h. In conclusion, in the mouse Leydig cell line mLTC1, we found substantial Akt dependence of the 17,20-lyase activity and testosterone synthesis. Our results indicate that different intracellular pathways modulate selectively the dual activity of Cyp17a1.
Collapse
Affiliation(s)
- Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy.
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Beatrice Melli
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Simonetta Tagliavini
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Laura Roli
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Fabio D'Achille
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Ester Beltrán-Frutos
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30120 Murcia, Spain
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| |
Collapse
|
10
|
Zariñán T, Espinal-Enriquez J, De Anda-Jáuregui G, Lira-Albarrán S, Hernández-Montes G, Gutiérrez-Sagal R, Rebollar-Vega RG, Bousfield GR, Butnev VY, Hernández-Lemus E, Ulloa-Aguirre A. Differential effects of follicle-stimulating hormone glycoforms on the transcriptome profile of cultured rat granulosa cells as disclosed by RNA-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562995. [PMID: 37905087 PMCID: PMC10614937 DOI: 10.1101/2023.10.18.562995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
It has been documented that variations in glycosylation on glycoprotein hormones, confer distinctly different biological features to the corresponding glycoforms when multiple in vitro biochemical readings are analyzed. We here applied next generation RNA sequencing to explore changes in the transcriptome of rat granulosa cells exposed for 0, 6, and 12 h to 100 ng/ml of four highly purified follicle-stimulating hormone (FSH) glycoforms, each exhibiting different glycosylation patterns: human pituitary FSH18/21 and equine FSH (eqFSH) (hypo-glycosylated), and human FSH24 and chinese-hamster ovary cell-derived human recombinant FSH (recFSH) (fully-glycosylated). Total RNA from triplicate incubations was prepared from FSH glycoform-exposed cultured granulosa cells obtained from DES-pretreated immature female rats, and RNA libraries were sequenced in a HighSeq 2500 sequencer (2 × 125 bp paired-end format, 10-15 × 106 reads/sample). The computational workflow focused on investigating differences among the four FSH glycoforms at three levels: gene expression, enriched biological processes, and perturbed pathways. Among the top 200 differentially expressed genes, only 4 (0.6%) were shared by all 4 glycoforms at 6 h, whereas 118 genes (40%) were shared at 12 h. Follicle-stimulating hormone glycocoforms stimulated different patterns of exclusive and associated up regulated biological processes in a glycoform and time-dependent fashion with more shared biological processes after 12 h of exposure and fewer treatment-specific ones, except for recFSH, which exhibited stronger responses with more specifically associated processes at this time. Similar results were found for down-regulated processes, with a greater number of processes at 6 h or 12 h, depending on the particular glycoform. In general, there were fewer downregulated than upregulated processes at both 6 h and 12 h, with FSH18/21 exhibiting the largest number of down-regulated associated processes at 6 h while eqFSH exhibited the greatest number at 12 h. Signaling cascades, largely linked to cAMP-PKA, MAPK, and PI3/AKT pathways were detected as differentially activated by the glycoforms, with each glycoform exhibiting its own molecular signature. These data extend previous observations demonstrating glycosylation-dependent differential regulation of gene expression and intracellular signaling pathways triggered by FSH in granulosa cells. The results also suggest the importance of individual FSH glycoform glycosylation for the conformation of the ligand-receptor complex and induced signalling pathways.
Collapse
Affiliation(s)
- Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, 14080, Mexico City, Mexico
| | | | | | - Saúl Lira-Albarrán
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, 14080, Mexico
| | - Georgina Hernández-Montes
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, 14080, Mexico City, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, 14080, Mexico City, Mexico
| | - Rosa G. Rebollar-Vega
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, 14080, Mexico City, Mexico
| | - George R. Bousfield
- Department of Biological Sciences, Wichita State University, Wichita Kansas, 67260, USA
| | - Viktor Y. Butnev
- Department of Biological Sciences, Wichita State University, Wichita Kansas, 67260, USA
| | | | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, 14080, Mexico City, Mexico
| |
Collapse
|
11
|
Manzi L, Sepe N, Migliaccio W, Lanzoni L, Iozzino L, D’Angelo F, Colarusso L, Montenegro S, Palmese A, D’Hooghe T, Ulloa-Aguirre A, Koloda Y, Lispi M. Comparative Assessment of the Structural Features of Originator Recombinant Human Follitropin Alfa Versus Recombinant Human Follitropin Alfa Biosimilar Preparations Approved in Non-European Regions. Int J Mol Sci 2022; 23:ijms23126762. [PMID: 35743204 PMCID: PMC9223809 DOI: 10.3390/ijms23126762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Abstract
Although the full primary structures of the alfa and beta subunits of reference r-hFSH-alfa and its biosimilars are identical, cell context-dependent differences in the expressing cell lines and manufacturing process can lead to variations in glycosylation profiles. In the present study, we compared the structural features of reference r-hFSH-alfa with those of five biosimilar preparations approved in different global regions outside Europe (Primapur®, Jin Sai Heng®, Follitrope®, Folisurge®, and Corneumon®) with respect to glycosylation, macro- and microheterogeneity, and other post-translational modifications and higher order structure. The mean proportion of N-glycosylation-site occupancy was highest in reference r-hFSH-alfa, decreasing sequentially in Primapur, Jin Sai Heng, Corneumon, Follisurge and Follitrope, respectively. The level of antennarity showed slightly higher complexity in Corneumon, Primapur and Follitrope versus reference r-hFSH-alfa, whereas Jin Sai Heng and Folisurge were aligned with reference r-hFSH-alfa across all N-glycosylation sites. Sialylation level was higher in Corneumon and Follitrope, but small differences were detected in other biosimilar preparations compared with reference r-hFSH-alfa. Jin Sai Heng showed higher levels of N-glyconeuramic acid than the other preparations. Minor differences in oxidation levels were seen among the different products. Therefore, in summary, we identified var ious differences in N-glycosylation occupancy, antennarity, sialylation and oxidation between reference r-hFSH-alfa and the biosimilar preparations analyzed.
Collapse
Affiliation(s)
- Lucio Manzi
- Characterization & Innovative Analytics Unit—Analytical Development Biotech—Global Analytical Development—Global Development & Launch—Global Healthcare Operation, Merck Serono S.p.A., 00176 Rome, Italy, an affiliate of Merck KGaA; (L.M.); (N.S.); (W.M.); (L.L.); (L.I.); (F.D.); (L.C.)
| | - Nunzio Sepe
- Characterization & Innovative Analytics Unit—Analytical Development Biotech—Global Analytical Development—Global Development & Launch—Global Healthcare Operation, Merck Serono S.p.A., 00176 Rome, Italy, an affiliate of Merck KGaA; (L.M.); (N.S.); (W.M.); (L.L.); (L.I.); (F.D.); (L.C.)
| | - Walter Migliaccio
- Characterization & Innovative Analytics Unit—Analytical Development Biotech—Global Analytical Development—Global Development & Launch—Global Healthcare Operation, Merck Serono S.p.A., 00176 Rome, Italy, an affiliate of Merck KGaA; (L.M.); (N.S.); (W.M.); (L.L.); (L.I.); (F.D.); (L.C.)
| | - Ludovica Lanzoni
- Characterization & Innovative Analytics Unit—Analytical Development Biotech—Global Analytical Development—Global Development & Launch—Global Healthcare Operation, Merck Serono S.p.A., 00176 Rome, Italy, an affiliate of Merck KGaA; (L.M.); (N.S.); (W.M.); (L.L.); (L.I.); (F.D.); (L.C.)
| | - Luisa Iozzino
- Characterization & Innovative Analytics Unit—Analytical Development Biotech—Global Analytical Development—Global Development & Launch—Global Healthcare Operation, Merck Serono S.p.A., 00176 Rome, Italy, an affiliate of Merck KGaA; (L.M.); (N.S.); (W.M.); (L.L.); (L.I.); (F.D.); (L.C.)
| | - Fabrizia D’Angelo
- Characterization & Innovative Analytics Unit—Analytical Development Biotech—Global Analytical Development—Global Development & Launch—Global Healthcare Operation, Merck Serono S.p.A., 00176 Rome, Italy, an affiliate of Merck KGaA; (L.M.); (N.S.); (W.M.); (L.L.); (L.I.); (F.D.); (L.C.)
| | - Lucia Colarusso
- Characterization & Innovative Analytics Unit—Analytical Development Biotech—Global Analytical Development—Global Development & Launch—Global Healthcare Operation, Merck Serono S.p.A., 00176 Rome, Italy, an affiliate of Merck KGaA; (L.M.); (N.S.); (W.M.); (L.L.); (L.I.); (F.D.); (L.C.)
| | | | - Angelo Palmese
- Characterization & Innovative Analytics Unit—Analytical Development Biotech—Global Analytical Development—Global Development & Launch—Global Healthcare Operation, Merck Serono S.p.A., 00176 Rome, Italy, an affiliate of Merck KGaA; (L.M.); (N.S.); (W.M.); (L.L.); (L.I.); (F.D.); (L.C.)
- Correspondence: (A.P.); (T.D.)
| | - Thomas D’Hooghe
- Merck Healthcare KGaA, 64293 Darmstadt, Germany; (S.M.); (M.L.)
- Department of Development and Regeneration, Laboratory of Endometrium, Endometriosis & Reproductive Medicine, KU Leuven, Herestraat 49-Box 805, B-3000 Leuven, Belgium
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University Medical School, New Haven, CT 06510, USA
- Correspondence: (A.P.); (T.D.)
| | - Alfredo Ulloa-Aguirre
- Research Support Network (RAI), Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Tlalpan, Mexico City 14000, Mexico;
| | - Yulia Koloda
- Department of Obstetrics and Gynecology, Russian Medical Academy of Continuous Professional Education, Centre of Reproduction “Life Line”, 121471 Moscow, Russia;
| | - Monica Lispi
- Merck Healthcare KGaA, 64293 Darmstadt, Germany; (S.M.); (M.L.)
- PhD School of Clinical and Experimental Medicine, Unit of Endocrinology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|
12
|
Cheng Y, Li P, Hu B, Xu L, Liu S, Yu H, Guo Y, Xie Y, Yao W, Qian H. Correlation analysis reveals the intensified fermentation via Lactobacillus plantarum improved the flavor of fermented noni juice. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Abstract
Gonadotropins are glycoprotein sex hormones regulating development and reproduction and bind to specific G protein–coupled receptors expressed in the gonads. Their effects on multiple signaling cascades and intracellular events have recently been characterized using novel technological and scientific tools. The impact of allosteric modulators on gonadotropin signaling, the role of sugars linked to the hormone backbone, the detection of endosomal compartments supporting signaling modules, and the dissection of different effects mediated by these molecules are areas that have advanced significantly in the last decade. The classic view providing the exclusive activation of the cAMP/protein kinase A (PKA) and the steroidogenic pathway by these hormones has been expanded with the addition of novel signaling cascades as determined by high-resolution imaging techniques. These new findings provided new potential therapeutic applications. Despite these improvements, unanswered issues of gonadotropin physiology, such as the intrinsic pro-apoptotic potential to these hormones, the existence of receptors assembled as heteromers, and their expression in extragonadal tissues, remain to be studied. Elucidating these issues is a challenge for future research.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| |
Collapse
|
14
|
Nataraja S, Yu H, Guner J, Palmer S. Discovery and Preclinical Development of Orally Active Small Molecules that Exhibit Highly Selective Follicle Stimulating Hormone Receptor Agonism. Front Pharmacol 2021; 11:602593. [PMID: 33519465 PMCID: PMC7845544 DOI: 10.3389/fphar.2020.602593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
An orally active follicle stimulating hormone receptor allosteric agonist would provide a preferred treatment for over 16 million infertile women of reproductive age in low complexity methods (ovulation induction-intrauterine insemination) or in high complexity methods (controlled ovarian stimulation-in vitro fertilization). We present two oral follicle stimulating hormone receptor allosteric agonist compounds that have the desired pharmacology, drug metabolism, pharmacokinetics, and safety profile for clinical use. These molecules provide a single agent suitable for ovulation induction-intrauterine insemination or controlled ovarian stimulation-in vitro fertilization that is more convenient for patients and achieves similar preclinical efficacy as rec-hFSH. TOP5668, TOP5300 were evaluated in vitro in Chinese hamster ovary cells transfected with individual glycoprotein receptors measuring cAMP (FSHR, LH/CGR, thyroid stimulating hormone receptor). TOP5668 was found to have solely follicle stimulating hormone receptor allosteric agonist activity while TOP5300 was found to have mixed follicle stimulating hormone receptor allosteric agonist and LHR-AA activity. Both compounds stimulated concentration-dependent increases in estradiol production from cultured rat granulosa cells in the presence or absence of low dose rec-hFSH, while only TOP5300 stimulated testosterone production from rat primary Leydig cells. In pooled human granulosa cells obtained from patients undergoing controlled ovarian stimulation-in vitro fertilization, TOP5300 stimulated 7-fold greater maximal estradiol response than rec-hFSH and TOP5668 was 10-fold more potent than TOP5300. Both TOP5300 and TOP5668 stimulated follicular development in immature rat to the same efficacy as recombinant follicle stimulating hormone. In mice treated with TOP5300, in the presence of low dose of follicle stimulating hormone, there were no differences in oocyte number, fertilization rate, and hatched blastocyst rate in mice with TOP5300 and low dose follicle stimulating hormone vs. reference proteins pregnant mare serum gonadotropin or high dose rec-hFSH. ADME/PK and safety profiles were favorable. In addition, there was no appreciable activity on thyroid hormones by TOP5300 in 14-days toxicological study in rat or dog. The selected lead compound, TOP5300 stimulated a more robust increase in estradiol production from granulosa-lutein cells from women with polycystic ovarian syndrome patient compared to rec-hFSH. Conclusions: Two novel oral FSHR allosteric agonist, TOP5668 and TOP5300, were found to mimic the biological activity of rec hFSH in preclinical studies. Both compounds led to folliculogenesis and superovulation in rat and mice. Specifically, TOP5300 led to a similar number of ovulated oocytes that fertilized and developed into hatched blastocysts in mice when compared to rec-hFSH. The safety profile demonstrated lack of toxicity.
Collapse
Affiliation(s)
| | | | - Joie Guner
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| | - Stephen Palmer
- TocopheRx, Inc., Groton, MA, United States
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
15
|
Gleicher N, Weghofer A, Darmon SK, Barad DH. Rate of rebound in follicle growth after cessation of ovarian stimulation in initial non-responders: a prospective cohort study. J Ovarian Res 2021; 14:11. [PMID: 33422140 PMCID: PMC7797149 DOI: 10.1186/s13048-021-00765-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/01/2021] [Indexed: 11/10/2022] Open
Abstract
Previously anecdotally observed rebounds in follicle growth after interruption of exogenous gonadotropins in absolute non-responders were the impetus for here reported study. In a prospective cohort study, we investigated 49 consecutive patients, absolutely unresponsive to maximal exogenous gonadotropin stimulation, for a so-called rebound response to ovarian stimulation. A rebound response was defined as follicle growth following complete withdrawal of exogenous gonadotropin stimulation after complete failure to respond to maximal gonadotropin stimulation over up to 5–7 days. Median age of study patients was 40.5 ± 5.1 years (range 23–52). Women with and without rebound did not differ significantly (40.0 ± 6.0 vs. 41.0 ± 7.0 years, P = 0.41), with 24 (49.0%) recording a rebound and 25 (51.0%) not. Among the former, 21 (87.5%) reached retrieval of 1–3 oocytes and 15 (30.6%) reached embryo transfer. A successful rebound in almost half of prior non-responders was an unsuspected response rate, as was retrieval of 1–3 oocytes in over half of rebounding patients. Attempting rebounds may, thus, represent another incremental step in very poor prognosis patients before giving up on utilization of autologous oocytes. Here presented findings support further investigations into the underlying physiology leading to such an unexpectedly high rebound rate.
Collapse
Affiliation(s)
- Norbert Gleicher
- The Center for Human Reproduction, 10021, New York, NY, USA. .,Foundation for Reproductive Medicine, 10021, New York, NY, USA. .,Stem Cell Biology and Molecular Embryology Laboratory, The Rockefeller University, 10016, New York, NY, USA. .,Department of Obstetrics and Gynecology, Vienna University of Medicine, 1090, Vienna, Austria.
| | - Andrea Weghofer
- The Center for Human Reproduction, 10021, New York, NY, USA.,Department of Obstetrics and Gynecology, Vienna University of Medicine, 1090, Vienna, Austria
| | - Sarah K Darmon
- The Center for Human Reproduction, 10021, New York, NY, USA
| | - David H Barad
- The Center for Human Reproduction, 10021, New York, NY, USA.,Foundation for Reproductive Medicine, 10021, New York, NY, USA
| |
Collapse
|
16
|
Dias JA, Ulloa-Aguirre A. New Human Follitropin Preparations: How Glycan Structural Differences May Affect Biochemical and Biological Function and Clinical Effect. Front Endocrinol (Lausanne) 2021; 12:636038. [PMID: 33815292 PMCID: PMC8018285 DOI: 10.3389/fendo.2021.636038] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/09/2021] [Indexed: 12/21/2022] Open
Abstract
It is well accepted that pituitary follitropin is secreted into the circulation as a mixture of variants, which differ not in primary structure but rather at the level of glycosylation. These glycosidic forms vary in the number of glycosylation sites filled, complexity of glycosidic chains, and sialylation and sulfation. It is generally agreed that high sialylation, 2,3 sialic acid capping of terminal N-acetyl galactosamine or galactose leads to longer circulating half-life, by blocking binding of asialoglycoprotein receptor (ASGPR) in the liver. In contrast, 2,6 sialic acid found in humans does not prevent recognition of galactose and N-acetyl galactosamine by ASGPR. Few studies on clinical outcomes comparing differences in sialylation of follitropin found in commercially available preparations are available. Thus, there is a clear need for a consortium of open data to address this unmet need. Recently, FSH glycosylation, primarily on the β-subunit, which varies as women age, has emerged as a key modifier of follitropin action, with profound biological effects in vivo in animal models. To date, limited information of recombinant follitropin hormone preparations is available. Thus, most of the studies with FSH that is well characterized biochemically have been done in vitro, with engineered non gonadal host cells bearing recombinant receptors or in animal models. Since limited studies in human granulosa cells are available, a question is whether structural differences in glycosylation in commercially available follitropin affects biological function and clinical effect in humans. The presence of fucose, for example, has not been studied greatly even though, in the case of antibody therapy it has been shown to have a large effect on antibody targeting. This review on glycosidic variability of follitropin from the biochemical/structural point of view reflects on this question and presents an assessment in the context of available published data. If clinical differences are to be expected or not, the readers will have a better understanding of the evidence for and limitations of such expectations.
Collapse
Affiliation(s)
- James A. Dias
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, United States
- *Correspondence: James A. Dias,
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición SZ., Mexico City, Mexico
| |
Collapse
|
17
|
Casarini L, Riccetti L, Paradiso E, Benevelli R, Lazzaretti C, Sperduti S, Melli B, Tagliavini S, Varani M, Trenti T, Morini D, Falbo A, Villani MT, Jonas KC, Simoni M. Two human menopausal gonadotrophin (hMG) preparations display different early signaling in vitro. Mol Hum Reprod 2020; 26:894-905. [PMID: 33084890 DOI: 10.1093/molehr/gaaa070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Commercial hMG drugs are marketed for the treatment of infertility and consist of highly purified hormones acting on receptors expressed in target gonadal cells. Menopur® and Meriofert® are combined preparation of FSH and hCG and are compared in vitro herein. To this purpose, the molecular composition of the two drugs was analyzed by immunoassay. The formation of FSH receptor and LH/hCG receptor (FSHR; LHCGR) heteromer, intracellular Ca2+ and cAMP activation, β-arrestin 2 recruitment and the synthesis of progesterone and estradiol were evaluated in transfected HEK293 and human primary granulosa lutein cells treated by drugs administered within the pg-mg/ml concentration range. Molecular characterization revealed that Meriofert® has a higher FSH:hCG ratio than Menopur® which, in turn, displays the presence of LH molecules. While both drugs induced similar FSHR-LHCGR heteromeric formations and intracellular Ca2+ increase, Meriofert® had a higher potency than Menopur® in inducing a cAMP increase. Moreover, Meriofert® revealed a higher potency than Menopur® in recruiting β-arrestin 2, likely due to different FSH content modulating the tridimensional structure of FSHR-LHCGR-β-arrestin 2 complexes, as evidenced by a decrease in bioluminescence resonance energy transfer signal. This drug-specific activation of intracellular signaling pathways is consistent with the molecular composition of these preparations and impacts downstream progesterone and estradiol production, with Menopur® more potent than Meriofert® in inducing the synthesis of both the steroids. These findings are suggestive of distinct in-vivo activities of these preparations, but require cautious interpretation and further validation from clinical studies.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Laura Riccetti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.,International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Riccardo Benevelli
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.,International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Beatrice Melli
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Simonetta Tagliavini
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL. NOCSAE, Modena 41126, Italy
| | - Manuela Varani
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL. NOCSAE, Modena 41126, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL. NOCSAE, Modena 41126, Italy
| | - Daria Morini
- Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Reggio Emilia, Italy
| | - Angela Falbo
- Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Reggio Emilia, Italy
| | - Maria Teresa Villani
- Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Reggio Emilia, Italy
| | - Kim C Jonas
- Department of Women and Children's Health, School of Life course Sciences, King's College London, London SE1 1UL, UK
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.,International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena 41125, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, 41126 Modena, Italy.,PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| |
Collapse
|
18
|
Mandel H, Cohen Kfir N, Fedida A, Shuster Biton E, Odeh M, Kalfon L, Ben-Harouch S, Fleischer Sheffer V, Hoffman Y, Goldberg Y, Dinwiddie A, Dumin E, Eran A, Apel-Sarid L, Tiosano D, Falik-Zaccai TC. COG6-CDG: Expanding the phenotype with emphasis on glycosylation defects involved in the causation of male disorders of sex development. Clin Genet 2020; 98:402-407. [PMID: 32683677 DOI: 10.1111/cge.13816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
COG6-congenital disorder of glycosylation (COG6-CDG) is caused by biallelic mutations in COG6. To-date, 12 variants causing COG6-CDG in less than 20 patients have been reported. Using whole exome sequencing we identified two siblings with a novel homozygous deletion of 26 bp in COG6, creating a splicing variant (c.518_540 + 3del) and a shift in the reading frame. The phenotype of COG6-CDG includes growth and developmental retardation, microcephaly, liver and gastrointestinal disease, hypohydrosis and recurrent infections. We report two patients with novel phenotypic features including bowel malrotation and ambiguous genitalia, directing attention to the role of glycoprotein metabolism in the causation of disorders of sex development (DSD). Searching the glycomic literature, we identified 14 CDGs including males with DSD, a feature not previously accentuated. This study broadens the genetic and phenotypic spectrum of COG6-CDG and calls for increasing awareness to the central role of glycosylation processes in development of human sex and genitalia.
Collapse
Affiliation(s)
- Hanna Mandel
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Nehama Cohen Kfir
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ayalla Fedida
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Marwan Odeh
- Ultra-Sound Unit, Galilee Medical Center, Nahariya, Israel
| | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Shani Ben-Harouch
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | | | | | - Yael Goldberg
- Ultrasound Unit, Carmel Medical Center, Haifa, Israel
| | - April Dinwiddie
- Diagnostics Department, Center for Genomics and Transcriptomics (CeGaT) GmbH and Practice for Human Genetics, Tübingen, Germany
| | - Elena Dumin
- Clinical Biochemistry Laboratory, Rambam Health Care Campus, Haifa, Israel
| | - Ayelet Eran
- Neuroradiology Unit, Radiology Department, Rambam Health Care Campus, Haifa, Israel
| | - Liat Apel-Sarid
- Department of Pathology, Galilee Medical Center, Nahariya, Israel
| | - Dov Tiosano
- Pediatric Endocrinology Department, Rambam Health Care Campus, Haifa, Israel
| | - Tzipora C Falik-Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
19
|
Simoni M, Brigante G, Rochira V, Santi D, Casarini L. Prospects for FSH Treatment of Male Infertility. J Clin Endocrinol Metab 2020; 105:5831300. [PMID: 32374828 DOI: 10.1210/clinem/dgaa243] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Despite the new opportunities provided by assisted reproductive technology (ART), male infertility treatment is far from being optimized. One possibility, based on pathophysiological evidence, is to stimulate spermatogenesis with gonadotropins. EVIDENCE ACQUISITION We conducted a comprehensive systematic PubMed literature review, up to January 2020, of studies evaluating the genetic basis of follicle-stimulating hormone (FSH) action, the role of FSH in spermatogenesis, and the effects of its administration in male infertility. Manuscripts evaluating the role of genetic polymorphisms and FSH administration in women undergoing ART were considered whenever relevant. EVIDENCE SYNTHESIS FSH treatment has been successfully used in hypogonadotropic hypogonadism, but with questionable results in idiopathic male infertility. A limitation of this approach is that treatment plans for male infertility have been borrowed from hypogonadism, without daring to overstimulate, as is done in women undergoing ART. FSH effectiveness depends not only on its serum levels, but also on individual genetic variants able to determine hormonal levels, activity, and receptor response. Single-nucleotide polymorphisms in the follicle-stimulating hormone subunit beta (FSHB) and follicle-stimulating hormone receptor (FSHR) genes have been described, with some of them affecting testicular volume and sperm output. The FSHR p.N680S and the FSHB -211G>T variants could be genetic markers to predict FSH response. CONCLUSIONS FSH may be helpful to increase sperm production in infertile men, even if the evidence to recommend the use of FSH in this setting is weak. Placebo-controlled clinical trials, considering the FSHB-FSHR haplotype, are needed to define the most effective dosage, the best treatment length, and the criteria to select candidate responder patients.
Collapse
Affiliation(s)
- Manuela Simoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
| | - Giulia Brigante
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Vincenzo Rochira
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Daniele Santi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Livio Casarini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| |
Collapse
|
20
|
Human Recombinant FSH and Its Biosimilars: Clinical Efficacy, Safety, and Cost-Effectiveness in Controlled Ovarian Stimulation for In Vitro Fertilization. Pharmaceuticals (Basel) 2020; 13:ph13070136. [PMID: 32605133 PMCID: PMC7407829 DOI: 10.3390/ph13070136] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Exogenous human follicle-stimulating hormone (hFSH), either derived from extraction and purification from the urine or obtained by recombinant technology in the form of follitropin α, β and δ (rFSH), has been used for decades in the treatment of infertility. The main applications of FSH treatment in the woman have been, and still are, ovulation induction in oligo-anovulatory subjects, and stimulation of the development of a cohort of follicles in patients undergoing controlled ovarian stimulation (COS) for in vitro fertilization (IVF). In the last years, two biosimilars of follitropin alfa, rFSH compounds structurally and functionally similar to the originator, have been approved and marketed for clinical use in Europe. Moreover, some other rFSH biosimilars are currently under investigation. The objective of this article is to review the available evidences comparing the efficacy, safety, and cost-effectiveness of rFSH follitropin alpha originator with its biosimilars, discussing the clinical trials that allowed biosimilars to get registration and marketing authorization.
Collapse
|
21
|
De Rocco Ponce M, Foresta C, Rago R, Dal Lago A, Balercia G, Calogero AE, La Vignera S, Cosci I, Di Nisio A, Garolla A. Use of Biosimilar Follicle-Stimulating Hormone in Asthenozoospermic Infertile Patients: A Multicentric Study. J Clin Med 2020; 9:jcm9051478. [PMID: 32423110 PMCID: PMC7291014 DOI: 10.3390/jcm9051478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/02/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
There is increasing data in favour of follicle-stimulating hormone (FSH) therapy in patients with oligo-asthenozoospermia and normal-range gonadotropins in order to increase sperm count and above all sperm motility. Some studies showed an improvement in DNA fragmentation and spontaneous pregnancy. Recently, biosimilar FSH has been marketed with the same indications. We performed a retrospective multicentric case-control study involving 147 asthenozoospermic patients between 18 and 45 years of age. A total of 97 patients were treated with biosimilar FSH 150 UI three times a week for 3 months, while 50 control subjects received no treatment. Patients were evaluated at baseline and after 3 months with semen analysis including DNA fragmentation, testicular colour Doppler ultrasound, and blood tests. Spontaneous pregnancies were recorded during a further follow-up period of 6 months. Treated patients showed after treatment a statistically significant increase in sperm concentration, total sperm count, and total motile sperm, as well as improved progressive motility and non-progressive motility. DNA fragmentation showed a significant reduction. Conversely, in the control group, no significant change was found. Pregnancy rate was significantly higher in treated patients. These data suggest comparable efficacy of biosimilar FSH in the treatment of male infertility; however, larger studies are needed to confirm our results.
Collapse
Affiliation(s)
- Maurizio De Rocco Ponce
- UOC Andrologia e Medicina della Riproduzione, Azienda Ospedaliera Università di Padova, Dipartimento di Medicina, 35126 Padova, Italy
| | - Carlo Foresta
- UOC Andrologia e Medicina della Riproduzione, Azienda Ospedaliera Università di Padova, Dipartimento di Medicina, 35126 Padova, Italy
| | - Rocco Rago
- Unità di Fisiopatologia della Riproduzione e Andrologia, Ospedale Sandro Pertini, 00157 Roma, Italy
| | - Alessandro Dal Lago
- Unità di Fisiopatologia della Riproduzione e Andrologia, Ospedale Sandro Pertini, 00157 Roma, Italy
| | - Giancarlo Balercia
- Endocrinologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Aldo Eugenio Calogero
- Dipartimento di Medicina Clinica e Sperimentale, Università di Catania, 95124 Catania, Italy
| | - Sandro La Vignera
- Dipartimento di Medicina Clinica e Sperimentale, Università di Catania, 95124 Catania, Italy
| | - Ilaria Cosci
- UOC Andrologia e Medicina della Riproduzione, Azienda Ospedaliera Università di Padova, Dipartimento di Medicina, 35126 Padova, Italy
| | - Andrea Di Nisio
- UOC Andrologia e Medicina della Riproduzione, Azienda Ospedaliera Università di Padova, Dipartimento di Medicina, 35126 Padova, Italy
| | - Andrea Garolla
- UOC Andrologia e Medicina della Riproduzione, Azienda Ospedaliera Università di Padova, Dipartimento di Medicina, 35126 Padova, Italy
| |
Collapse
|
22
|
Zariñán T, Butnev VY, Gutiérrez-Sagal R, Maravillas-Montero JL, Martínez-Luis I, Mejía-Domínguez NR, Juárez-Vega G, Bousfield GR, Ulloa-Aguirre A. In Vitro Impact of FSH Glycosylation Variants on FSH Receptor-stimulated Signal Transduction and Functional Selectivity. J Endocr Soc 2020; 4:bvaa019. [PMID: 32342021 PMCID: PMC7175721 DOI: 10.1210/jendso/bvaa019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
FSH exists as different glycoforms that differ in glycosylation of the hormone-specific β-subunit. Tetra-glycosylated FSH (FSH24) and hypo-glycosylated FSH (FSH18/21) are the most abundant glycoforms found in humans. Employing distinct readouts in HEK293 cells expressing the FSH receptor, we compared signaling triggered by human pituitary FSH preparations (FSH18/21 and FSH24) as well as by equine FSH (eFSH), and human recombinant FSH (recFSH), each exhibiting distinct glycosylation patterns. The potency in eliciting cAMP production was greater for eFSH than for FSH18/21, FSH24, and recFSH, whereas in the ERK1/2 activation readout, potency was highest for FSH18/21 followed by eFSH, recFSH, and FSH24. In β-arrestin1/2 CRISPR/Cas9 HEK293-KO cells, FSH18/21 exhibited a preference toward β-arrestin-mediated ERK1/2 activation as revealed by a drastic decrease in pERK during the first 15-minute exposure to this glycoform. Exposure of β-arrestin1/2 KO cells to H89 additionally decreased pERK1/2, albeit to a significantly lower extent in response to FSH18/21. Concurrent silencing of β-arrestin and PKA signaling, incompletely suppressed pERK response to FSH glycoforms, suggesting that pathways other than those dependent on Gs-protein and β-arrestins also contribute to FSH-stimulated pERK1/2. All FSH glycoforms stimulated intracellular Ca2+ (iCa2+) accumulation through both influx from Ca2+ channels and release from intracellular stores; however, iCa2+ in response to FSH18/21 depended more on the latter, suggesting differences in mechanisms through which glycoforms promote iCa2+ accumulation. These data indicate that FSH glycosylation plays an important role in defining not only the intensity but also the functional selectivity for the mechanisms leading to activation of distinct signaling cascades.
Collapse
Affiliation(s)
- Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Viktor Y Butnev
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Luis Maravillas-Montero
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Iván Martínez-Luis
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nancy R Mejía-Domínguez
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Guillermo Juárez-Vega
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
23
|
Casarini L, Crépieux P, Reiter E, Lazzaretti C, Paradiso E, Rochira V, Brigante G, Santi D, Simoni M. FSH for the Treatment of Male Infertility. Int J Mol Sci 2020; 21:ijms21072270. [PMID: 32218314 PMCID: PMC7177393 DOI: 10.3390/ijms21072270] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Follicle-stimulating hormone (FSH) supports spermatogenesis acting via its receptor (FSHR), which activates trophic effects in gonadal Sertoli cells. These pathways are targeted by hormonal drugs used for clinical treatment of infertile men, mainly belonging to sub-groups defined as hypogonadotropic hypogonadism or idiopathic infertility. While, in the first case, fertility may be efficiently restored by specific treatments, such as pulsatile gonadotropin releasing hormone (GnRH) or choriogonadotropin (hCG) alone or in combination with FSH, less is known about the efficacy of FSH in supporting the treatment of male idiopathic infertility. This review focuses on the role of FSH in the clinical approach to male reproduction, addressing the state-of-the-art from the little data available and discussing the pharmacological evidence. New compounds, such as allosteric ligands, dually active, chimeric gonadotropins and immunoglobulins, may represent interesting avenues for future personalized, pharmacological approaches to male infertility.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-0593961705; Fax: +39-0593962018
| | - Pascale Crépieux
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, 37380 Nouzilly, France; (P.C.); (E.R.)
| | - Eric Reiter
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, 37380 Nouzilly, France; (P.C.); (E.R.)
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Vincenzo Rochira
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| | - Giulia Brigante
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| | - Daniele Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, 37380 Nouzilly, France; (P.C.); (E.R.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| |
Collapse
|
24
|
Czogalla B, Partenheimer A, Jeschke U, von Schönfeldt V, Mayr D, Mahner S, Burges A, Simoni M, Melli B, Benevelli R, Bertini S, Casarini L, Trillsch F. β-arrestin 2 Is a Prognostic Factor for Survival of Ovarian Cancer Patients Upregulating Cell Proliferation. Front Endocrinol (Lausanne) 2020; 11:554733. [PMID: 33042017 PMCID: PMC7530235 DOI: 10.3389/fendo.2020.554733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/12/2020] [Indexed: 01/02/2023] Open
Abstract
Establishing reliable prognostic factors as well as specific targets for new therapeutic approaches is an urgent requirement in advanced ovarian cancer. For several tumor entities, the ubiquitously spread scaffold protein β-arrestin 2, a multifunctional scaffold protein regulating signal transduction and internalization of activated G protein-coupled receptors (GPCRs), has been considered with rising interest for carcinogenesis. Therefore, we aimed to elucidate the prognostic impact of β-arrestin 2 and its functional role in ovarian cancer. β-arrestin 2 expression was analyzed in a subset of 156 samples of ovarian cancer patients by immunohistochemistry. Cytoplasmic expression levels were correlated with clinical as well as pathological characteristics and with prognosis. The biologic impact of β-arrestin 2 on cell proliferation and survival was evaluated, in vitro. Following transient transfection by increasing concentrations of plasmid encoding β-arrestin 2, different cell lines were evaluated in cell viability and death. β-arrestin 2 was detected in all histological ovarian cancer subtypes with highest intensity in clear cell histology. High β-arrestin 2 expression levels correlated with high-grade serous histology and the expression of the gonadotropin receptors FSHR and LHCGR, as well as the membrane estrogen receptor GPER and hCGβ. Higher cytoplasmic β-arrestin 2 expression was associated with a significantly impaired prognosis (median 29.88 vs. 50.64 months; P = 0.025). Clinical data were confirmed in transfected HEK293 cells, human immortalized granulosa cell line (hGL5) and the ovarian cancer cell line A2780 in vitro, where the induction of β-arrestin 2 cDNA expression enhanced cell viability, while the depletion of the molecule by siRNA resulted in cell death. Reflecting the role of β-arrestin 2 in modulating GPCR-induced proliferative and anti-apoptotic signals, we propose β-arrestin 2 as an important prognostic factor and also as a promising target for new therapeutic approaches in advanced ovarian cancer.
Collapse
Affiliation(s)
- Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
- *Correspondence: Bastian Czogalla
| | - Alexandra Partenheimer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | | | - Doris Mayr
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Beatrice Melli
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Riccardo Benevelli
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara Bertini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|