1
|
Pachuashvili N, Bastrich A, Porubayeva E, Elfimova A, Tertychnyy A, Beltsevich D, Kogan E, Reshetov I, Troshina E, Tarbaeva N, Mokrysheva N, Urusova L. Analysis of Cancer Stem Cell Markers in Various Histological Subtypes of Adrenocortical Cancer. Curr Issues Mol Biol 2024; 46:13798-13810. [PMID: 39727953 PMCID: PMC11727494 DOI: 10.3390/cimb46120825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Adrenocortical cancer (ACC) is a rare malignant neoplasm originating from the adrenal cortex, presenting limited therapeutic options. An avenue for improving therapeutic efficacy may involve a deeper understanding of the role of adrenocortical stem/progenitor cells in the pathogenesis of this disease. Although existing data suggest stem/progenitor characteristics in certain cell populations within ACC, the challenge remains to identify adrenocortical stem cell markers directly involved in its carcinogenesis. In our study, we aimed to identify multipotency markers such as LGR5 and CD90 in various ACC types to confirm their presence and localization. The study included tumor tissue samples from 13 patients with ACC treated at the Endocrinology Research Centre (Moscow, Russia) between 2005 and 2023. We conducted immunohistochemical analyses to identify the aforementioned markers and examined the association between their expression and clinico-morphological parameters. Our pilot study results demonstrate the presence of LGR5- and CD90-positive tumor cells in all samples. Despite the small sample size, we observed statistically significant differences in disease-free survival based on the number of CD90-positive cells. These findings suggest a potential diagnostic, prognostic, and predictive value of cancer stem cell markers, underscoring the need for their further analysis in a larger cohort of patients with ACC.
Collapse
Affiliation(s)
- Nano Pachuashvili
- Department of Fundamental Pathology, Endocrinology Research Centre, 117036 Moscow, Russia
- Institute of Clinical Morphology and Digital Pathology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Asya Bastrich
- Department of Fundamental Pathology, Endocrinology Research Centre, 117036 Moscow, Russia
| | - Erika Porubayeva
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia
| | - Alina Elfimova
- Department of Fundamental Pathology, Endocrinology Research Centre, 117036 Moscow, Russia
| | - Alexander Tertychnyy
- Institute of Clinical Morphology and Digital Pathology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Dmitry Beltsevich
- Department of Fundamental Pathology, Endocrinology Research Centre, 117036 Moscow, Russia
| | - Evgeniya Kogan
- Institute of Clinical Morphology and Digital Pathology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Igor Reshetov
- Institute of Clinical Morphology and Digital Pathology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ekaterina Troshina
- Department of Fundamental Pathology, Endocrinology Research Centre, 117036 Moscow, Russia
| | - Natalia Tarbaeva
- Department of Fundamental Pathology, Endocrinology Research Centre, 117036 Moscow, Russia
| | - Natalia Mokrysheva
- Department of Fundamental Pathology, Endocrinology Research Centre, 117036 Moscow, Russia
| | - Liliya Urusova
- Department of Fundamental Pathology, Endocrinology Research Centre, 117036 Moscow, Russia
- Institute of Clinical Morphology and Digital Pathology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Tong Z, Yin Z. Distribution, contribution and regulation of nestin + cells. J Adv Res 2024; 61:47-63. [PMID: 37648021 PMCID: PMC11258671 DOI: 10.1016/j.jare.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Nestin is an intermediate filament first reported in neuroepithelial stem cells. Nestin expression could be found in a variety of tissues throughout all systems of the body, especially during tissue development and tissue regeneration processes. AIM OF REVIEW This review aimed to summarize and discuss current studies on the distribution, contribution and regulation of nestin+ cells in different systems of the body, to discuss the feasibility ofusing nestin as a marker of multilineage stem/progenitor cells, and better understand the potential roles of nestin+ cells in tissue development, regeneration and pathological processes. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the potential of nestin as a marker of multilineage stem/progenitor cells, and as a key factor in tissue development and tissue regeneration. The article discussed the current findings, limitations, and potential clinical implications or applications of nestin+ cells. Additionally, it included the relationship of nestin+ cells to other cell populations. We propose potential future research directions to encourage further investigation in the field.
Collapse
Affiliation(s)
- Ziyang Tong
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
3
|
Еrmakova O, Raskosha О. Changes in the structural and functional state of the thyroid gland of small mammals when exposed to low-intensity chronic radiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34170-34183. [PMID: 38696014 DOI: 10.1007/s11356-024-33504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Abstract
The study gives a morphofunctional assessment of the state of the thyroid gland of tundra voles (Microtus oeconomus Pall.) in conditions of an increased radiation background (the Ukhta district of the Komi Republic (Russia) and the 30-km zone of the Chernobyl NPP), as well as in an experiment with chronic external gamma irradiation in the low dose range. The work summarizes the experience of more than 35 years of field and laboratory research. The authors have noted the high sensitivity of the thyroid gland to chronic radiation against the general irradiation of the organism both in natural conditions and in the experiment. The repeatability of the observed effects in voles from natural populations and the comparability of some effects with the morphological changes occurring in animals after exposure to ionizing radiation in the experiment indicates the radiation nature of these effects. The tundra voles living in conditions of increased radiation background have been identified for a greater variety of morphological rearrangements in the thyroid parenchyma than the experimental animals. The complex and ambiguous nature of the thyroid gland responses to radiation exposure indicates the possibility of a significant increase in the risk of negative effects of ionizing radiation in contrast with the expected results of biological effects' extrapolation from high to low doses.
Collapse
Affiliation(s)
- Olga Еrmakova
- Institute of Biology Federal Research Centre Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Kommunisticheskaya 28, Syktyvkar, Russian Federation, 167982
| | - Оksana Raskosha
- Institute of Biology Federal Research Centre Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Kommunisticheskaya 28, Syktyvkar, Russian Federation, 167982.
| |
Collapse
|
4
|
Cai Y, Liu S, Zhao X, Ren L, Liu X, Gang X, Wang G. Pathogenesis, clinical features, and treatment of plurihormonal pituitary adenoma. Front Neurosci 2024; 17:1323883. [PMID: 38260014 PMCID: PMC10800528 DOI: 10.3389/fnins.2023.1323883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Plurihormonal pituitary adenoma (PPA) is a type of pituitary tumor capable of producing two or more hormones and usually presents as an aggressive, large adenoma. As yet, its pathogenesis remains unclear. This is the first study to systematically summarize the underlying pathogenesis of PPA. The pathogenesis is related to plurihormonal primordial stem cells, co-transcription factors, hormone co-expression, differential gene expression, and cell transdifferentiation. We conducted a literature review of PPA and analyzed its clinical characteristics. We found that the average age of patients with PPA was approximately 40 years, and most showed only one clinical symptom. The most common manifestation was acromegaly. Currently, PPA is treated with surgical resection. However, recent studies suggest that immunotherapy may be a potentially effective treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Yamasaki M, Maki T, Mochida T, Hamada T, Watanabe-Matsumoto S, Konagaya S, Kaneko M, Ito R, Ueno H, Toyoda T. Xenogenic Engraftment of Human-Induced Pluripotent Stem Cell-Derived Pancreatic Islet Cells in an Immunosuppressive Diabetic Göttingen Mini-Pig Model. Cell Transplant 2024; 33:9636897241288932. [PMID: 39401129 PMCID: PMC11489945 DOI: 10.1177/09636897241288932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/21/2024] Open
Abstract
In the development of cell therapy products, immunocompromised animal models closer in size to humans are valuable for enhancing the translatability of in vivo findings to clinical trials. In the present study, we generated immunocompromised type 1 diabetic Göttingen mini-pig models and demonstrated the engraftment of human-induced pluripotent stem cell-derived pancreatic islet cells (iPICs). We induced hyperglycemia with a concomitant reduction in endogenous C-peptide levels in pigs that underwent thymectomy and splenectomy. After estimating the effective in vivo dose of immunosuppressants (ISs) via in vitro testing, we conducted exploratory implantation of iPICs using various implantation methods under IS treatments in one pig. Five weeks after implantation, histological analysis of the implanted iPICs embedded in fibrin gel revealed numerous islet-like structures with insulin-positive cells. Moreover, the area of the insulin-positive cells in the pre-peritoneally implanted grafts was greater than in the subcutaneously implanted grafts. Immunohistochemical analyses further revealed that these iPIC grafts contained cells positive for glucagon, somatostatin, and pancreatic polypeptides, similar to naturally occurring islets. The engraftment of iPICs was successfully reproduced. These data support the observation that the iPICs engrafted well, particularly in the pre-peritoneal space of the newly generated immunocompromised diabetic mini-pigs, forming islet-like endocrine clusters. Future evaluation of human cells in this immunocompromised pig model could accelerate and development of cell therapy products.
Collapse
Affiliation(s)
- Midori Yamasaki
- T-CiRA Discovery and Innovation, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
| | | | - Taisuke Mochida
- T-CiRA Discovery and Innovation, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
| | - Teruki Hamada
- Axcelead Drug Discovery Partners, Inc., Fujisawa, Japan
| | - Saori Watanabe-Matsumoto
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shuhei Konagaya
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Orizuru Therapeutics, Inc., Fujisawa, Japan
| | - Manami Kaneko
- Axcelead Drug Discovery Partners, Inc., Fujisawa, Japan
| | - Ryo Ito
- T-CiRA Discovery and Innovation, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
- Orizuru Therapeutics, Inc., Fujisawa, Japan
| | - Hikaru Ueno
- T-CiRA Discovery and Innovation, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
- Orizuru Therapeutics, Inc., Fujisawa, Japan
| | - Taro Toyoda
- Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Developmental Exposure to DDT Disrupts Transcriptional Regulation of Postnatal Growth and Cell Renewal of Adrenal Medulla. Int J Mol Sci 2023; 24:ijms24032774. [PMID: 36769098 PMCID: PMC9917778 DOI: 10.3390/ijms24032774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Dichlorodiphenyltrichloroethane (DDT) is the most widespread persistent pollutant with endocrine-disrupting properties. DDT has been shown to disrupt secretory and morphogenetic processes in the adrenal cortex. The present investigation aimed to evaluate transcriptional regulation of postnatal growth of the adrenal medulla and formation of the pools necessary for self-renewal of medullary cells in rats that developed under low-dose exposure to DDT. The study was performed using male Wistar rats exposed to low doses of o,p'-DDT during prenatal and postnatal development. Light microscopy and histomorphometry revealed diminished medulla growth in the DDT-exposed rats. Evaluation of Ki-67 expression in chromaffin cells found later activation of proliferation indicative of retarded growth of the adrenal medulla. All DDT-exposed rats exhibited a gradual decrease in tyrosine hydroxylase production by adrenal chromaffin cells. Immunohistochemical evaluation of nuclear β-catenin, transcription factor Oct4, and ligand of sonic hedgehog revealed increased expression of all factors after termination of growth in the control rats. The DDT-exposed rats demonstrated diminished increases in Oct4 and sonic hedgehog expression and lower levels of canonical Wnt signaling activation. Thus, developmental exposure to the endocrine disruptor o,p'-DDT alters the transcriptional regulation of morphogenetic processes in the adrenal medulla and evokes a slowdown in its growth and in the formation of a reserve pool of cells capable of dedifferentiation and proliferation that maintain cellular homeostasis in adult adrenals.
Collapse
|
7
|
Lactobacillus for ribosome peptide editing cancer. Clin Transl Oncol 2023; 25:1522-1544. [PMID: 36694080 PMCID: PMC9873400 DOI: 10.1007/s12094-022-03066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/24/2022] [Indexed: 01/25/2023]
Abstract
This study reviews newly discovered insect peptide point mutations as new possible cancer research targets. To interpret newly discovered peptide point mutations in insects as new possible cancer research targets, we focused on the numerous peptide changes found in the 'CSP' family on the sex pheromone gland of the female silkworm moth Bombyx mori. We predict that the Bombyx peptide modifications will have a significant effect on cancer CUP (cancers of unknown primary) therapy and that bacterial peptide editing techniques, specifically Lactobacillus combined to CRISPR, will be used to regulate ribosomes and treat cancer in humans.
Collapse
|
8
|
Graves LE, Torpy DJ, Coates PT, Alexander IE, Bornstein SR, Clarke B. Future directions for adrenal insufficiency: cellular transplantation and genetic therapies. J Clin Endocrinol Metab 2023; 108:1273-1289. [PMID: 36611246 DOI: 10.1210/clinem/dgac751] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023]
Abstract
Primary adrenal insufficiency occurs in 1 in 5-7000 adults. Leading aetiologies are autoimmune adrenalitis in adults and congenital adrenal hyperplasia (CAH) in children. Oral replacement of cortisol is lifesaving, but poor quality of life, repeated adrenal crises and dosing uncertainty related to lack of a validated biomarker for glucocorticoid sufficiency, persists. Adrenocortical cell therapy and gene therapy may obviate many of the shortcomings of adrenal hormone replacement. Physiological cortisol secretion regulated by pituitary adrenocorticotropin, could be achieved through allogeneic adrenocortical cell transplantation, production of adrenal-like steroidogenic cells from either stem cells or lineage conversion of differentiated cells, or for CAH, gene therapy to replace or repair a defective gene. The adrenal cortex is a high turnover organ and thus failure to incorporate progenitor cells within a transplant will ultimately result in graft exhaustion. Identification of adrenocortical progenitor cells is equally important in gene therapy where new genetic material must be specifically integrated into the genome of progenitors to ensure a durable effect. Delivery of gene editing machinery and a donor template, allowing targeted correction of the 21-hydroxylase gene, has the potential to achieve this. This review describes advances in adrenal cell transplants and gene therapy that may allow physiological cortisol production for children and adults with primary adrenal insufficiency.
Collapse
Affiliation(s)
- Lara E Graves
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - David J Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - P Toby Coates
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Stefan R Bornstein
- University Clinic Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Brigette Clarke
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
9
|
Baafi K, March JC. Harnessing gut cells for functional insulin production: Strategies and challenges. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 4:7-13. [PMID: 39416909 PMCID: PMC11446352 DOI: 10.1016/j.biotno.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 10/19/2024]
Abstract
Reprogrammed glucose-responsive, insulin + cells ("β-like") exhibit the potential to bypass the hurdles of exogenous insulin delivery in treating diabetes mellitus. Current cell-based therapies-transcription factor regulation, biomolecule-mediated enteric signaling, and transgenics - have demonstrated the promise of reprogramming either mature or progenitor gut cells into surrogate "β-like" cells. However, there are predominant challenges impeding the use of gut "β-like" cells as clinical replacements for insulin therapy. Reprogrammed "β-like" gut cells, even those of enteroendocrine origin, mostly do not exhibit glucose - potentiated insulin secretion. Despite the exceptionally low conversion rate of gut cells into surrogate "β-like" cells, the therapeutic quantity of gut "β-like" cells needed for normoglycemia has not even been established. There is also a lingering uncertainty regarding the functionality and bioavailability of gut derived insulin. Herein, we review the strategies, challenges, and opportunities in the generation of functional, reprogrammed "β-like" cells.
Collapse
Affiliation(s)
- Kelvin Baafi
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|
10
|
Gor R, Ramachandran I, Ramalingam S. Targeting the Cancer Stem Cells in Endocrine Cancers with Phytochemicals. Curr Top Med Chem 2022; 22:2589-2597. [PMID: 36380414 DOI: 10.2174/1567205020666221114112814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
Endocrine cancer is an uncontrolled growth of cells in the hormone-producing glands. Endocrine cancers include the adrenal, thyroid, parathyroid, pancreas, pituitary, and ovary malignancy. Recently, there is an increase in the incidence of the most common endocrine cancer types, namely pancreatic and thyroid cancers. Cancer stem cells (CSCs) of endocrine tumors have received more attention due to their role in cancer progression, therapeutic resistance, and cancer relapse. Phytochemicals provide several health benefits and are effective in the treatment of various diseases including cancer. Therefore, finding the natural phytochemicals that target the CSCs will help to improve cancer patients' prognosis and life expectancy. Phytochemicals have been shown to have anticancer properties and are very effective in treating various cancer types. Curcumin is a common polyphenol found in turmeric, which has been shown to promote cellular drug accumulation and increase the effectiveness of chemotherapy. Moreover, various other phytochemicals such as resveratrol, genistein, and apigenin are effective against different endocrine cancers by regulating the CSCs. Thus, phytochemicals have emerged as chemotherapeutics that may have significance in preventing and treating the endocrine cancers.
Collapse
Affiliation(s)
- Ravi Gor
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113, Tamil Nadu, India
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| |
Collapse
|
11
|
Schöning JV, Flitsch J, Lüdecke DK, Fahlbusch R, Buchfelder M, Buslei R, Knappe UJ, Bergmann M, Schulz-Schaeffer WJ, Herms J, Glatzel M, Saeger W. Multiple tumorous lesions of the pituitary gland. Hormones (Athens) 2022; 21:653-663. [PMID: 35947342 PMCID: PMC9712358 DOI: 10.1007/s42000-022-00392-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/19/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE/OBJECTIVE Multiple tumorous lesions in one pituitary gland are rare and mostly described in case reports. Their incidences and combinations are defined in larger collectives. Therefore, we analyzed our large collection for double tumors and combinations of tumors, cysts, and inflammation. METHODS The German Registry of Pituitary Tumors, including cases from 1990 to 2018, served as the database. Our collection comprises a total of 16,283 cases up until the end of 2018. Of these cases, 12,673 originated from surgical and 3,610 from autopsy material. All specimens were fixed in formalin and embedded in paraffin. The sections were stained with hematoxylin-eosin and PAS. Monoclonal (prolactin, TSH, FSH, LH, and α subunit) or polyclonal (GH and ACTH) antibodies were used to detect pituitary hormones in the lesions. Since 2017, antibodies against the transcription factors Pit-1, T-Pit, and SF-1 have been used in difficult cases. The criteria of the 2017 WHO classification have been basic principles for classification since 2018 (Osamura et al. 2017). For differentiation of other sellar tumors, such as meningiomas, chordomas, or metastases, the use of additional antibodies was necessary. For these cases, it was possible to use a broad antibody spectrum. Autopsy pituitaries were generally studied by H&E and PAS sections. If any lesions were demonstrated in these specimens, additional immunostaining was performed. RESULTS Multiple tumorous lesions with more than one pituitary neuroendocrine tumor (PitNET) respectively adenoma make up 1.4% (232 cases) in our collection. Within the selected cases, synchronous multiple pituitary neuroendocrine tumors (PitNETs) account for 17.3%, PANCH cases (pituitary adenoma with neuronal choristoma) for 14.7%, PitNETs and posterior lobe tumors for 2.2%, PitNETs and metastases for 5.2%, PitNETs and mesenchymal tumors for 2.6%, PitNETs and cysts for 52.2%, and PitNETs and primary inflammation for 6.0%. The mean patient age was 53.8 years, with a standard deviation of 18.5 years. A total of 55.3% of the patients were female and 44.7% were male. From 1990 to 2018, there was a continuous increase in the number of multiple tumorous lesions. CONCLUSION From our studies, we conclude that considering possible tumorous double lesions during surgeries and in preoperative X-ray analyses is recommended.
Collapse
Affiliation(s)
- Jannik von Schöning
- Institute of Neuropathology, University of Hamburg, UKE, Martinistraße 52, 20246 Hamburg, Germany
| | - Jörg Flitsch
- Clinic of Neurosurgery, University of Hamburg, UKE, 20246 Hamburg, Germany
| | - Dieter K. Lüdecke
- Clinic of Neurosurgery, University of Hamburg, UKE, 20246 Hamburg, Germany
| | - Rudolf Fahlbusch
- International Neuroscience Institute (INI), Rudolf-Pichelmayr-Str. 4, 30625 Hannover, Germany
| | - Michael Buchfelder
- Clinic of Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Rolf Buslei
- Institute of Pathology, SozialStiftung Bamberg, 96049 Bamberg, Germany
| | - Ulrich J. Knappe
- Department of Neurosurgery, Johannes-Wesling-Klinikum Minden, 32429 Minden, Germany
| | - Markus Bergmann
- Institute of Neuropathology, Klinikum Bremen-Mitte, 28205 Bremen, Germany
| | | | - Jochen Herms
- Zentrum für Neuropathologie und Prionforschung, LMU-University of Munich, 81377 Munich, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University of Hamburg, UKE, Martinistraße 52, 20246 Hamburg, Germany
| | - Wolfgang Saeger
- Institute of Neuropathology, University of Hamburg, UKE, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
12
|
Liu B, Fang X, Kwong DLW, Zhang Y, Verhoeft K, Gong L, Zhang B, Chen J, Yu Q, Luo J, Tang Y, Huang T, Ling F, Fu L, Yan Q, Guan XY. Targeting TROY-mediated P85a/AKT/TBX3 signaling attenuates tumor stemness and elevates treatment response in hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:182. [PMID: 35610614 PMCID: PMC9131684 DOI: 10.1186/s13046-022-02401-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 12/11/2022] Open
Abstract
Background Previous in vitro hepatocyte differentiation model showed that TROY was specifically expressed in liver progenitor cells and a small proportion of hepatocellular carcinoma cells, suggesting that TROY may participate in hepatocellular carcinoma (HCC) stemness regulation. Here, we aim to investigate the role and mechanism of TROY in HCC pathogenesis. Method Bioinformatics analysis of the TCGA dataset has been used to identify the function and mechanism of TROY. Spheroid, apoptosis, and ALDH assay were performed to evaluate the stemness functions. Validation of the downstream pathway was based on Western blot, co-immunoprecipitation, and double immunofluorescence. Results HCC tissue microarray study found that a high frequency of TROY-positive cells was detected in 53/130 (40.8%) of HCC cases, which was significantly associated with poor prognosis and tumor metastasis. Functional studies revealed that TROY could promote self-renewal, drug resistance, tumorigenicity, and metastasis of HCC cells. Mechanism study found that TROY could interact with PI3K subunit p85α, inducing its polyubiquitylation and degradation. The degradation of p85α subsequently activate PI3K/AKT/TBX3 signaling and upregulated pluripotent genes expression including SOX2, NANOG, and OCT4, and promoted EMT in HCC cells. Interestingly, immune cell infiltration analysis found that upregulation of TROY in HCC tissues was induced by TGF-β1 secreted from CAFs. PI3K inhibitor wortmannin could effectively impair tumor stemness to sorafenib. Conclusion We demonstrated that TROY is an HCC CSC marker and plays an important role in HCC stemness regulation. Targeting TROY-positive CSCs with PI3K inhibitor wortmannin combined with chemo- or targeted drugs might be a novel therapeutic strategy for HCC patients. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02401-6.
Collapse
|
13
|
Глазова ОВ, Воронцова МВ, Шевкова ЛВ, Сакр Н, Онянов НА, Казиахмедова СА, Волчков ПЮ. [Gene and cell therapy of adrenal pathology: achievements and prospects]. PROBLEMY ENDOKRINOLOGII 2021; 67:80-89. [PMID: 35018764 PMCID: PMC9753849 DOI: 10.14341/probl12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Our current understanding of the molecular and cellular mechanisms in tissues and organs during normal and pathological conditions opens up substantial prospects for the development of novel approaches to treatment of various diseases. For instance, lifelong replacement therapy is no longer mandatory for the management of some monogenic hereditary diseases. Genome editing techniques that have emerged in the last decade are being actively investigated as tools for correcting mutations in affected organs. Furthermore, new protocols for obtaining various types of human and animal cells and cellular systems are evolving, increasingly reflecting the real structures in vivo. These methods, together with the accompanying gene and cell therapy, are being actively developed and several approaches are already undergoing clinical trials. Adrenal insufficiency caused by a variety of factors can potentially be the target of such therapeutic strategies. The adrenal gland is a highly organized organ, with multiple structural components interacting with each other via a complex network of endocrine and paracrine signals. This review summarizes the findings of studies in the field of structural organization and functioning of the adrenal gland at the molecular level, as well as the modern approaches to the treatment of adrenal pathologies.
Collapse
Affiliation(s)
- О. В. Глазова
- Национальный медицинский исследовательский центр эндокринологии;
Московский физико-технический институт (национальный исследовательский университет)
| | - М. В. Воронцова
- Национальный медицинский исследовательский центр эндокринологии;
Московский физико-технический институт (национальный исследовательский университет)
| | - Л. В. Шевкова
- Национальный медицинский исследовательский центр эндокринологии;
Московский физико-технический институт (национальный исследовательский университет)
| | - Н. Сакр
- Московский физико-технический институт (национальный исследовательский университет)
| | - Н. А. Онянов
- Московский физико-технический институт (национальный исследовательский университет), Долгопрудный, Россия
| | - С. А. Казиахмедова
- Московский физико-технический институт (национальный исследовательский университет)
| | - П. Ю. Волчков
- Национальный медицинский исследовательский центр эндокринологии;
Московский физико-технический институт (национальный исследовательский университет)
| |
Collapse
|
14
|
Deligiorgi MV, Sagredou S, Vakkas L, Trafalis DT. The Continuum of Thyroid Disorders Related to Immune Checkpoint Inhibitors: Still Many Pending Queries. Cancers (Basel) 2021; 13:5277. [PMID: 34771441 PMCID: PMC8582503 DOI: 10.3390/cancers13215277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Until more data are available to shed light on the thyroid disorders related to immune checkpoint inhibitors (ICPi) implemented for the treatment of hematological malignancies, the decision-making is guided by pertinent data derived mostly from solid tumors. METHODS The present review provides a comprehensive and updated overview of the thyroid disorders related to ICPi, namely to inhibitors of cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed cell death (PD) 1 (PD-1), and the ligand of the latter (PD-L1). RESULTS With the increasing recognition of ir thyroid disorders, many outstanding issues have emerged. Ir thyroid disorders are reminiscent of, but not identical to, thyroid autoimmunity. Interclass and intraclass ICPi differences regarding thyroid immunotoxicity await interpretation. The available data concerning the predictive value of thyroid autoantibodies for the development of ir thyroid disorders are inconclusive. Mounting data indicate an association of ir thyroid disorders with ICPi efficacy, but a causative link is still lacking. The path forward is a tailored approach, entailing: (i) the validation of tumor-specific, patient-specific, and ICPi-specific predictive factors; (ii) appropriate patient selection; (iii) the uncoupling of antitumor immunity from immunotoxicity; (iv) a multidisciplinary initiative; and (v) global registry strategies. CONCLUSIONS Untangling and harnessing the interrelationship of immuno-oncology with endocrinology underlying the ir thyroid disorders will yield the optimal patient care.
Collapse
Affiliation(s)
- Maria V. Deligiorgi
- Department of Pharmacology—Clinical Pharmacology Unit, Faculty of Medicine, National and Kapodistrian University of Athens, Building 16, 1st Floor, 75 Mikras Asias Str., Goudi, 11527 Athens, Greece; (S.S.); (L.V.); (D.T.T.)
| | | | | | | |
Collapse
|
15
|
Yaglova NV, Obernikhin SS, Tsomartova DA, Nazimova SV, Yaglov VV, Tsomartova ES, Chereshneva EV, Ivanova MY, Lomanovskaya TA. Impaired Morphogenesis and Function of Rat Adrenal Zona Glomerulosa by Developmental Low-Dose Exposure to DDT Is Associated with Altered Oct4 Expression. Int J Mol Sci 2021; 22:6324. [PMID: 34204839 PMCID: PMC8231536 DOI: 10.3390/ijms22126324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Dichlorodiphenyltrichloroethane (DDT) is a persistent organic pollutant and one of the most widespread endocrine disrupting chemicals. The impact of low-dose exposure to DDT on the morphogenesis of the adrenal gland is still poorly understood. The development and function of zona glomerulosa in rats has been found to be associated with changes in the expression of the transcription factor Oct4 (Octamer 4), which is the most important player in cell pluripotency. The aim of the study was to investigate the morphogenesis and function of rat adrenal zona glomerulosa in rats exposed to low doses of DDT during prenatal and postnatal development and to determine the possible role of Oct4 in DDT-mediated structural and functional changes. The DDT-exposed rats demonstrated slower development and lower functional activity of the zona glomerulosa during the pubertal period associated with higher expression of Oct4. Further, accelerated growth and restoration of hormone production was associated with, firstly, a decrease in Oct4 expressing cells and secondly, the loss of the inverse relationship between basal aldosterone levels and the number of Oct4 expressing cells. Thus, the transcriptional factor Oct4 exhibited an altered pattern of expression in the DDT-exposed rats during postnatal development. The results of the study uncover a novel putative mechanism by which low doses of DDT disrupt the development of adrenal zona glomerulosa.
Collapse
Affiliation(s)
- Nataliya V. Yaglova
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (S.S.O.); (D.A.T.); (S.V.N.); (V.V.Y.); (E.S.T.)
| | - Sergey S. Obernikhin
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (S.S.O.); (D.A.T.); (S.V.N.); (V.V.Y.); (E.S.T.)
| | - Dibakhan A. Tsomartova
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (S.S.O.); (D.A.T.); (S.V.N.); (V.V.Y.); (E.S.T.)
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Svetlana V. Nazimova
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (S.S.O.); (D.A.T.); (S.V.N.); (V.V.Y.); (E.S.T.)
| | - Valentin V. Yaglov
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (S.S.O.); (D.A.T.); (S.V.N.); (V.V.Y.); (E.S.T.)
| | - Elina S. Tsomartova
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (S.S.O.); (D.A.T.); (S.V.N.); (V.V.Y.); (E.S.T.)
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Elizaveta V. Chereshneva
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Marina Y. Ivanova
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Tatiana A. Lomanovskaya
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| |
Collapse
|
16
|
Mariniello K, Guasti L. Towards novel treatments for adrenal diseases: Cell- and gene therapy-based approaches. Mol Cell Endocrinol 2021; 524:111160. [PMID: 33453297 DOI: 10.1016/j.mce.2021.111160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022]
Abstract
Adrenal insufficiency, the inability to produce adequate levels of corticosteroids, is a multi-causal disease that requires lifelong daily hormone replacement. Nevertheless, this cannot replace the physiological demand for steroids which are secreted following a circadian rhythm and vary in periods of stress; the consequences of under- or over-replacement include adrenal crisis and metabolic disturbances, respectively. Although clinical research has focused on enhancing the effectiveness/reducing side effects of current treatment modalities, only small improvements are deemed possible; thus, alternative solutions are urgently needed. Gene and cell therapy strategies have opened new possibilities for the cure of many diseases in a way that has never been possible before and could offer a viable option for the cure of adrenal diseases. The current state of cell- and gene-based approaches to restore adrenocortical function is discussed in this review.
Collapse
Affiliation(s)
- Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
17
|
Abstract
In a number of adult tissues, Nestin-positive stem cells/progenitors have been identified and shown to be involved in maintenance and remodeling. Various studies have shown that under stressful conditions, quiescent Nestin-positive progenitor cells are activated. Thereby, they migrate to their target location and differentiate into mature cells. In the current paper, we discuss if Nestin-positive progenitors in the hippocampus and adrenal gland belong to unique cell populations that are responsive to stress. Furthermore, we speculate about the mechanism behind their activation and the clinical importance of this stress-response.
Collapse
Affiliation(s)
- Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences Division, King's College London, London, UK
| | - Ilona Berger
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
18
|
Agrawal H, Das N, Nathani S, Saha S, Saini S, Kakar SS, Roy P. An Assessment on Impact of COVID-19 Infection in a Gender Specific Manner. Stem Cell Rev Rep 2020; 17:94-112. [PMID: 33029768 PMCID: PMC7541100 DOI: 10.1007/s12015-020-10048-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by novel coronavirus Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first time reported in December 2019 in Wuhan, China and thereafter quickly spread across the globe. Till September 19, 2020, COVID-19 has spread to 216 countries and territories. Severe infection of SARS-CoV-2 cause extreme increase in inflammatory chemokines and cytokines that may lead to multi-organ damage and respiratory failure. Currently, no specific treatment and authorized vaccines are available for its treatment. Renin angiotensin system holds a promising role in human physiological system specifically in regulation of blood pressure and electrolyte and fluid balance. SARS-CoV-2 interacts with Renin angiotensin system by utilizing angiotensin-converting enzyme 2 (ACE2) as a receptor for its cellular entry. This interaction hampers the protective action of ACE2 in the cells and causes injuries to organs due to persistent angiotensin II (Ang-II) level. Patients with certain comorbidities like hypertension, diabetes, and cardiovascular disease are under the high risk of COVID-19 infection and mortality. Moreover, evidence obtained from several reports also suggests higher susceptibility of male patients for COVID-19 mortality and other acute viral infections compared to females. Analysis of severe acute respiratory syndrome coronavirus (SARS) and Middle East respiratory syndrome coronavirus (MERS) epidemiological data also indicate a gender-based preference in disease consequences. The current review addresses the possible mechanisms responsible for higher COVID-19 mortality among male patients. The major underlying aspects that was looked into includes smoking, genetic factors, and the impact of reproductive hormones on immune systems and inflammatory responses. Detailed investigations of this gender disparity could provide insight into the development of patient tailored therapeutic approach which would be helpful in improving the poor outcomes of COVID-19. Graphical abstract.
Collapse
Affiliation(s)
- Himanshu Agrawal
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Neeladrisingha Das
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Sandip Nathani
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, India
| | - Surendra Saini
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Sham S Kakar
- Department of Physiology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40292, USA
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
19
|
Steenblock C, Todorov V, Kanczkowski W, Eisenhofer G, Schedl A, Wong ML, Licinio J, Bauer M, Young AH, Gainetdinov RR, Bornstein SR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the neuroendocrine stress axis. Mol Psychiatry 2020; 25:1611-1617. [PMID: 32382135 PMCID: PMC7204611 DOI: 10.1038/s41380-020-0758-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Vladimir Todorov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Waldemar Kanczkowski
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Graeme Eisenhofer
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Clinical Chemistry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Ma-Li Wong
- State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Julio Licinio
- State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg State University Hospital, St. Petersburg State University, St. Petersburg, Russia
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences Division, King's College London, London, UK
| |
Collapse
|
20
|
Würth R, Thellung S, Corsaro A, Barbieri F, Florio T. Experimental Evidence and Clinical Implications of Pituitary Adenoma Stem Cells. Front Endocrinol (Lausanne) 2020; 11:54. [PMID: 32153500 PMCID: PMC7044184 DOI: 10.3389/fendo.2020.00054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Pituitary adenomas, accounting for 15% of diagnosed intracranial neoplasms, are usually benign and pharmacologically and surgically treatable; however, the critical location, mass effects and hormone hypersecretion sustain their significant morbidity. Approximately 35% of pituitary tumors show a less benign course since they are highly proliferative and invasive, poorly resectable, and likely recurring. The latest WHO classification of pituitary tumors includes pituitary transcription factor assessment to determine adenohypophysis cell lineages and accurate designation of adenomas, nevertheless little is known about molecular and cellular pathways which contribute to pituitary tumorigenesis. In malignant tumors the identification of cancer stem cells radically changed the concepts of both tumorigenesis and pharmacological approaches. Cancer stem cells are defined as a subset of undifferentiated transformed cells from which the bulk of cancer cells populating a tumor mass is generated. These cells are able to self-renew, promoting tumor progression and recurrence of malignant tumors, also conferring cytotoxic drug resistance. On the other hand, the existence of stem cells within benign tumors is still debated. The presence of adult stem cells in human and murine pituitaries where they sustain the high plasticity of hormone-producing cells, allowed the hypothesis that putative tumor stem cells might exist in pituitary adenomas, reinforcing the concept that the cancer stem cell model could also be applied to pituitary tumorigenesis. In the last few years, the isolation and phenotypic characterization of putative pituitary adenoma stem-like cells was performed using a wide and heterogeneous variety of experimental models and techniques, although the role of these cells in adenoma initiation and progression is still not completely definite. The assessment of possible pituitary adenoma-initiating cell population would be of extreme relevance to better understand pituitary tumor biology and to identify novel potential diagnostic markers and pharmacological targets. In this review, we summarize the most updated studies focused on the definition of pituitary adenoma stem cell phenotype and functional features, highlighting the biological processes and intracellular pathways potentially involved in driving tumor growth, relapse, and therapy resistance.
Collapse
Affiliation(s)
- Roberto Würth
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Stefano Thellung
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Federica Barbieri
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Tullio Florio
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
21
|
Childs GV, MacNicol AM, MacNicol MC. Molecular Mechanisms of Pituitary Cell Plasticity. Front Endocrinol (Lausanne) 2020; 11:656. [PMID: 33013715 PMCID: PMC7511515 DOI: 10.3389/fendo.2020.00656] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
The mechanisms that mediate plasticity in pituitary function have long been a subject of vigorous investigation. Early studies overcame technical barriers and challenged conceptual barriers to identify multipotential and multihormonal cell populations that contribute to diverse pituitary stress responses. Decades of intensive study have challenged the standard model of dedicated, cell type-specific hormone production and have revealed the malleable cellular fates that mediate pituitary responses. Ongoing studies at all levels, from animal physiology to molecular analyses, are identifying the mechanisms underlying this cellular plasticity. This review describes the findings from these studies that utilized state-of-the-art tools and techniques to identify mechanisms of plasticity throughout the pituitary and focuses on the insights brought to our understanding of pituitary function.
Collapse
Affiliation(s)
- Gwen V Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|