1
|
Perera TRW, Bromfield EG, Gibb Z, Nixon B, Sheridan AR, Rupasinghe T, Skerrett-Byrne DA, Swegen A. Plasma Lipidomics Reveals Lipid Signatures of Early Pregnancy in Mares. Int J Mol Sci 2024; 25:11073. [PMID: 39456856 PMCID: PMC11508387 DOI: 10.3390/ijms252011073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Understanding the systemic biochemistry of early pregnancy in the mare is essential for developing new diagnostics and identifying causes for pregnancy loss. This study aimed to elucidate the dynamic lipidomic changes occurring during the initial stages of equine pregnancy, with a specific focus on days 7 and 14 post-ovulation. By analysing and comparing the plasma lipid profiles of pregnant and non-pregnant mares, the objective of this study was to identify potential biomarkers for pregnancy and gain insights into the biochemical adaptations essential for supporting maternal recognition of pregnancy and early embryonic development. Employing discovery lipidomics, we analysed plasma samples from pregnant and non-pregnant mares on days 7 and 14 post-conception using the SCIEX ZenoTOF 7600 system. This high-resolution mass spectrometry approach enabled us to comprehensively profile and compare the lipidomes across these critical early gestational timepoints. Our analysis revealed significant lipidomic alterations between pregnant and non-pregnant mares and between days 7 and 14 of pregnancy. Key findings include the upregulation of bile acids, sphingomyelins, phosphatidylinositols, and triglycerides in pregnant mares. These changes suggest enhanced lipid synthesis and mobilization, likely associated with the embryo's nutritional requirements and the establishment of embryo-maternal interactions. There were significant differences in lipid metabolism between pregnant and non-pregnant mares, with a notable increase in the sterol lipid BA 24:1;O5 in pregnant mares as early as day 7 of gestation, suggesting it as a sensitive biomarker for early pregnancy detection. Notably, the transition from day 7 to day 14 in pregnant mares is characterized by a shift towards lipids indicative of membrane biosynthesis, signalling activity, and preparation for implantation. The study demonstrates the profound lipidomic shifts that occur in early equine pregnancy, highlighting the critical role of lipid metabolism in supporting embryonic development. These findings provide valuable insights into the metabolic adaptations during these period and potential biomarkers for early pregnancy detection in mares.
Collapse
Affiliation(s)
- Tharangani R. W. Perera
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Elizabeth G. Bromfield
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville 3052, Australia
| | - Zamira Gibb
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Alecia R. Sheridan
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | | | - David A. Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| | - Aleona Swegen
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| |
Collapse
|
2
|
Song Z, He J, Yu W, He C, Yang M, Li P, Li Z, Jian G, Cheng S. Exploring the multifaceted therapeutic mechanism of Schisanlactone E (XTS) in APP/PS1 mouse model of Alzheimer's disease through multi-omics analysis. Front Microbiol 2024; 15:1440564. [PMID: 39044957 PMCID: PMC11263214 DOI: 10.3389/fmicb.2024.1440564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Background Schisanlactone E, also known as XueTongSu (XTS), is an active compound extracted from the traditional Tujia medicine Kadsura heteroclita ("XueTong"). Recent studies highlight its anti-inflammatory and antioxidant properties, yet the mechanisms of XTS's therapeutic effects on Alzheimer's disease (AD) are unclear. This study aims to elucidate the therapeutic efficacy and mechanisms of XTS in AD. Methods Ten C57BL/6 mice were assigned to the control group (NC), and twenty APP/PS1 transgenic mice were randomly divided into the model group (M) (10 mice) and the XTS treatment group (Tre) (10 mice). After an acclimatization period of 7 days, intraperitoneal injections were administered over a 60-day treatment period. The NC and M groups received saline, while the Tre group received XTS at 2 mg/kg. Learning and memory abilities were assessed using the Morris Water Maze (MWM) test. Histopathological changes were evaluated using hematoxylin and eosin (HE) and Nissl staining, and immunofluorescence was used to assess pathological products and glial cell activation. Cytokine levels (IL-1β, IL-6, TNF-α) in the hippocampus were quantified by qPCR. 16S rDNA sequencing analyzed gut microbiota metabolic alterations, and metabolomic analysis was performed on cortical samples. The KEGG database was used to analyze the regulatory mechanisms of XTS in AD treatment. Results XTS significantly improved learning and spatial memory in APP/PS1 mice and ameliorated histopathological changes, reducing Aβ plaque aggregation and glial cell activation. XTS decreased the expression of inflammatory cytokines IL-1β, IL-6, and TNF-α. It also enhanced gut microbiota diversity, notably increasing Akkermansia species, and modulated levels of metabolites such as isosakuranetin, 5-KETE, 4-methylcatechol, and sphinganine. Pathway analysis indicated that XTS regulated carbohydrate metabolism, neuroactive ligand-receptor interactions, and alanine, aspartate, and glutamate metabolism, mitigating gut microbiota dysbiosis and metabolic disturbances. Conclusion XTS ameliorates cognitive deficits, pathological changes, and inflammatory responses in APP/PS1 mice. It significantly modulates the gut microbiota, particularly increasing Akkermansia abundance, and influences levels of key metabolites in both the gut and brain. These findings suggest that XTS exerts anti-AD effects through the microbial-gut-brain axis (MGBA).
Collapse
Affiliation(s)
- Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wenjing Yu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chunxiang He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Miao Yang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ping Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ze Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gonghui Jian
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shaowu Cheng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
3
|
MAEHARA T, OSAWA T, KITAHARA G, SATOH H, MURATA T. Profile of uterine flush lipid mediators in cows with subclinical endometritis: pilot study. J Vet Med Sci 2024; 86:518-523. [PMID: 38522898 PMCID: PMC11144532 DOI: 10.1292/jvms.23-0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
Subclinical endometritis affects reproductive outcomes and causes economic losses in dairy cows, thus, it is important to understand disease progression mechanisms and develop diagnostic procedures for better disease management. We measured the levels of 146 lipid mediators in uterine flush samples using lipid chromatography-mass spectrometry. We detected 25 lipid mediators in the uterine flush of both the control and subclinical endometritis cows; 15 of the 25 lipid mediators were AA-derived metabolites. Among the AA-derived metabolites, cyclooxygenase (COX)-generated mediators were the most abundant. Specifically, levels of 11β-13,14-dihydro-15-keto prostaglandin (PG) F2α, PGE2, PGA2, 13-hydroxyoctadecadienoic acid, and PGD1 were elevated in all the cows with subclinical endometritis. This study may provide new insights for the management of subclinical bovine endometritis.
Collapse
Affiliation(s)
- Toko MAEHARA
- Cooperative Veterinary Pharmacology and Toxicology, Cooperative Department of Veterinary Medicine Faculty of Agriculture, Iwate University, Iwate, Japan
- Animal Radiology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi OSAWA
- Theriogenology, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Go KITAHARA
- Theriogenology, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi SATOH
- Cooperative Veterinary Pharmacology and Toxicology, Cooperative Department of Veterinary Medicine Faculty of Agriculture, Iwate University, Iwate, Japan
| | - Takahisa MURATA
- Animal Radiology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
- Veterinary Pharmacology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
- Food and Animal Systemics, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Ramström M, Holst BS, Lindberg R, Nording ML. Oxylipin profiling by LC-ESI-MS/MS in canine serum and plasma to investigate ovulation-specific changes. Prostaglandins Other Lipid Mediat 2024; 170:106790. [PMID: 37918556 DOI: 10.1016/j.prostaglandins.2023.106790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
New biomarkers that are directly associated with canine ovulation would be of value to ensure mating on optimal days of heat. In this study, canine plasma and serum were analyzed with liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to quantify a broad range of oxylipins for the purpose of developing a method for biomarker discovery studies in canine reproduction. A majority of the 67 oxylipins probed for were detected at comparable levels in both sample types, but more oxylipins at higher concentrations were detected in serum than in plasma. Nine of the oxylipins were detected in a pilot study of serum at levels that significantly differed (p ≤ 0.1) between time-points before (n = 10), during (n = 10) and after (n = 10) ovulation, and might serve as putative biomarkers for canine ovulation. One oxylipin (20-HETE) was significantly altered after adjusting for multiple comparisons. In conclusion, the results showed that the LC-ESI-MS/MS method was suitable for quantification of canine oxylipins, revealing important similarities and differences between plasma and serum profiles as well as preliminary ovulation-specific changes in a subset of the investigated oxylipins.
Collapse
Affiliation(s)
- Margareta Ramström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Bodil S Holst
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | | | - Malin L Nording
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
5
|
Hughes CHK, Mezera MA, Wiltbank MC, Pate JL. Insights from two independent transcriptomic studies of the bovine corpus luteum during pregnancy. J Anim Sci 2022; 100:skac115. [PMID: 35772758 PMCID: PMC9246655 DOI: 10.1093/jas/skac115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/07/2022] [Indexed: 12/30/2022] Open
Abstract
Several recent studies have used transcriptomics to investigate luteal changes during the maternal recognition of the pregnancy period in ruminants. Although these studies have contributed to our understanding of luteal function during early pregnancy, few attempts have been made to integrate information across these studies and distinguish key luteal transcripts or functions that are repeatably identified across multiple studies. Therefore, in this study, two independent studies of the luteal transcriptome during early pregnancy were combined and compared. In the first study, corpora lutea (CL) from day 20 of pregnancy were compared with CL collected on day 14 of pregnancy, prior to embryonic signaling. The cattle were nonlactating. In the second study, CL from day 20 of pregnancy were compared with CL collected from day 20 cyclic cattle that had been confirmed as not yet undergoing luteal regression. These were lactating cattle. Three methods were used to compare these two datasets, to identify key luteal regulators. In the first method, all transcripts with Benjamini-Hochberg-adjusted P-value (Q value) < 0.05 in both datasets were considered. This yielded 22 transcripts, including several classical interferon-stimulated genes, as well as regulators of transforming growth factor-beta (TGFB) and latent TGFB-binding proteins (LTBP)1 and 2. In the second, less conservative method, all transcripts with P < 0.01 and changed in the same direction in both datasets were considered. This yielded an additional 20 transcripts that were not identified in the first analysis, for a total of 42 common transcripts. These transcripts were regulators of functions such as inflammatory balance and matrix remodeling. In the third method, transcripts with Q < 0.10 were subject to pathway analysis, and common pathways were identified. Retinoic acid signaling and classical interferon signaling pathways were identified with this method. Finally, regulation by interferon tau (IFNT) was investigated. Among the 42 transcripts identified, 32 were regulated by IFNT in cultured luteal cells (Q < 0.05). Among those not regulated by IFNT were LTBP1 and 2, which are TGFB-binding proteins. In summary, common transcripts from two studies of the luteal transcriptome during early pregnancy were combined and shared changes were identified. This not only generated a list of potential key luteal regulators, which were mostly IFNT regulated, but also included transcripts not regulated by IFNT, including LTBP1 and 2.
Collapse
Affiliation(s)
- Camilla H K Hughes
- Center for Reproductive Biology and Health, Department of Animal Science, Penn State University, University Park, PA 16802, USA
| | - Megan A Mezera
- Endocrinology and Reproductive Physiology Program and Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Milo C Wiltbank
- Endocrinology and Reproductive Physiology Program and Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joy L Pate
- Center for Reproductive Biology and Health, Department of Animal Science, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Atli MO, Mehta V, Vezina CM, Wiltbank MC. Expression patterns of chemokine (C-C motif) ligand 2, prostaglandin F2A receptor and immediate early genes at mRNA level in the bovine corpus luteum after intrauterine treatment with a low dose of prostaglandin F2A. Theriogenology 2022; 189:70-76. [PMID: 35732098 DOI: 10.1016/j.theriogenology.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
The present study evaluated expression patterns of chemokine (C-C motif) ligand 2 gene/Monocyte chemoattractant protein-1 gene (CCL2/MCP-1), prostaglandin F2 alpha receptor gene (PTGFR) and immediate early genes including nuclear receptor subfamily 4, group A, member 1 (NR4A1), early growth response 1 (EGR1) and FBJ murine osteosarcoma viral oncogene homolog (FOS) in cells of the bovine corpus luteum after intrauterine infusion of a low dose of prostaglandin F2α (PGF2A) aimed at enhancing our understanding of the mechanisms of luteolysis. Holstein dairy cows were superovulated (>6 corpora lutea [CL]) and on day 9 of the estrous cycle were infused with a low dose of PGF2A (0.5 mg PGF2A in 0.25 ml phosphate buffered saline) into the greater curvature of the uterine horn ipsilateral to the CL. Ultrasound-guided biopsy samples of different CL were collected at 0 min, 15 min, 30 min, 1h, 2h and 6h after PGF2A infusion. Expression profiles and localization of mRNA for PTGFR, CCL2/MCP-1, and immediate early genes (NR4A1, EGR1 and FOS), were investigated by using qPCR and in situ hybridization. The concentrations of early response genes including FOS, NR4A1, and EGR1 exhibited the greatest increase at 30 min after PGF2A, compared to other time points. Expression profile of CCL2 mRNA increased gradually after intrauterine infusion of PGF2A with maximal up-regulation for CCL2 at 6h. Abundance of PTGFR mRNA only increased at 15 min and significantly decreased at 6h, compared to 0 min. Cellular localizations of all studied genes except CCL2 (primarily localized to apparent immune cells) were predominantly visualized in large luteal cells. Interestingly, early response genes demonstrated a changing profile in cellular localization with initial responses appearing to be in both large luteal cells and endothelial cells, although no staining for PTGFR mRNA was observed in endothelial cells. Later, sustained responses, were only observed in large luteal cells, although PTGFR mRNA was decreasing in large luteal cells over time after PGF2A. The involvement of the immune system was also highlighted by the immediate increases in CCL2 mRNA that became much greater over time as there was an apparent influx of CCL2-positive immune cells. Thus, the temporal and cell-specific localization patterns for the studied mRNA demonstrate the complex pathways that are responsible for initiation of luteolysis in the bovine CL.
Collapse
Affiliation(s)
- Mehmet O Atli
- Endocrinology-Reproductive Physiology Program and Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Wisconsin, USA; Department of Reproduction, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey.
| | - Vatsal Mehta
- Department of Comparative Biosciences, UW-Madison, Madison, WI, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, UW-Madison, Madison, WI, USA
| | - Milo C Wiltbank
- Endocrinology-Reproductive Physiology Program and Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Wisconsin, USA.
| |
Collapse
|
7
|
Changes in Porcine Corpus Luteum Proteome Associated with Development, Maintenance, Regression, and Rescue during Estrous Cycle and Early Pregnancy. Int J Mol Sci 2021; 22:ijms222111740. [PMID: 34769171 PMCID: PMC8583735 DOI: 10.3390/ijms222111740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022] Open
Abstract
Corpus luteum (CL), a transitory gland, undergoes rapid growth in a limited time to produce progesterone (P4) followed by its regression. A complex molecular signaling is involved in controlling luteal P4 production. In the present study, 2D gel electrophoresis-based proteomics and in silico functional analysis were used to identify changes in key proteins and pathways in CL along the different stages of the estrous cycle as its development progresses from early (Day 3) to mid-luteal phase (Day 9), effective functioning (Day 12) followed by regression (Day 15) or, in the case of pregnancy, rescue of function (Day 15). A total of 273 proteins were identified by MALDI-MS/MS analysis that showed significant changes in abundances at different stages of CL development or regression and rescue. Functional annotation of differentially abundant proteins suggested enrichment of several important pathways and functions during CL development and function maintenance including cell survival, endocytosis, oxidative stress response, estradiol metabolism, and angiogenesis. On the other hand, differentially abundant proteins during CL regression were associated with decreased steroid synthesis and metabolism and increased apoptosis, necrosis, and infiltration of immune cells. Establishment of pregnancy rescues CL from regression by maintaining the expression of proteins that support steroidogenesis as pathways such as the super-pathway of cholesterol biosynthesis, RhoA signaling, and functions such as fatty acid metabolism and sterol transport were enriched in CL of pregnancy. In this study, some novel proteins were identified along CL development that advances our understanding of CL survival and steroidogenesis.
Collapse
|
8
|
Hughes CHK, Inskeep EK, Pate JL. Temporal changes in the corpus luteum during early pregnancy reveal regulation of pathways that enhance steroidogenesis and suppress luteolytic mechanisms†. Biol Reprod 2021; 103:70-84. [PMID: 32285125 DOI: 10.1093/biolre/ioaa047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 11/14/2022] Open
Abstract
Although rescue of the corpus luteum (CL) is required for pregnancy, luteal function during maternal recognition of pregnancy remains largely unexplored. CL were collected from pregnant cattle on days 14, 17, 20, and 23, to encompass the maternal recognition of pregnancy period. Next-generation sequencing was used to profile mRNA abundance during this time, while tandem mass spectrometry and nanostring technology were used to profile proteins and miRNA, respectively. A total of 1157 mRNA were differentially abundant, while 27 miRNA changed, and 29 proteins tended to change. mRNA that increased were regulators of interferon signaling and DNA repair, while those that decreased were associated with luteolytic processes, such as calcium signaling and matrix metallopeptidase (MMP) signaling, indicating inhibition of these processes. One of these, MMP12, was regulated by prostaglandin F2A in vitro. mRNA that were maximally abundant on day 20 were primarily associated with immune processes. Two of these, C-C motif chemokine ligand 1 and NFKB inhibitor alpha, were regulated by interferon tau in vitro. MiRNA that increased were predicted to inhibit phosphatidylinositol signaling, while those that decreased may be negative regulators of steroidogenesis. One protein that was greater on day 20 than on day 14 was aldehyde dehydrogenase 1 family member A1 (ALDH1A1), which synthesizes retinoic acid. Pharmacological inhibition of this enzyme, or of retinoic acid receptor signaling, led to suppression of progesterone production in vitro. Overall, these data indicate that there are changes in the CL of pregnancy that are important for continued luteal function.
Collapse
Affiliation(s)
- C H K Hughes
- Center for Reproductive Biology & Health, Department of Animal Science, Pennsylvania State University, University Park, PA, USA
| | - E K Inskeep
- Division of Animal & Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - J L Pate
- Center for Reproductive Biology & Health, Department of Animal Science, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
9
|
Nowak RA. An Interview with Dr Joy Pate. Biol Reprod 2020; 103:1145-1147. [PMID: 32939548 DOI: 10.1093/biolre/ioaa145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Romana A Nowak
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL, USA
| |
Collapse
|
10
|
Roadmap to pregnancy during the period of maternal recognition in the cow: Changes within the corpus luteum associated with luteal rescue. Theriogenology 2020; 150:294-301. [DOI: 10.1016/j.theriogenology.2020.01.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
|