1
|
Meng F, Li J, Han X, Li L, Li T, Du X, Cao X, Liang Q, Huang A, Kong F, Zeng X, Bu G. TAC3 regulates GnRH/gonadotropin synthesis in female chickens. Theriogenology 2024; 215:302-311. [PMID: 38128223 DOI: 10.1016/j.theriogenology.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Neurokinin B (NKB), a peptide encoded by the tachykinin 3 (TAC3), is critical for reproduction in all studied species. However, its potential roles in birds are less clear. Using the female chicken (c-) as a model, we showed that cTAC3 is composed of five exons with a full-length cDNA of 787 bp, which was predicted to generate the mature NKB peptide containing 10 amino acids. Using cell-based luciferase reporter assays, we demonstrated that cNKB could effectively and specifically activate tachykinin receptor 3 (TACR3) in HEK293 cells, suggesting its physiological function is likely achieved via activating cTACR3 signaling. Notably, cTAC3 and cTACR3 were predominantly and abundantly expressed in the hypothalamus of hens and meanwhile the mRNA expression of cTAC3 was continuously increased during development, suggesting that NKB-TACR3 may emerge as important components of the neuroendocrine reproductive axis. In support, intraperitoneal injection of cNKB could significantly promote hypothalamic cGnRH-Ι, and pituitary cFSHβ and cLHβ expression in female chickens. Surprisingly, cTAC3 and cTACR3 were also expressed in the pituitary gland, and cNKB treatment significantly increased cLHβ and cFSHβ expression in cultured primary pituitary cells, suggesting cNKB can also act directly at the pituitary level to stimulate gonadotropin synthesis. Collectively, our results reveal that cNKB functionally regulate GnRH/gonadotropin synthesis in female chickens.
Collapse
Affiliation(s)
- Fengyan Meng
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China.
| | - Jinxuan Li
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xingfa Han
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Lingyang Li
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Tianyang Li
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xiaogang Du
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xiaohan Cao
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Qiuxia Liang
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Anqi Huang
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xianyin Zeng
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Guixian Bu
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China.
| |
Collapse
|
2
|
Graves LY, Schwartz KR, Shiff J, Chan ER, Galea M, Henzel MK, Olney C, Bogie KM. Genomic Biomarkers Can Provide a Deeper Understanding of Recurrent Pressure Injuries. Adv Skin Wound Care 2023; 36:534-539. [PMID: 37729163 PMCID: PMC10545060 DOI: 10.1097/asw.0000000000000041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/12/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE To identify genetic biomarkers predisposing individuals with spinal cord injury (SCI) to recurrent pressure injuries (PIs). METHODS Repeated measures of the transcriptome profile of veterans with SCI at three Veterans Spinal Cord Injuries and Disorders Centers. Exclusion criteria included having significant active systemic disease at time of enrollment. Researchers obtained comprehensive profiles of clinical and health factors and demographic information relevant to PI history at enrollment and at each follow-up visit by reviewing patients' medical charts. Whole blood samples were collected at 6- to 12-month intervals for 2 to 4 years. In addition to DNA profiling with whole genome sequencing of the patients, RNA sequencing was performed to assess pathways associated with PI risk. RESULTS Whole genome sequencing analysis identified 260 genes that showed increased prevalence of single-nucleotide variations in exonic regions with high (>20) combined annotation-dependent depletion scores between persons with high versus low intramuscular adipose tissue levels when cross-referenced with persons who had recurrent PIs. Gene set enrichment analysis using Hallmark and KEGG (Kyoto Encyclopedia of Genes and Genomes) gene sets of these candidate genes revealed enrichment in genes encoding proteins involved in fatty acid metabolism (P < .01). Further, RNA sequencing revealed upregulated activity in biological senescence pathways and downregulated activity in antimicrobial protection pathways. CONCLUSIONS Genomic biomarkers may complement electronic health records to support management of complex interactive health issues such as risk of recurrent PIs in people with SCI. These findings may also be leveraged for homogeneous phenotypic grouping of higher-risk individuals.
Collapse
Affiliation(s)
- Letitia Y Graves
- Letitia Y. Graves, PhD, RN, is Assistant Professor, School of Nursing, University of Texas Medical Branch, Galveston, Texas, and Research Health Scientist, Louis Stokes Cleveland Veterans Affairs Medical Center. Katelyn R. Schwartz, MPH, BSN, RN, is Research Nurse, Cleveland VA Medical Center, Cleveland, Ohio. Josie Shiff, MS, is Research Assistant, Cleveland VA Medical Research & Education Foundation. Ernest R. Chan, PhD, is Research Scientist, Case Western Reserve University, Cleveland. Marinella Galea, MD, is Chief, Spinal Cord Injuries and Disorders, James J. Peters VAMC, Bronx, New York, and Associate Professor, Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York. Mary K. Henzel, MD, PhD, is Assistant Chief, Spinal Cord Injuries and Disorders, and Spinal Cord Injury Physiatrist, Louis Stokes Cleveland VA Medical Center. Christine Olney, PhD, RN, is Nurse Scientist, Minneapolis VA Health Care System, Minneapolis, Minnesota. Kath M. Bogie, DPhil, FAIMBE, is Research Career Scientist, Louis Stokes Cleveland Veterans Affairs Medical Center, and Professor, Department of Orthopedics, Case Western Reserve University
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Sun W, Yang F, Zhang H, Yuan Q, Ling S, Wang Y, Lv P, Li Z, Luo Y, Liu D, Yin W, Shi P, Xu HE, Tian C. Structural insights into neurokinin 3 receptor activation by endogenous and analogue peptide agonists. Cell Discov 2023; 9:66. [PMID: 37391393 DOI: 10.1038/s41421-023-00564-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/12/2023] [Indexed: 07/02/2023] Open
Abstract
Neurokinin 3 receptor (NK3R) is a tachykinin receptor essential for the hypothalamic-pituitary-gonadal axis. The endogenous peptide agonist neurokinin B (NKB) preferentially activates NK3R, while substance P (SP) binds preferentially to NK1R. In addition, the SP analogue senktide more potently activates NK3R than NKB and SP. However, the mechanisms of preferential binding of peptide and NK3R activation remain elusive. Herein, we determined the cryogenic electron microscopy (cryo-EM) structures of the NK3R-Gq complex bound to NKB, SP and senktide. The three NK3R-Gq/peptide complexes utilize a class of noncanonical receptor activation mechanisms. Combining the structural analysis and functional assay illustrated that the consensus C-termini of the three peptide agonists share a conserved binding mode to NK3R, while the divergent N-termini of the peptides confer the preferential binding of the agonist to NK3R. In addition, the specific interactions between the N-terminus of senktide and the N-terminus and extracellular loops (ECL2 and ECL3) of NK3R lead to the improved activation displayed by senktide compared to SP and NKB. These findings pave the way to understand tachykinin receptor subtype selectivity and provide ideas to rationally develop drugs targeting NK3R.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Fan Yang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Huanhuan Zhang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Qingning Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shenglong Ling
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanxia Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Pei Lv
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Zelin Li
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Yifan Luo
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Dongsheng Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Wanchao Yin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Pan Shi
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Changlin Tian
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- The Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China.
| |
Collapse
|
4
|
Xie Y, Shi X, Xiao K, Zhou L, Shu T, Du H, Yang J, Hu G. Sequences analysis and pituitary actions of tachykinins in Chinese sturgeon (Acipenser sinensis). Gene 2023:147592. [PMID: 37356741 DOI: 10.1016/j.gene.2023.147592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Tachykinins belong to a large, evolutionarily conserved family of brain/gut peptides that are involved in a variety of physiological functions in mammals, such as reproductive regulation. However, little information was available about tachykinins in ancient fish lineage. In the present study, we firstly identified three tachykinin genes (named tac1, tac3 and tac4) and three neurokinin receptors (named nk1r, nk2r and nk3r) from Chinese sturgeon brain and pituitary. Sequence analysis showed that tac1 encoded substance P (SP) and neurokinin A (NKA), tac3 encoded neurokinin B (NKB) and NKB-related peptide (NKBRP), and tac4 encoded hemokin 1 (HK-1) and hemokin 2 (HK-2), respectively. The luciferase reporter assay results showed that NK1R preferentially selected asSP, NK2R preferentially selected asNKA, and NK3R preferentially selected asNKB. Tissue expression analysis showed that the three tac genes were highly detected in the telencephalon and hypothalamus, whereas nkr genes were widely expressed in peripheral tissues. Spatio-temporal expression analysis showed that all three tac genes were highly expressed in unknown sex individuals. Intraperitoneal injection experiments showed that both asSP and asNKB could stimulate luteinizing hormone (LH) release in Chinese sturgeon serum. At the transcriptional level, asSP and asNKB could significantly reduce pituitary follicle-stimulating hormone beta (fshβ) mRNA expression, but induce pituitary growth hormone (gh) mRNA expression. In addition, estradiol (E2) could stimulate tac3 mRNA expression in hypothalamus. Taken together, this study provided information on the tachykinin family in Chinese sturgeon and demonstrates that asNKB and asSP could be involved in reproductive and growth regulation in pituitary.
Collapse
Affiliation(s)
- Yunyi Xie
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Xuetao Shi
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China
| | - Kan Xiao
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China
| | - Lingling Zhou
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Tingting Shu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China
| | - Hejun Du
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China
| | - Jing Yang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China
| | - Guangfu Hu
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| |
Collapse
|
5
|
Xie S, Yao Y, Wen H, Li Y, Lyu L, Wang X, Li J, Yan S, Zuo C, Wang Z, Qi X. Function of secretoneurin in regulating the expression of reproduction-related genes in ovoviviparous black rockfish (Sebastes schlegelii). Comp Biochem Physiol B Biochem Mol Biol 2023; 266:110852. [PMID: 37028701 DOI: 10.1016/j.cbpb.2023.110852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Secretoneurin (SN), a conserved peptide derived from secretogranin-2 (scg2), also known as secretogranin II or chromogranin C, plays an important role in regulating gonadotropin in the pituitary, which affects the reproductive system. This study aimed to clarify the mode of action of scg2 in regulating gonad development and maturation and the expression of mating behavior-related genes. Two scg2 cDNAs were cloned from the ovoviviparity teleost black rockfish (Sebastes schlegelii). In situ hybridization detected positive scg2 mRNA signals in the telencephalon and hypothalamus, where sgnrh and kisspeptin neurons were reported to be located and potentially regulated by scg2. In vivo, intracerebral ventricular injections of synthetic black rockfish SNa affected brain cgnrh, sgnrh, kisspeptin1, pituitary lh and fsh and gonad steroidogenesis-related gene expression levels with sex dimorphism. In vitro, a similar effect was found in primary cultured brain and pituitary cells. Thus, SN could contribute to the regulation of gonadal development, as well as reproductive behaviors, including mating and parturition.
Collapse
Affiliation(s)
- Songyang Xie
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yijia Yao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiaojie Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jianshuang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Shaojing Yan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhijun Wang
- Administration Department, Weihai Taifeng Seawater Seedling Co., LTD, Weihai, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
6
|
Mun SH, Oh HJ, Kwon JY. Response of Pituitary Cells and Tissues to Neurokinin B and F in the Nile tilapia. Dev Reprod 2022; 26:13-21. [PMID: 35528319 PMCID: PMC9042391 DOI: 10.12717/dr.2022.26.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 11/17/2022]
Abstract
Neurokinin B (NKB) is a neuropeptide involved in the regulation of reproductive
endocrine system of vertebrate animals, including fish. However, the pathway of
NKB action in fish has not been clearly elucidated. In order to clarify the
effect of NKB and NKF (neurokinin F) on gonadotropic hormone (GTH) gene
expression in the pituitary, we studied the changes of LHβ and
FSHβ gene expressions by using two different pituitary culture methods
(whole pituitary culture or dispersed pituitary cell culture). Pituitaries were
removed from mature female and male Nile tilapia. Changes of LHβ and
FSHβ gene expressions were measured and compared after the treatment with
NKB or NKF peptides at concentrations 0 to 1,000 nM. Expression of GTH genes in
the whole pituitary cultures treated with NKB or NKF peptides did not show
significant difference except in female at one concentration when treated with
NKF. On the contrary, there were significant changes of GTH gene expressions in
the dispersed pituitary cell cultures when treated with NKB and NKF peptides.
These results suggest that dispersed pituitary cell culture is more relevant
than whole pituitary culture in studying the function of pituitary, and that NKB
and NKF could act directly on the pituitary to regulate the expression of GTH
genes.
Collapse
Affiliation(s)
- Seong Hee Mun
- Dept. of Aquatic Life Medical Science, Sunmoon University, Asan 31460, Korea
| | - Hyeon Ji Oh
- Dept. of Aquatic Life Medical Science, Sunmoon University, Asan 31460, Korea
| | - Joon Yeong Kwon
- Dept. of Aquatic Life Medical Science, Sunmoon University, Asan 31460, Korea
| |
Collapse
|
7
|
Campo A, Dufour S, Rousseau K. Tachykinins, new players in the control of reproduction and food intake: A comparative review in mammals and teleosts. Front Endocrinol (Lausanne) 2022; 13:1056939. [PMID: 36589829 PMCID: PMC9800884 DOI: 10.3389/fendo.2022.1056939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Abstract
In vertebrates, the tachykinin system includes tachykinin genes, which encode one or two peptides each, and tachykinin receptors. The complexity of this system is reinforced by the massive conservation of gene duplicates after the whole-genome duplication events that occurred in vertebrates and furthermore in teleosts. Added to this, the expression of the tachykinin system is more widespread than first thought, being found beyond the brain and gut. The discovery of the co-expression of neurokinin B, encoded by the tachykinin 3 gene, and kisspeptin/dynorphin in neurons involved in the generation of GnRH pulse, in mammals, put a spotlight on the tachykinin system in vertebrate reproductive physiology. As food intake and reproduction are linked processes, and considering that hypothalamic hormones classically involved in the control of reproduction are reported to regulate also appetite and energy homeostasis, it is of interest to look at the potential involvement of tachykinins in these two major physiological functions. The purpose of this review is thus to provide first a general overview of the tachykinin system in mammals and teleosts, before giving a state of the art on the different levels of action of tachykinins in the control of reproduction and food intake. This work has been conducted with a comparative point of view, highlighting the major similarities and differences of tachykinin systems and actions between mammals and teleosts.
Collapse
Affiliation(s)
- Aurora Campo
- Muséum National d’Histoire Naturelle, Research Unit Unité Mixte de Recherche Biologie des Organsimes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National pour la Recherche Scientifique (CNRS), Institut de Recherche pour le Développemen (IRD), Sorbonne Université, Paris, France
- Volcani Institute, Agricultural Research Organization, Rishon LeTsion, Israel
| | - Sylvie Dufour
- Muséum National d’Histoire Naturelle, Research Unit Unité Mixte de Recherche Biologie des Organsimes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National pour la Recherche Scientifique (CNRS), Institut de Recherche pour le Développemen (IRD), Sorbonne Université, Paris, France
| | - Karine Rousseau
- Muséum National d’Histoire Naturelle, Research Unit Unité Mixte de Recherche Biologie des Organsimes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National pour la Recherche Scientifique (CNRS), Institut de Recherche pour le Développemen (IRD), Sorbonne Université, Paris, France
- Muséum National d’Histoire Naturelle, Research Unit PhyMA Physiologie Moléculaire et Adaptation CNRS, Paris, France
- *Correspondence: Karine Rousseau,
| |
Collapse
|
8
|
Zuo C, Lyu L, Zou W, Wen H, Li Y, Qi X. TAC3/TACR3 System Function in the Catadromous Migration Teleost, Anguilla japonica. Front Endocrinol (Lausanne) 2022; 13:848808. [PMID: 35937808 PMCID: PMC9355281 DOI: 10.3389/fendo.2022.848808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Neurokinin B (NKB), a member of the tachykinin (TAC) family, plays important roles in mammalian neuropeptide secretion in related to reproduction. However, its potential role in spawning migration teleost is less clear. In the present study, Japanese eel (Anguilla japonica) was employed to study the performance of NKB in regulating reproduction. Results showed that two tac3 and one tacr3 genes were identified in Japanese eel. Sequence analysis showed that two tac3 transcripts, tac3a and tac3b, encode four NKBs: NKBa-13, NKBa-10, NKBb-13, and NKBb-10. However, compared with other species, a mutation caused early termination of TACR3 protein was confirmed, leading to the loss of the 35 amino acid (aa) C-terminal of the receptor. Expression analysis in different tissues showed that both tac3a and tac3b mRNAs were highly expressed in the brain. In situ hybridization localized both tac3a and tac3b mRNAs to several brain regions, mainly in the telencephalon and hypothalamus. Because of the mutation in TACR3 of Japanese eel, we further analyzed whether it could activate the downstream signaling pathway. Luciferase assay results showed the negative regulation of cAMP Response Element (CRE) and Sterol Response Element (SRE) signal pathways by Japanese eel NKBs. Intraperitoneal injection of four different NKB mature peptides at 100 ng/g had negative effect on either gnrh or gth gene expression. However, the high concentration of NKBa-10 and NKBb-13 (1,000 ng/g) upregulated mgnrh and fshb or lhb expression level significantly, which may be mediated by other receptors. In general, the NKBs/NK3Rs system has important functions in regulating eel puberty onset.
Collapse
Affiliation(s)
- Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Wenhui Zou
- College of Ocean, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- *Correspondence: Xin Qi,
| |
Collapse
|
9
|
Xu S, Zhou L, Guo S, Hu Q, Shi X, Xia C, Zhang H, Ye C, Jia Y, Hu G. Different pituitary action of NK3Ra and NK3Rb in grass carp. Gen Comp Endocrinol 2021; 313:113829. [PMID: 34087185 DOI: 10.1016/j.ygcen.2021.113829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/03/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
In mammals, NK3R is the specific receptor for NKB, which played an important role in reproduction. Recently, two NK3R isoforms, namely NK3Ra and NK3Rb, have been identified in fish. However, little is known about the pituitary actions of the two NK3R isoforms in fish. In this study, both NK3Ra and NK3Rb were isolated from grass carp pituitary. Although their sequence similarity was only 61.6%, the two NK3R isoforms displayed similar ligand selectivity and binding affinity to TAC3 gene products (NKBa, NKBRPa and NKBRPb). In addition, both NK3Ra and NK3Rb displayed similar signaling pathways, including PKA, PKC, MAPK and Ca2+ cascades. Tissue distribution indicated that both NK3Ra and NK3Rb were highly detected in grass carp pituitary. Further study found that NK3Ra was mainly located in pituitary LHβ cells, while NK3Rb was only detected in pituitary SLα cells. Furthermore, NK3Ra and NK3Rb activation could induce LHβ and SLα promoter activity, respectively. These results suggested that the two NK3R isoforms displayed different pituitary actions in fish. Using grass carp pituitary cells as model, we found that PACAP could significantly reduce NK3Ra, but induce NK3Rb mRNA expression coupled with cAMP/PKA and PLC/PKC pathways. Interestingly, PACAP could also significantly inhibit LHβ, but stimulate SLα mRNA expression in grass carp pituitary cells. Furthermore, NK3R antagonist could not only inhibit LHβ mRNA expression, but also block PACAP-induced SLα mRNA expression in grass carp pituitary cells. These results suggested that NK3Ra and NK3Rb could mediate PACAP-reduced LHβ and -induced SLα mRNA expression in grass carp pituitary, respectively.
Collapse
Affiliation(s)
- Shaohua Xu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingling Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuming Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiongyao Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuetao Shi
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuanhui Xia
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiying Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Ye
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongyi Jia
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| | - Guangfu Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Lyu L, Wang R, Wen H, Li Y, Li J, Wang X, Yao Y, Li J, Qi X. Cyclooxygenases of ovoviviparous black rockfish (Sebastes schlegelii): Cloning, tissue distribution and potential role in mating and parturition. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110677. [PMID: 34653596 DOI: 10.1016/j.cbpb.2021.110677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023]
Abstract
Prostaglandins are a series of unsaturated fatty acids that play critical roles in regulating reproductive events. The prostaglandins endoperoxide H synthases-1/2 (PGHS-1/2; also named cyclooxygenases-1/2, COX-1/2) catalyse the commitment step in prostaglandin synthesis. However, the of the cox genes in teleosts, especially ovoviviparous teleosts, is still unclear. The aim of the present study was to determine the potential role of cox genes in mating and parturition behaviour using black rockfish (Sebastes schlegelii) as a model species. Two transcripts, cox1 and cox2, were cloned. The phylogenetic analysis results revealed that both cox genes were closely related to mammalian coxs. qPCR analyses of their tissue distribution showed that cox1 was mainly expressed in the heart in both sexes, while cox2 was mainly expressed in the testis and ovary. Detection of cox expression in samples from reproductive-related stages further showed that both cox genes may play important roles in mating and parturition processes. In situ hybridization further detected positive cox mRNA signals in the testis and ovary, where they are known to be involved in mating and parturition behaviour. These data suggest that cox1 and cox2 are crucial in inducing mating, gonad regeneration and parturition behaviour.
Collapse
Affiliation(s)
- Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Ru Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jianshuang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiaojie Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yijia Yao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jifang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
11
|
Trivellin G, Tirosh A, Hernández-Ramírez LC, Gupta T, Tsai-Morris CH, Faucz FR, Burgess HA, Feldman B, Stratakis CA. The X-linked acrogigantism-associated gene gpr101 is a regulator of early embryonic development and growth in zebrafish. Mol Cell Endocrinol 2021; 520:111091. [PMID: 33248229 PMCID: PMC8771005 DOI: 10.1016/j.mce.2020.111091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/28/2022]
Abstract
We recently described X-linked acrogigantism (X-LAG), a condition of early childhood-onset pituitary gigantism associated with microduplications of the GPR101 receptor. The expression of GPR101 in hyperplastic pituitary regions and tumors in X-LAG patients, and GPR101's normally transient pituitary expression during fetal development, suggest a role in the regulation of growth. Nevertheless, little is still known about GPR101's physiological functions, especially during development. By using zebrafish models, we investigated the role of gpr101 during embryonic development and somatic growth. Transient ectopic gpr101 expression perturbed the embryonic body plan but did not affect growth. Loss of gpr101 led to a significant reduction in body size that was even more pronounced in the absence of maternal transcripts, as well as subfertility. These changes were accompanied by gastrulation and hypothalamic defects. In conclusion, both gpr101 loss- and gain-of-function affect, in different ways, fertility, embryonic patterning, growth and brain development.
Collapse
Affiliation(s)
- Giampaolo Trivellin
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA; Laboratory of Cellular and Molecular Endocrinology and Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Mi, Italy.
| | - Amit Tirosh
- NET Service and Endocrine Oncology Bioinformatics Lab, Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tripti Gupta
- Division of Developmental Biology, NICHD, NIH, Bethesda, MD, USA
| | | | - Fabio R Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Harold A Burgess
- Division of Developmental Biology, NICHD, NIH, Bethesda, MD, USA
| | - Benjamin Feldman
- Division of Developmental Biology, NICHD, NIH, Bethesda, MD, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
12
|
Lyu LK, Li JS, Wang XJ, Yao YJ, Li JF, Li Y, Wen HS, Qi X. Arg-Vasotocin Directly Activates Isotocin Receptors and Induces COX2 Expression in Ovoviviparous Guppies. Front Endocrinol (Lausanne) 2021; 12:617580. [PMID: 33967951 PMCID: PMC8104081 DOI: 10.3389/fendo.2021.617580] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Oxytocin (OT) is a crucial regulator of reproductive behaviors, including parturition in mammals. Arg-vasopressin (AVP) is a nonapeptide homologous to Arg-vasotocin (AVT) in teleosts that has comparable affinity for the OT receptor. In the present study, ovoviviparous guppies (Poecilia reticulata) were used to study the effect of AVT on delivery mediated by the activation of prostaglandin (PG) biosynthesis via isotocin (IT) receptors (ITRs). One copy each of it and avt and two copies of itrs were identified in guppies. The results of the affinity assay showed that various concentrations of AVT and IT (10-6, 10-7, and 10-8 mol/L) significantly activated itr1 (P < 0.05). In vitro experiments revealed significant upregulation (P < 0.05) of cyclooxygenase 2 (cox2), which is the rate-limiting enzyme involved in PG biosynthesis, and itr1 by AVT and IT. Furthermore, dual in situ hybridization detected positive signals for itr1 and cox2 at the same site, implying that ITR1 may regulate cox2 gene expression. Measurement of prostaglandin F2a (PGF2a) concentrations showed that AVT induced PGF2a synthesis (P < 0.05) and that the effect of IT was not significant. Finally, intraperitoneal administration of PGF2a significantly induced premature parturition of guppies. This study is the first to identify and characterize AVT and ITRs in guppies. The findings suggest that AVT promotes PG biosynthesis via ITR and that PGF2a induces delivery behavior in ovoviviparous guppies.
Collapse
|
13
|
Abstract
The Tacr3 gene encodes tachykinin receptor 3 (NK3R), which belongs to the tachykinin receptor family. This family of proteins includes typical G protein-coupled receptors and belongs to the rhodopsin subfamily. NK3R functions by binding to its high-affinity ligand, neurokinin B(NKB). The role of Tacr3/NK3R in growth and reproduction has been extensively studied, but Tacr3/NK3R is also widely expressed in the nervous system from the spinal cord to the brain and is involved in both physiological and pathological processes in the nervous system, including mood disorders, chronic pain, learning and memory deficiencies, Alzheimer's disease, Parkinson's disease, addiction-related processes, hypoxic-ischemic encephalopathy, body fluid management, neural development, and schizophrenia. Here, we summarize the structure of NK3R/NKB and its cellular signaling as well as the expression of Tacr3/NK3R in the nervous system, and we provide a comprehensive summary of the role of Tacr3/NK3R in neurological diseases, including reproduction-related disorders and other neurological diseases. At the end of this review, we propose the hypothesis that Tacr3/NK3R mediates a variety of brain functions by affecting the excitability of different neurons with specific functions. On the basis of this "excited or not" hypothesis, more studies related to Tacr3 should be carried out in other nervous system diseases in order to better understand the biological roles of Tacr3.
Collapse
Affiliation(s)
- Wen-wen Zhang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Liu Y, Wang H, Wen H, Shi Y, Zhang M, Qi X, Zhang K, Gong Q, Li J, He F, Hu Y, Li Y. First High-Density Linkage Map and QTL Fine Mapping for Growth-Related Traits of Spotted Sea bass (Lateolabrax maculatus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:526-538. [PMID: 32424479 DOI: 10.1007/s10126-020-09973-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Possessing powerful adaptive capacity and a pleasant taste, spotted sea bass (Lateolabrax maculatus) has a broad natural distribution and is one of the most popular mariculture fish in China. However, the genetic improvement program for this fish is still in its infancy. Growth is the most economically important trait and is controlled by quantitative trait loci (QTL); thus, the identification of QTLs and genetic markers for growth-related traits is an essential step for the establishment of marker-assisted selection (MAS) breeding programs. In this study, we report the first high-density linkage map of spotted sea bass constructed by sequencing 333 F1 generation individuals in a full-sib family using 2b-RAD technology. A total of 6883 SNP markers were anchored onto 24 linkage groups, spanning 2189.96 cM with an average marker interval of 0.33 cM. Twenty-four growth-related QTLs, including 13 QTLs for body weight and 11 QTLs for body length, were successfully detected, with phenotypic variance explained (PVE) ranging from 5.1 to 8.6%. Thirty potential candidate growth-related genes surrounding the associated SNPs were involved in cell adhesion, cell proliferation, cytoskeleton reorganization, calcium channels, and neuromodulation. Notably, the fgfr4 gene was detected in the most significant QTL; this gene plays a pivotal role in myogenesis and bone growth. The results of this study may facilitate marker-assisted selection for breeding populations and establish the foundation for further genomic and genetic studies investigating spotted sea bass.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Haolong Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yue Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Meizhao Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qingli Gong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jifang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Feng He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yanbo Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
15
|
Nässel DR, Zandawala M, Kawada T, Satake H. Tachykinins: Neuropeptides That Are Ancient, Diverse, Widespread and Functionally Pleiotropic. Front Neurosci 2019; 13:1262. [PMID: 31824255 PMCID: PMC6880623 DOI: 10.3389/fnins.2019.01262] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022] Open
Abstract
Tachykinins (TKs) are ancient neuropeptides present throughout the bilaterians and are, with some exceptions, characterized by a conserved FX1GX2Ramide carboxy terminus among protostomes and FXGLMamide in deuterostomes. The best-known TK is the vertebrate substance P, which in mammals, together with other TKs, has been implicated in health and disease with important roles in pain, inflammation, cancer, depressive disorder, immune system, gut function, hematopoiesis, sensory processing, and hormone regulation. The invertebrate TKs are also known to have multiple functions in the central nervous system and intestine and these have been investigated in more detail in the fly Drosophila and some other arthropods. Here, we review the protostome and deuterostome organization and evolution of TK precursors, peptides and their receptors, as well as their functions, which appear to be partly conserved across Bilateria. We also outline the distribution of TKs in the brains of representative organisms. In Drosophila, recent studies have revealed roles of TKs in early olfactory processing, neuromodulation in circuits controlling locomotion and food search, nociception, aggression, metabolic stress, and hormone release. TK signaling also regulates lipid metabolism in the Drosophila intestine. In crustaceans, TK is an important neuromodulator in rhythm-generating motor circuits in the stomatogastric nervous system and a presynaptic modulator of photoreceptor cells. Several additional functional roles of invertebrate TKs can be inferred from their distribution in various brain circuits. In addition, there are a few interesting cases where invertebrate TKs are injected into prey animals as vasodilators from salivary glands or paralyzing agents from venom glands. In these cases, the peptides are produced in the glands of the predator with sequences mimicking the prey TKs. Lastly, the TK-signaling system appears to have duplicated in Panarthropoda (comprising arthropods, onychophores, and tardigrades) to give rise to a novel type of peptides, natalisins, with a distinct receptor. The distribution and functions of natalisins are distinct from the TKs. In general, it appears that TKs are widely distributed and act in circuits at short range as neuromodulators or cotransmitters.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Meet Zandawala
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| |
Collapse
|