1
|
Vasconcelos I, von Hafe M, Adão R, Leite-Moreira A, Brás-Silva C. Corticotropin-releasing hormone and obesity: From fetal life to adulthood. Obes Rev 2024; 25:e13763. [PMID: 38699883 DOI: 10.1111/obr.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 05/05/2024]
Abstract
Obesity is among the most common chronic disorders, worldwide. It is a complex disease that reflects the interactions between environmental influences, multiple genetic allelic variants, and behavioral factors. Recent developments have also shown that biological conditions in utero play an important role in the programming of energy homeostasis systems and might have an impact on obesity and metabolic disease risk. The corticotropin-releasing hormone (CRH) family of neuropeptides, as a central element of energy homeostasis, has been evaluated for its role in the pathophysiology of obesity. This review aims to summarize the relevance and effects of the CRH family of peptides in the pathophysiology of obesity spanning from fetal life to adulthood.
Collapse
Affiliation(s)
- Inês Vasconcelos
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Madalena von Hafe
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rui Adão
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carmen Brás-Silva
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Huang JL, Pourhosseinzadeh MS, Lee S, Krämer N, Guillen JV, Cinque NH, Aniceto P, Momen AT, Koike S, Huising MO. Paracrine signalling by pancreatic δ cells determines the glycaemic set point in mice. Nat Metab 2024; 6:61-77. [PMID: 38195859 PMCID: PMC10919447 DOI: 10.1038/s42255-023-00944-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/09/2023] [Indexed: 01/11/2024]
Abstract
While pancreatic β and α cells are considered the main drivers of blood glucose homeostasis through insulin and glucagon secretion, the contribution of δ cells and somatostatin (SST) secretion to glucose homeostasis remains unresolved. Here we provide a quantitative assessment of the physiological contribution of δ cells to the glycaemic set point in mice. Employing three orthogonal mouse models to remove SST signalling within the pancreas or transplanted islets, we demonstrate that ablating δ cells or SST leads to a sustained decrease in the glycaemic set point. This reduction coincides with a decreased glucose threshold for insulin response from β cells, leading to increased insulin secretion to the same glucose challenge. Our data demonstrate that β cells are sufficient to maintain stable glycaemia and reveal that the physiological role of δ cells is to provide tonic feedback inhibition that reduces the β cell glucose threshold and consequently lowers the glycaemic set point in vivo.
Collapse
Affiliation(s)
- Jessica L Huang
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Mohammad S Pourhosseinzadeh
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Sharon Lee
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Niels Krämer
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Jaresley V Guillen
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Naomi H Cinque
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Paola Aniceto
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Ariana T Momen
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Shinichiro Koike
- Department of Nutrition, University of California, Davis, CA, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA.
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
3
|
Huang YY, Bao TY, Huang XQ, Lan QW, Huang ZM, Chen YH, Hu ZD, Guo XG. Machine learning algorithm to construct cuproptosis- and immune-related prognosis prediction model for colon cancer. World J Gastrointest Oncol 2023; 15:372-388. [PMID: 37009317 PMCID: PMC10052662 DOI: 10.4251/wjgo.v15.i3.372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Over the past few years, research into the pathogenesis of colon cancer has progressed rapidly, and cuproptosis is an emerging mode of cellular apoptosis. Exploring the relationship between colon cancer and cuproptosis benefits in identifying novel biomarkers and even improving the outcome of the disease.
AIM To look at the prognostic relationship between colon cancer and the genes associated with cuproptosis and the immune system in patients. The main purpose was to assess whether reasonable induction of these biomarkers reduces mortality among patients with colon cancers.
METHOD Data obtained from The Cancer Genome Atlas and Gene Expression Omnibus and the Genotype-Tissue Expression were used in differential analysis to explore differential expression genes associated with cuproptosis and immune activation. The least absolute shrinkage and selection operator and Cox regression algorithm was applied to build a cuproptosis- and immune-related combination model, and the model was utilized for principal component analysis and survival analysis to observe the survival and prognosis of the patients. A series of statistically meaningful transcriptional analysis results demonstrated an intrinsic relationship between cuproptosis and the micro-environment of colon cancer.
RESULTS Once prognostic characteristics were obtained, the CDKN2A and DLAT genes related to cuproptosis were strongly linked to colon cancer: The first was a risk factor, whereas the second was a protective factor. The finding of the validation analysis showed that the comprehensive model associated with cuproptosis and immunity was statistically significant. Within the component expressions, the expressions of HSPA1A, CDKN2A, and UCN3 differed markedly. Transcription analysis primarily reflects the differential activation of related immune cells and pathways. Furthermore, genes linked to immune checkpoint inhibitors were expressed differently between the subgroups, which may reveal the mechanism of worse prognosis and the different sensitivities of chemotherapy.
CONCLUSION The prognosis of the high-risk group evaluated in the combined model was poorer, and cuproptosis was highly correlated with the prognosis of colon cancer. It is possible that we may be able to improve patients’ prognosis by regulating the gene expression to intervene the risk score.
Collapse
Affiliation(s)
- Yuan-Yi Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Ting-Yu Bao
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Xu-Qi Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Clinical Medicine, The Sixth Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Qi-Wen Lan
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Medical Imageology, The Second Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Ze-Min Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Yu-Han Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010010, Inner Mongolia Autonomous Region, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| |
Collapse
|
4
|
Alghamdi NJ, Burns CT, Valdes R. The urocortin peptides: biological relevance and laboratory aspects of UCN3 and its receptor. Crit Rev Clin Lab Sci 2022; 59:573-585. [PMID: 35738909 DOI: 10.1080/10408363.2022.2080175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The urocortins are polypeptides belonging to the corticotropin-releasing hormone family, known to modulate stress responses in mammals. Stress, whether induced physically or psychologically, is an underlying cause or consequence of numerous clinical syndromes. Identifying biological markers associated with the homeostatic regulation of stress could provide a clinical laboratory approach for the management of stress-related disorders. The neuropeptide, urocortin 3 (UCN3), and the corticotropin-releasing hormone receptor 2 (CRHR2) constitute a regulatory axis known to mediate stress homeostasis. Dysregulation of this peptide/receptor axis is believed to play a role in several clinical conditions including post-traumatic stress, sleep apnea, cardiovascular disease, and other health problems related to stress. Understanding the physiology and measurement of the UCN3/CRHR2 axis is important for establishing a viable clinical laboratory diagnostic. In this article, we focus on evidence supporting the role of UCN3 and its receptor in stress-related clinical syndromes. We also provide insight into the measurements of UCN3 in blood and urine. These potential biomarkers provide new opportunities for clinical research and applications of laboratory medicine diagnostics in stress management.
Collapse
Affiliation(s)
- Norah J Alghamdi
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | | | - Roland Valdes
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
5
|
Gough M, Singh DK, Singh B, Kaushal D, Mehra S. System-wide identification of myeloid markers of TB disease and HIV-induced reactivation in the macaque model of Mtb infection and Mtb/SIV co-infection. Front Immunol 2022; 13:777733. [PMID: 36275677 PMCID: PMC9583676 DOI: 10.3389/fimmu.2022.777733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) has developed specialized mechanisms to parasitize its host cell, the macrophage. These mechanisms allow it to overcome killing by oxidative burst and persist in the wake of an inflammatory response. Mtb infection in the majority of those exposed is controlled in an asymptomatic form referred to as latent tuberculosis infection (LTBI). HIV is a well-known catalyst of reactivation of LTBI to active TB infection (ATB). Through the use of nonhuman primates (NHPs) co-infected with Mtb and Simian Immunodeficiency Virus (Mtb/SIV), we are able to simulate human progression of TB/AIDS comorbidity. The advantage of NHP models is that they recapitulate the breadth of human TB outcomes, including immune control of infection, and loss of this control due to SIV co-infection. Identifying correlates of immune control of infection is important for both vaccine and therapeutics development. Using macaques infected with Mtb or Mtb/SIV and with different clinical outcomes we attempted to identify signatures between those that progress to active infection after SIV challenge (reactivators) and those that control the infection (non-reactivators). We particularly focused on pathways relevant to myeloid origin cells such as macrophages, as these innate immunocytes have an important contribution to the initial control or the lack thereof, following Mtb infection. Using bacterial burden, C-reactive protein (CRP), and other clinical indicators of disease severity as a guide, we were able to establish gene signatures of host disease state and progression. In addition to gene signatures, clustering algorithms were used to differentiate between host disease states and identify relationships between genes. This allowed us to identify clusters of genes which exhibited differential expression profiles between the three groups of macaques: ATB, LTBI and Mtb/SIV. The gene signatures were associated with pathways relevant to apoptosis, ATP production, phagocytosis, cell migration, and Type I interferon (IFN), which are related to macrophage function. Our results suggest novel macrophage functions that may play roles in the control of Mtb infection with and without co-infection with SIV. These results particularly point towards an interplay between Type I IFN signaling and IFN-γ signaling, and the resulting impact on lung macrophages as an important determinant of progression to TB.
Collapse
Affiliation(s)
| | | | | | | | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
6
|
Flisher MF, Shin D, Huising MO. Urocortin3: Local inducer of somatostatin release and bellwether of beta cell maturity. Peptides 2022; 151:170748. [PMID: 35065098 PMCID: PMC10881066 DOI: 10.1016/j.peptides.2022.170748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
Urocortin 3 (UCN3) is a peptide hormone expressed in pancreatic islets of Langerhans of both human alpha and human beta cells and solely in murine beta cells. UCN3 signaling acts locally within the islet to activate its cognate receptor, corticotropin releasing hormone receptor 2 (CRHR2), which is expressed by delta cells, to potentiate somatostatin (SST) negative feedback to reduce islet cell hormone output. The functional importance of UCN3 signaling in the islet is to modulate the amount of SST tone allowing for finely tuned regulation of insulin and glucagon secretion. UCN3 signaling is a hallmark of functional beta cell maturation, increasing the beta cell glucose threshold for insulin secretion. In doing so, UCN3 plays a relevant functional role in accurately maintaining blood glucose homeostasis. Additionally, UCN3 acts as an indicator of beta cell maturation and health, as UCN3 is not expressed in immature beta cells and is downregulated in dedifferentiated and dysfunctional beta cell states. Here, we review the mechanistic underpinnings of UCN3 signaling, its net effect on islet cell hormone output, as well as its value as a marker for beta cell maturation and functional status.
Collapse
Affiliation(s)
- Marcus F Flisher
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, CA, United States
| | - Donghan Shin
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, CA, United States
| | - Mark O Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, CA, United States; Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, United States.
| |
Collapse
|
7
|
Khan D, Moffett RC, Flatt PR, Tarasov AI. Classical and non-classical islet peptides in the control of β-cell function. Peptides 2022; 150:170715. [PMID: 34958851 DOI: 10.1016/j.peptides.2021.170715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/25/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022]
Abstract
The dual role of the pancreas as both an endocrine and exocrine gland is vital for food digestion and control of nutrient metabolism. The exocrine pancreas secretes enzymes into the small intestine aiding digestion of sugars and fats, whereas the endocrine pancreas secretes a cocktail of hormones into the blood, which is responsible for blood glucose control and regulation of carbohydrate, protein and fat metabolism. Classical islet hormones, insulin, glucagon, pancreatic polypeptide and somatostatin, interact in an autocrine and paracrine manner, to fine-tube the islet function and insulin secretion to the needs of the body. Recently pancreatic islets have been reported to express a number of non-classical peptide hormones involved in metabolic signalling, whose major production site was believed to reside outside pancreas, e.g. in the small intestine. We highlight the key non-classical islet peptides, and consider their involvement, together with established islet hormones, in regulation of stimulus-secretion coupling as well as proliferation, survival and transdifferentiation of β-cells. We furthermore focus on the paracrine interaction between classical and non-classical islet hormones in the maintenance of β-cell function. Understanding the functional relationships between these islet peptides might help to develop novel, more efficient treatments for diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Dawood Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK.
| | - R Charlotte Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Andrei I Tarasov
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
8
|
Kavalakatt S, Khadir A, Madhu D, Devarajan S, Warsame S, AlKandari H, AlMahdi M, Koistinen HA, Al‐Mulla F, Tuomilehto J, Abubaker J, Tiss A. Circulating levels of urocortin neuropeptides are impaired in children with overweight. Obesity (Silver Spring) 2022; 30:472-481. [PMID: 35088550 PMCID: PMC9305428 DOI: 10.1002/oby.23356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The corticotropin-releasing factor neuropeptides (corticotropin-releasing hormone [CRH] and urocortin [UCN]-1,2,3) and spexin contribute to the regulation of energy balance and inhibit food intake in mammals. However, the status of these neuropeptides in children with overweight has yet to be elucidated. This study investigated the effect of increased body weight on the circulating levels of these neuropeptides. METHODS A total of 120 children with a mean age of 12 years were enrolled in the study. Blood samples were collected to assess the circulating levels of neuropeptides and were correlated with various anthropometric, clinical, and metabolic markers. RESULTS Plasma levels of UCNs were altered in children with overweight but less so in those with obesity. Furthermore, the expression pattern of UCN1 was opposite to that of UCN2 and UCN3, which suggests a compensatory effect. However, no significant effect of overweight and obesity was observed on CRH and spexin levels. Finally, UCN3 independently associated with circulating zinc-alpha-2-glycoprotein and UCN2 levels, whereas UCN1 was strongly predicted by TNFα levels. CONCLUSIONS Significant changes in neuropeptide levels were primarily observed in children with overweight and were attenuated with increased obesity. This suggests the presence of a compensatory mechanism for neuropeptides to curb the progression of obesity.
Collapse
Affiliation(s)
- Sina Kavalakatt
- Biochemistry and Molecular Biology Department, Research DivisionDasman Diabetes InstituteKuwait
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Abdelkrim Khadir
- Biochemistry and Molecular Biology Department, Research DivisionDasman Diabetes InstituteKuwait
| | - Dhanya Madhu
- Biochemistry and Molecular Biology Department, Research DivisionDasman Diabetes InstituteKuwait
| | | | - Samia Warsame
- Biochemistry and Molecular Biology Department, Research DivisionDasman Diabetes InstituteKuwait
| | | | | | - Heikki A. Koistinen
- Department of MedicineHelsinki University HospitalHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Department of Public Health and WelfareFinnish Institute for Health and WelfareHelsinkiFinland
| | | | - Jaakko Tuomilehto
- Department of Public Health and WelfareFinnish Institute for Health and WelfareHelsinkiFinland
- Department of Public HealthUniversity of HelsinkiHelsinkiFinland
- Diabetes Research GroupKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Research DivisionDasman Diabetes InstituteKuwait
| | - Ali Tiss
- Biochemistry and Molecular Biology Department, Research DivisionDasman Diabetes InstituteKuwait
| |
Collapse
|
9
|
Urocortin Neuropeptide Levels Are Impaired in the PBMCs of Overweight Children. Nutrients 2022; 14:nu14030429. [PMID: 35276788 PMCID: PMC8839374 DOI: 10.3390/nu14030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/18/2022] Open
Abstract
The corticotropin-releasing hormone (CRH) and urocortins (UCNs) have been implicated in energy homeostasis and the cellular stress response. However, the expression of these neuropeptides in children remains unclear. Therefore, we determined the impact of obesity on their expression in 40 children who were normal weight, overweight, and had obesity. Peripheral blood mononuclear cells (PBMCs) and plasma were used to assess the expression of neuropeptides. THP1 cells were treated with 25 mM glucose and 200 µM palmitate, and gene expression was measured by real-time polymerase chain reaction (RT-PCR). Transcript levels of neuropeptides were decreased in PBMCs from children with increased body mass index as indicated by a significant decrease in UCN1, UCN3, and CRH mRNA in overweight and obese children. UCN3 mRNA expression was strongly correlated with UCN1, UCN2, and CRH. Exposure of THP1 cells to palmitate or a combination of high glucose and palmitate for 24 h increased CRH, UCN2, and UCN3 mRNA expression with concomitant increased levels of inflammatory and endoplasmic reticulum stress markers, suggesting a crosstalk between these neuropeptides and the cellular stress response. The differential impairment of the transcript levels of CRH and UCNs in PBMCs from overweight and obese children highlights their involvement in obesity-related metabolic and cellular stress.
Collapse
|
10
|
Urocortins as biomarkers in cardiovascular disease. Clin Sci (Lond) 2022; 136:1-14. [PMID: 34939089 DOI: 10.1042/cs20210732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
The urocortins (Ucns) belong to the corticotropin-releasing factor (CRF) family of peptides and have multiple effects within the central nervous and the cardiovascular systems. With growing evidence indicating significant cardioprotective properties and cardiovascular actions of these peptides, the question arises as to whether the plasma profiles of the Ucns are altered in pathologic settings. While reports have shown conflicting results and findings have not been corroborated in multiple independent cohorts, it seems likely that plasma Ucn concentrations are elevated in multiple cardiovascular conditions. The degree of increase and accurate determination of circulating values of the Ucns requires further validation.
Collapse
|
11
|
Kovács DK, Farkas N, Soós A, Hegyi P, Kelava L, Eitmann S, Schekk A, Molnár Z, Erőss B, Balaskó M. Assessment of clinical data on urocortins and their therapeutic potential in cardiovascular diseases: A systematic review and meta-analysis. Clin Transl Sci 2021; 14:2461-2473. [PMID: 34378854 PMCID: PMC8604231 DOI: 10.1111/cts.13114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 05/26/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) and cardiovascular diseases present public health challenges. Although great progress was achieved in their treatment, there is continuous need for new therapies. Urocortins of the corticotropin neuropeptide family were reported to exert beneficial effects in animal models of HF and cardiovascular diseases. We aimed to assess the available clinical evidence on the potential role of urocortins in HF and other cardiovascular diseases. We explored MEDLINE, Embase, CENTRAL, and Scopus databases. Twenty‐seven studies were included in the qualitative and 15 studies (2005 patients) in the quantitative syntheses. Available data allowed us to meta‐analyze the blood pressure (BP) lowering and heart rate (HR) increasing effects of urocortin 2 in HF with reduced ejection fraction. We applied meta‐regression to explore the association between left ventricular ejection fraction and serum urocortin 1 and urocortin 2 levels. Short‐term urocortin 2 infusion decreased mean arterial pressure in chronic HF with reduced ejection fraction (mean difference = −9.161 mmHg, 95% confidence interval [CI] −12.661 to −5.660 mmHg, p < 0.001). Such infusions increased HR mildly (mean difference = 5.629 beats/min, 95% CI 1.612 to 9.646 beats/min, p = 0.006). Although some studies reported increased urocortin 1 and urocortin 2 levels in HF with growing severity, our meta‐regressions failed to confirm associations between blood urocortin levels and left ventricular ejection fraction. Clinical evidence confirms short‐term BP lowering effects of urocortin 2, whereas individual studies report additional beneficial effects. Further clinical investigations are necessary to confirm the latter and the long‐term value of these peptides in cardiovascular diseases. Review protocol: CRD42020163203.
Collapse
Affiliation(s)
- Dóra K Kovács
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Nelli Farkas
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary
| | - Alexandra Soós
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary.,Department of Translational Medicine, First Department of Internal Medicine, University of Pécs, Pécs, Hungary.,MTA-SZTE Translational Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Leonardo Kelava
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Szimonetta Eitmann
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Anna Schekk
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Zsolt Molnár
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Bálint Erőss
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Márta Balaskó
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
12
|
Kavalakatt S, Khadir A, Madhu D, Koistinen HA, Al-Mulla F, Tuomilehto J, Abubaker J, Tiss A. Urocortin 3 overexpression reduces ER stress and heat shock response in 3T3-L1 adipocytes. Sci Rep 2021; 11:15666. [PMID: 34341463 PMCID: PMC8329193 DOI: 10.1038/s41598-021-95175-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022] Open
Abstract
The neuropeptide urocortin 3 (UCN3) has a beneficial effect on metabolic disorders, such as obesity, diabetes, and cardiovascular disease. It has been reported that UCN3 regulates insulin secretion and is dysregulated with increasing severity of obesity and diabetes. However, its function in the adipose tissue is unclear. We investigated the overexpression of UCN3 in 3T3-L1 preadipocytes and differentiated adipocytes and its effects on heat shock response, ER stress, inflammatory markers, and glucose uptake in the presence of stress-inducing concentrations of palmitic acid (PA). UCN3 overexpression significantly downregulated heat shock proteins (HSP60, HSP72 and HSP90) and ER stress response markers (GRP78, PERK, ATF6, and IRE1α) and attenuated inflammation (TNFα) and apoptosis (CHOP). Moreover, enhanced glucose uptake was observed in both preadipocytes and mature adipocytes, which is associated with upregulated phosphorylation of AKT and ERK but reduced p-JNK. Moderate effects of UCN3 overexpression were also observed in the presence of 400 μM of PA, and macrophage conditioned medium dramatically decreased the UCN3 mRNA levels in differentiated 3T3-L1 cells. In conclusion, the beneficial effects of UCN3 in adipocytes are reflected, at least partially, by the improvement in cellular stress response and glucose uptake and attenuation of inflammation and apoptosis.
Collapse
Affiliation(s)
- Sina Kavalakatt
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait
| | - Abdelkrim Khadir
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait
| | - Dhanya Madhu
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait
| | - Heikki A Koistinen
- University of Helsinki and Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Fahd Al-Mulla
- Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - Jaakko Tuomilehto
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait
| | - Ali Tiss
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait.
| |
Collapse
|
13
|
Khadir A, Kavalakatt S, Madhu D, Devarajan S, Abubaker J, Al-Mulla F, Tiss A. Spexin as an indicator of beneficial effects of exercise in human obesity and diabetes. Sci Rep 2020; 10:10635. [PMID: 32606431 PMCID: PMC7327065 DOI: 10.1038/s41598-020-67624-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Spexin is a novel neuropeptide playing an emerging role in metabolic diseases such as obesity and diabetes via involvement in energy homeostasis and food intake. The present study investigated the effects of obesity and type 2 diabetes (T2D) on circulating levels of spexin and its modulation by physical exercise. Normal-weight (n = 50) and obese adults with and without T2D (n = 69 and n = 66, respectively) were enrolled in the study. A subgroup of obese participants (n = 47) underwent a supervised 3-month exercise programme. Plasma spexin levels were measured by ELISA and correlated with various markers. Plasma spexin levels decreased in obese participants with or without T2D compared with those of normal-weight participants (0.43 ± 0.11, 0.44 ± 0.12 and 0.61 ± 0.23 ng/ml, respectively; P < 0.001). Spexin levels negatively correlated with adiposity markers and blood pressure in the whole study population (P < 0.05). Multiple regression analysis revealed blood pressure was the greatest predictive determinant of plasma spexin levels, which significantly increased in response to physical exercise in obese participants without and with T2D (P < 0.05). Spexin levels significantly increased only in responders to exercise (those with increased oxygen consumption, VO2 max) with a concomitant improvement in metabolic profile. In conclusion, plasma spexin levels may be an indicator of response to physical exercise.
Collapse
Affiliation(s)
- Abdelkrim Khadir
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box1180, 15462, Dasman, Kuwait
| | - Sina Kavalakatt
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box1180, 15462, Dasman, Kuwait
| | - Dhanya Madhu
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box1180, 15462, Dasman, Kuwait
| | | | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box1180, 15462, Dasman, Kuwait
| | - Fahd Al-Mulla
- Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - Ali Tiss
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, P.O. Box1180, 15462, Dasman, Kuwait.
| |
Collapse
|
14
|
Soluble Epoxide Hydrolase 2 Expression Is Elevated in Obese Humans and Decreased by Physical Activity. Int J Mol Sci 2020; 21:ijms21062056. [PMID: 32192153 PMCID: PMC7139757 DOI: 10.3390/ijms21062056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Epoxide hydrolase 2 (EPHX2) is an emerging therapeutic target in several immunometabolic disorders. EPHX2 metabolizes anti-inflammatory epoxyeicosatrienoic acids into pro-inflammatory diols. The contribution of EPHX2 activity to human obesity remains unexplored. We compared the expression of EPHX2 between lean and obese humans (n = 20 each) in subcutaneous adipose tissue (SAT) and peripheral blood mononuclear cells (PBMCs) using RT-PCR, Western Blot analysis, immunohistochemistry, and confocal microscopy before and after a 3-month physical activity regimen. We also assessed EPHX2 levels during preadipocyte differentiation in humans and mice. EPHX2 mRNA and protein expression were significantly elevated in obese subjects, with concomitant elevated endoplasmic reticulum (ER) stress components (the 78-kDa glucose-regulated protein; GRP78, and the Activating transcription factor 6; ATF6) and inflammatory markers (Tumor necrosis factor-α; TNFα, and Interleukin 6; IL6) as compared to controls (p < 0.05). EPHX2 mRNA levels strongly correlated with adiposity markers. In obese individuals, physical activity attenuated EPHX2 expression levels in both the SAT and PBMCs, with a parallel decrease in ER stress and inflammation markers. EPHX2 expression was also elevated during differentiation of both human primary and 3T3-L1 mouse preadipocytes. Mediators of cellular stress (palmitate, homocysteine, and macrophage culture medium) also increased EPHX2 expression in 3T3-L1 preadipocytes. Our findings suggest that EPHX2 upregulation is linked to ER stress in adiposity and that physical activity may attenuate metabolic stress by reducing EPHX2 expression.
Collapse
|