1
|
Zheng Z, Zhou C, Yi F, Li J. OTUD6B-AS1: a multifaceted regulator of cancer with critical clinical implications. Am J Cancer Res 2025; 15:1-18. [PMID: 39949926 PMCID: PMC11815388 DOI: 10.62347/ehqk5961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
OTU Deubiquitinase 6B-Antisense Transcript 1 (OTUD6B-AS1), a novel long non-coding RNA (lncRNA), has recently emerged as a critical regulator in various tumors. Current research underscores its dual functionality, acting either as an oncogene or a tumor suppressor depending on the tumor context. In this work, we compile and discuss findings from a range of studies investigating the expression patterns of OTUD6B-AS1 in different cancers and its consequent effects on tumor behavior, both in vitro and in vivo. We delve into the mechanisms through which OTUD6B-AS1 influences cancer initiation and progression, focusing on its role in regulating essential cellular processes such as cell growth, migration, invasion, angiogenesis, ferroptosis, and treatment resistance. Operating through complex interactions with microRNAs (miRNAs), proteins, and pivotal signaling pathways - most notably Wnt/β-catenin - OTUD6B-AS1 exhibits variable roles across cancer types and cellular environments. Additionally, we assess the clinical relevance of OTUD6B-AS1 expression levels, evaluating its potential as a biomarker for cancer prognosis and diagnosis, as well as a target for therapeutic intervention. By consolidating existing knowledge, this work aims to highlight the clinical implications of OTUD6B-AS1 and encourage further research in oncology, ultimately contributing to the advancement of targeted cancer therapies.
Collapse
Affiliation(s)
- Zihan Zheng
- Department of Gastrointestinal Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchang 330006, Jiangxi, China
| | - Chenchen Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330008, Jiangxi, China
| | - Fengyun Yi
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang UniversityNanchang 330008, Jiangxi, China
| | - Jian Li
- Department of Gastrointestinal Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchang 330006, Jiangxi, China
| |
Collapse
|
2
|
Wang C, Wu S, Hu Y, Wang J, Ru K, Zhao M. A novel arginine methylation-associated lncRNA signature effectively predicts prognosis in breast cancer patients. Front Oncol 2024; 14:1472434. [PMID: 39411134 PMCID: PMC11473254 DOI: 10.3389/fonc.2024.1472434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Breast cancer (BC) is a disease highly associated with epigenetic modification, and arginine methylation is particularly important in its genetic regulation. However, the role of arginine methylation related lncRNAs in breast cancer has not been studied. First, we identified the related lncRNAs (from TCGA database) according to the differentially expressed genes related to arginine methylation in breast cancer. Then the lncRNAs related to protein arginine methylation were obtained by regression analysis, and the risk score model was constructed. Finally, the cell experiment and subcutaneous tumor model verified that the arginine methylation related lncRNA z68871.1 in the model had a significant effect on the proliferation and invasion of breast cancer cells. In conclusion, we successfully constructed an arginine methylation related lncRNA model, which has strong predictive ability. At the same time, this study provides an experimental basis for exploring the mechanism of arginine methylation in BC and helps to find new biomarkers of BC.
Collapse
Affiliation(s)
- Changli Wang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuaishuai Wu
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yanran Hu
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jingjing Wang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kun Ru
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
3
|
Giordo R, Ahmadi FAM, Husaini NA, Al-Nuaimi NRA, Ahmad SM, Pintus G, Zayed H. microRNA 21 and long non-coding RNAs interplays underlie cancer pathophysiology: A narrative review. Noncoding RNA Res 2024; 9:831-852. [PMID: 38586315 PMCID: PMC10995982 DOI: 10.1016/j.ncrna.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a diverse group of functional RNA molecules that lack the ability to code for proteins. Despite missing this traditional role, ncRNAs have emerged as crucial regulators of various biological processes and have been implicated in the development and progression of many diseases, including cancer. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two prominent classes of ncRNAs that have emerged as key players in cancer pathophysiology. In particular, miR-21 has been reported to exhibit oncogenic roles in various forms of human cancer, including prostate, breast, lung, and colorectal cancer. In this context, miR-21 overexpression is closely associated with tumor proliferation, growth, invasion, angiogenesis, and chemoresistance, whereas miR-21 inactivation is linked to the regression of most tumor-related processes. Accordingly, miR-21 is a crucial modulator of various canonical oncogenic pathways such as PTEN/PI3K/Akt, Wnt/β-catenin, STAT, p53, MMP2, and MMP9. Moreover, interplays between lncRNA and miRNA further complicate the regulatory mechanisms underlying tumor development and progression. In this regard, several lncRNAs have been found to interact with miR-21 and, by functioning as competitive endogenous RNAs (ceRNAs) or miRNA sponges, can modulate cancer tumorigenesis. This work presents and discusses recent findings highlighting the roles and pathophysiological implications of the miR-21-lncRNA regulatory axis in cancer occurrence, development, and progression. The data collected indicate that specific lncRNAs, such as MEG3, CASC2, and GAS5, are strongly associated with miR-21 in various types of cancer, including gastric, cervical, lung, and glioma. Indeed, these lncRNAs are well-known tumor suppressors and are commonly downregulated in different types of tumors. Conversely, by modulating various mechanisms and oncogenic signaling pathways, their overexpression has been linked with preventing tumor formation and development. This review highlights the significance of these regulatory pathways in cancer and their potential for use in cancer therapy as diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
| | - Fatemeh Abdullah M. Ahmadi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nedal Al Husaini
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Noora Rashid A.M. Al-Nuaimi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Salma M.S. Ahmad
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
4
|
Liu Y, Tang B, Wang H, Lu M. Otud6b induces pulmonary arterial hypertension by mediating the Calpain-1/HIF-1α signaling pathway. Cell Mol Life Sci 2024; 81:258. [PMID: 38878112 PMCID: PMC11335297 DOI: 10.1007/s00018-024-05291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024]
Abstract
Pulmonary hypertension (PAH) is a cardiopulmonary disease in which pulmonary artery pressure continues to rise, leading to right heart failure and death. Otud6b is a member of the ubiquitin family and is involved in cell proliferation, apoptosis and inflammation. The aim of this study was to understand the role and mechanism of Otud6b in PAH. C57BL/6 and Calpain-1 knockout (KO) mice were exposed to a PAH model induced by 10% oxygen. Human pulmonary artery endothelial cells (HPACEs) and human pulmonary artery smooth muscle cells (HPASMCs) were exposed to 3% oxygen to establish an in vitro model. Proteomics was used to determine the role of Otud6b and its relationship to Calpain-1/HIF-1α signaling. The increased expression of Otud6b is associated with the progression of PAH. ROtud6b activates Otud6b, induces HIF-1α activation, increases the production of ET-1 and VEGF, and further aggravates endothelial injury. Reducing Otud6b expression by tracheal infusion of siOtud6b has the opposite effect, improving hemodynamic and cardiac response to PAH, reducing the release of Calpain-1 and HIF-1α, and eliminating the pro-inflammatory and apoptotic effects of Otud6b. At the same time, we also found that blocking Calpain-1 reduced the effect of Otud6b on HIF-1α, and inhibiting HIF-1α reduced the expression of Calpain-1 and Otud6b. Our study shows that increased Otud6b expression during hypoxia promotes the development of PAH models through a positive feedback loop between HIF-1α and Calpain-1. Therefore, we use Otud6b as a biomarker of PAH severity, and regulating Otud6b expression may be an effective target for the treatment of PAH.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Calpain/metabolism
- Calpain/genetics
- Disease Models, Animal
- Endopeptidases/metabolism
- Endopeptidases/genetics
- Endothelial Cells/metabolism
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Signal Transduction
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
- School of Pharmacy, Harbin Medical University, Harbin, China
| | - Bailin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
- Tongji Medical College of Basic Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
5
|
Li F, Yang Y, Zhang X, Yu J, Yu Y. A novel prognostic model of breast cancer based on cuproptosis-related lncRNAs. Discov Oncol 2024; 15:35. [PMID: 38353835 PMCID: PMC10866837 DOI: 10.1007/s12672-024-00888-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/08/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE Breast cancer (BC) is a deadly form of malignancy responsible for the death of a large number of women every year. Cuproptosis is a newly discovered form of cell death that may have implications for the prognosis of BC. Long non-coding RNAs (lncRNAs) have been shown to be involved in the progression and development of BC. Here within, a novel model capable of predicting the prognosis of patients with BC was established based on cuproptosis-related lncRNAs. METHODS Data of breast cancer patients was downloaded, including clinical information from The Cancer Genome Atlas (TCGA) database and lncRNAs related to cuproptosis were isolated. In total, nine lncRNAs related to copper death were obtained by Cox regression model based on Least Absolute Shrinkage and Selector Operation (LASSO) algorithm for model construction. The model was verified by overall survival (OS), progression-free survival (PFS) and receiver operating characteristic (ROC) curve. The differences in immune function, tumor mutation burden (TMB) and tumor immune dysfunction and exclusion (TIDE) between patients with different risk scores were analyzed. RESULTS Based on cuproptosis-related lncRNAs, a prognostic model for predicting BC was constructed. Each patient was assigned a risk score based on our model formula. We found that patients with higher risk scores had significantly lower OS and PFS, increased TMB, and higher sensitivity to immunotherapy. CONCLUSIONS The model established in this study based on cuproptosis-related lncRNAs may be capable of improving the OS of patients with BC.
Collapse
Affiliation(s)
- Feixiang Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, NO.154, Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Yongyan Yang
- Department of Anesthesiology, Tianjin Medical University General Hospital, NO.154, Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Xuan Zhang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jiafeng Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, NO.154, Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, NO.154, Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin Research Institute of Anesthesiology, Tianjin, China.
| |
Collapse
|
6
|
Zhang Z, Ye B, Lin Y, Liu W, Deng J, Ji W. LncRNA OTUD6B-AS1 overexpression promoted GPX4-mediated ferroptosis to suppress radioresistance in colorectal cancer. Clin Transl Oncol 2023; 25:3217-3229. [PMID: 37184781 DOI: 10.1007/s12094-023-03193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Radiotherapy is widely employed in colorectal cancer (CRC) treatment but is often compromised by developed radioresistance. This study explored the mechanism of long non-coding RNA ovarian tumor domain containing 6B-antisense RNA1 (lncRNA OTUD6B-AS1) in CRC radioresistance through tripartite motif 16 (TRIM16). METHODS CRC and non-cancerous tissues were collected and radioresistant CRC cells were established, with real-time quantitative polymerase chain reaction to determine gene expression in tissues and cells. Radioresistance was evaluated by cell counting kit-8 assay and immunofluorescence (γ-H2AX) and ferroptosis was tested by Western blot assay (ACSL4/GPX4) and assay kits (Fe2+/ROS/MDA/GSH). The association between ferroptosis and lncRNA OTUD6B-AS1-inhibited radioresistance was testified using ferroptosis inhibitor. The subcellular localization of lncRNA OTUD6B-AS1 was tested by the nuclear/cytoplasmic fractionation assay, with RNA immunoprecipitation assay to validate gene interactions. Rescue experiments were conducted to analyze the role of TRIM16 in CRC radioresistance. RESULTS LncRNA OTUD6B-AS1 and TRIM16 were poorly expressed (P < 0.01) in CRC tissues and cells and further decreased (P < 0.01) in radioresistant CRC cells. OTUD6B-AS1 overexpression decreased cell survival (P < 0.01), increased γ-H2AX levels (P < 0.01), and elevated ferroptosis and oxidative stress (P < 0.01) after X-ray radiation. Ferroptosis inhibitor attenuated radioresistance (P < 0.01) caused by lncRNA OTUD6B-AS1 overexpression. LncRNA OTUD6B-AS1 stabilized TRIM16 mRNA via binding to HuR. TRIM16 knockdown reduced ferroptosis and increased radioresistance (P < 0.05). CONCLUSION OTUD6B-AS1 overexpression stabilized TRIM16 via binding to HuR and increased GPX4-mediated ferroptosis, thus attenuating CRC radioresistance. Our study provided a new rationale for the treatment of CRC.
Collapse
Affiliation(s)
- Zilang Zhang
- Department of General Surgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
- Department of Anorectal Surgery, The First People's Hospital of Foshan, 81 Lingnan Avenue North, Foshan, 528000, Guangdong, China
| | - Baolong Ye
- Department of General Surgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Yiban Lin
- Department of Anorectal Surgery, The First People's Hospital of Foshan, 81 Lingnan Avenue North, Foshan, 528000, Guangdong, China
| | - Wenjun Liu
- Department of General Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jianzhong Deng
- Department of Anorectal Surgery, The First People's Hospital of Foshan, 81 Lingnan Avenue North, Foshan, 528000, Guangdong, China.
| | - Wu Ji
- Department of General Surgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
7
|
lncRNA LINC00960 promotes apoptosis by sponging ubiquitin ligase Nrdp1-targeting miR-183-5p. Acta Biochim Biophys Sin (Shanghai) 2023; 55:91-102. [PMID: 36722261 PMCID: PMC10157604 DOI: 10.3724/abbs.2023005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
<p indent="0mm">The ubiquitin ligase Nrdp1/RNF41 promotes the ubiquitin-dependent degradation of multiple important substrates, including BRUCE/BIRC6, a giant ubiquitin-conjugating enzyme inhibiting both apoptosis and autophagy. miR-183-5p is associated with various malignancies potentially by targeting dozens of genes. Here, we show that the lncRNA LINC00960 binds to the Nrdp1-targeting miR-183-5p and promotes apoptosis. Compared to other known miR-183-5p targets, Nrdp1 mRNA is among the few with top scores to complement miR-183-5p. miR-183-5p binds to the <sc>3'UTR</sc> of Nrdp1 mRNA and downregulates Nrdp1 at both the mRNA and protein levels. The miR-183-5p mimics inhibit DNA damage-induced apoptosis probably by upregulating BRUCE level, whereas the miR-183-5p inhibitor suppresses the effects of miR-183-5p. LINC00960 is the noncoding RNA with the highest score to complement miR-183-5p. LINC00960 overexpression reduces, but its knockdown increases, the level of miR-183-5p, whereas LINC00960 overexpression increases, but its knockdown decreases, the level of Nrdp1 and apoptosis. Importantly, the expression of LINC00960, which is associated with multiple types of tumors, positively correlates with that of Nrdp1 in several tumors but inversely correlates with that of miR-183-5p in multiple human tumor cell lines, as analysed by quantitative PCR. Thus, miR-183-5p downregulates Nrdp1 expression and inhibits apoptosis, whereas LINC00960 upregulates Nrdp1 and promotes apoptosis by inhibiting miR-183-5p. These results may provide new ideas for the prevention, diagnosis and treatment of apoptosis-related diseases, such as tumors and neurodegenerative diseases. </p>.
Collapse
|
8
|
Lin J, Qiu Y, Zheng X, Dai Y, Xu T. The miR-199a-5p/PD-L1 axis regulates cell proliferation, migration and invasion in follicular thyroid carcinoma. BMC Cancer 2022; 22:756. [PMID: 35818041 PMCID: PMC9275143 DOI: 10.1186/s12885-022-09838-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
Background Follicular thyroid carcinoma (FTC) is the second most common cancer of the thyroid and easily develops into distant metastasis. PD-L1 is known to be associated with the carcinogenesis and progression of thyroid carcinoma. Our study aimed to investigate the biological functions of PD-L1 and to identify miRNAs that were responsible for modulating the activity of PD-L1. Methods A total of 72 patients with FTC at The Second Affiliated Hospital of Fujian Medical University were enrolled in this retrospective study. Immunohistochemical (IHC) assay was used to measure PD-L1 expression in FTC. The association between PD-L1 expression and clinicopathologic characteristics was evaluated. Bioinformatics analysis, RT–qPCR and western blotting were used to examine the relationships between miR-199a-5p, PD-L1 and Claudin-1. Cell proliferation, migration and invasion were evaluated by using CCK8 and Transwell migration and invasion assays. Target prediction and luciferase reporter assays were performed to verify the binding between miR-199a-5p and PD-L1. Rescue assay was performed to confirm whether PD-L1 downregulation abolished the inhibitory effect of miR-199a-5p. Results Among 72 pairs of tumor and normal specimens, the proportion of PD-L1 positive samples was higher in FTC tissues than in normal tissues. The results of ESTIMATE and CIBERSORT illustrated that there was a positive correlation between PD-L1 expression and immune infiltration, especially regulatory T cells and M1 macrophages. Prediction of immunotherapy revealed that patients with high PD-L1 expression might benefit from immune checkpoint inhibitors. Transwell migration and invasion assays showed that PD-L1 downregulation in FTC cells could significantly inhibit cell migration and invasion. The bioinformatics analysis and luciferase activity results indicated that PD-L1 was a potential target of miR-199a-5p. Knockdown of PD-L1 reversed the miR-199a-5p inhibitor mediated promotion effect. In addition, we found that PD-L1 expression was positively correlated with Claudin-1 expression and that miR-199a-5p affected the progression of FTC cells through the negative regulation of PD-L1 and Claudin-1. Conclusions Our study revealed that PD-L1 expression was elevated in FTC and was closely associated with tumor aggressiveness and progression. MiR-199a-5p has a functional role in the progression and metastasis of FTC by regulating PD-L1 and Claudin-1 expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09838-0.
Collapse
Affiliation(s)
- Jianguang Lin
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Yanru Qiu
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Xueqin Zheng
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Yijun Dai
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China.
| | - Tianwen Xu
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
9
|
Luo X, Gao Q, Zhou T, Tang R, Zhao Y, Zhang Q, Wang N, Ye H, Chen X, Chen S, Tang W, Zhao D. FOXP4-AS1 Inhibits Papillary Thyroid Carcinoma Proliferation and Migration Through the AKT Signaling Pathway. Front Oncol 2022; 12:900836. [PMID: 35720005 PMCID: PMC9202991 DOI: 10.3389/fonc.2022.900836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
Papillary thyroid carcinoma, also known as PTC, is one of the commonest malignancies in the endocrine system. Long non-coding RNAs (lncRNAs) in PTC could maintain proliferative signaling, induce therapeutic resistance, activate invasion and migration, and sustain stem cell-like characteristics. In this paper, results showed that lncRNA forkhead box P4 antisense RNA 1 (FOXP4-AS1) is downregulated in PTC tissues and cell lines. Patients in TCGA cohort with a higher FOXP4-AS1 expression showed a higher disease-free interval (DFI) rate, and the expression of FOXP4-AS1 is shown to be linked to the clinical stage, T stage, N stage, and extraglandular invasion condition of the TC patients. FOXP4-AS1 is localized in the cell cytoplasmic domain of PTC cells. Functionally, upregulated FOXP4-AS1 inhibited PTC cell proliferation, apoptosis, and migration, whereas it downregulated FOXP4-AS1-promoted progression of PTC. In vivo assay also confirmed the tumor inhibitory effect of FOXP4-AS1 in PTC growth. Mechanism analysis indicated that FOXP4-AS1 can play its functions by regulating the AKT signaling pathway, and AKT inhibitor treatment could attenuate the impact of FOXP4-AS1 on PTC progression. Furthermore, FOXP4-AS1 also negatively regulates the expression of its host gene FOXP4. Collectively, we showed that FOXP4-AS1 inhibited PTC progression although AKT signaling and FOXP4-AS1 plays a tumor-suppressor role in PTC tumorigenesis.
Collapse
Affiliation(s)
- Xue Luo
- Clinical Medical College, Guizhou Medical University, Guiyang, China.,Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qingjun Gao
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tian Zhou
- Department of Breast Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Rui Tang
- Department of Thyroid and Breast Surgery, Bijie City First People's Hospital, Bijie, China
| | - Yu Zhao
- Department of Thyroid and Breast Surgery, Qian Xi Nan People's Hospital, Xingyi, China
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Minority Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Nanpeng Wang
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hui Ye
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xinghong Chen
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Song Chen
- Department of Thyroid and Breast Surgery, Jinyang Hospital Affiliated to Guizhou Medical University, Guiyang, China
| | - Wenli Tang
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Daiwei Zhao
- Clinical Medical College, Guizhou Medical University, Guiyang, China.,Department of Thyroid Surgery, the Second People's Hospital of Guizhou Province, Guiyang, China
| |
Collapse
|
10
|
Shi GJ, Zhou Q, Zhu Q, Wang L, Jiang GQ. A novel prognostic model associated with the overall survival in patients with breast cancer based on lipid metabolism-related long noncoding RNAs. J Clin Lab Anal 2022; 36:e24384. [PMID: 35441740 PMCID: PMC9169174 DOI: 10.1002/jcla.24384] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/28/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Lipid metabolism is closely related to the occurrence and development of breast cancer. Our purpose was to establish a novel model based on lipid metabolism-related long noncoding RNAs (lncRNAs) and evaluate the potential clinical value in predicting prognosis for patients suffering from breast cancer. METHODS RNA data and clinical information for breast cancer were obtained from the cancer genome atlas (TCGA) database. Lipid metabolism-related lncRNAs were identified via the criteria of correlation coefficient |R2 | > 0.4 and p < 0.001, and prognostic lncRNAs were identified to establish model through Cox regression analysis. The training set and validation set were established to certify the feasibility, and all samples were separated into high-risk group or low-risk group. Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) were conducted to evaluate the potential biological functions, and the immune infiltration levels were explored through Cibersortx database. RESULTS A total of 14 lncRNAs were identified as protective genes (AC022150.4, AC061992.1, AC090948.3, AC092794.1, AC107464.3, AL021707.8, AL451085.2, AL606834.2, FLJ42351, LINC00926, LINC01871, TNFRSF14-AS1, U73166.1 and USP30-AS1) with HRs < 1 while 10 lncRNAs (AC022150.2, AC090948.1, AC243960.1, AL021707.6, ITGB2-AS1, OTUD6B-AS1, SP2-AS1, TOLLIP-AS1, Z68871.1 and ZNF337-AS1) were associated with increased risk with HRs >1. A total of 24 prognostic lncRNAs were selected to construct the model. The patients in low-risk group were associated with better prognosis in both training set (p < 0.001) and validation set (p < 0.001). The univariate and multivariate Cox regression analyses revealed that risk score was an independent prognostic factors in both training set (p < 0.001) and validation set (p < 0.001). GO and GSEA analyses revealed that these lncRNAs were related to metabolism-related signal pathway and immune cells signal pathway. Risk score was negatively correlated with B cells (r = -0.097, p = 0.002), NK cells (r = -0.097, p = 0.002), Plasma cells (r = -0.111, p = 3.329e-04), T-cells CD4 (r = -0.064, p = 0.039) and T-cells CD8 (r = -0.322, p = 2.357e-26) and positively correlated with Dendritic cells (r = 0.077, p = 0.013) and Monocytes (r = 0.228, p = 1.107e-13). CONCLUSION The prognostic model based on lipid metabolism lncRNAs possessed an important value in survival prediction of breast cancer patients.
Collapse
Affiliation(s)
- Guo-Jian Shi
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Thyroid and Breast Surgery, Wuzhong People's Hospital of Suzhou City, Suzhou, China
| | - Qin Zhou
- Department of Thyroid and Breast Surgery, The First People's Hospital of Kunshan, Kunshan, China
| | - Qi Zhu
- Department of Thyroid and Breast Surgery, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Li Wang
- Department of Radiotherapy, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Guo-Qin Jiang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Han C, Mo K, Jiang L, Wang K, Teng L. miR-183-5p promotes proliferation, invasion, and glycolysis of thyroid carcinoma cells by targeting FOXO1. Mol Cell Biochem 2022; 477:1195-1206. [PMID: 35084673 DOI: 10.1007/s11010-022-04357-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
The aim of this study was to research the influences of miR-183-5p on the proliferation, invasion, and glycolysis of thyroid cancer (THCA) cells. Clinical specimens from 84 THCA patients were included. THCA cell lines (K1, SW1736, and TPC1) were cultured. siFOXO1, miR-183-5p mimic, or miR-183-5p inhibitors were transfected into THCA cells by Lipofectamine ™ 2000. qRT-PCR, western blot, and immunohistochemistry assays were used to detect miR-183-5p and FOXO1 expression. CCK-8 assay, colony formation, flow cytometry, Transwell, and wound healing experiment were utilized, respectively, to detect cell proliferation, colony formation, apoptosis, invasion, and migration. Glycolysis was evaluated by detecting glucose uptake, lactate production, ATP level, and glycolysis-related proteins expression. Dual-luciferase reporter assay and RNA pull-down assay were employed to verify the target relationship between miR-183-5p and FOXO1. The effect of miR-183-5p on THCA cells growth in vivo was researched using nude mice. miR-183-5p was highly expressed in THCA tissues and cells, correlating with poor outcome. miR-183-5p up-regulation attenuated apoptosis, and accelerated proliferation, colony formation, migration, invasion, and glycolysis of THCA cells. Opposite results were found by miR-183-5p down-regulation. FOXO1 was a target gene of miR-183-5p, where expression was directly inhibited by miR-183-5p. FOXO1 silencing reversed the inhibitory effect of miR-183-5p inhibitor on THCA cells malignant phenotype. miR-183-5p down-regulation inhibited THCA cells growth in vivo. miR-183-5p accelerates progression and glycolysis of THCA by targeting FOXO1. miR-183-5p was a novel target for THCA treatment.
Collapse
Affiliation(s)
- Chun Han
- Department of Surgical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Department of Thyroid Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
| | - Kangnan Mo
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Department of Head and Neck Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
| | - Lin Jiang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Department of Thyroid Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
| | - Kejing Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Department of Thyroid Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
| | - Lisong Teng
- Department of Surgical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
12
|
Gu P, Zhang L, Wang R, Ding W, Wang W, Liu Y, Wang W, Li Z, Yan B, Sun X. Development and Validation of a Novel Hypoxia-Related Long Noncoding RNA Model With Regard to Prognosis and Immune Features in Breast Cancer. Front Cell Dev Biol 2022; 9:796729. [PMID: 34977036 PMCID: PMC8716768 DOI: 10.3389/fcell.2021.796729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Female breast cancer is currently the most frequently diagnosed cancer in the world. This study aimed to develop and validate a novel hypoxia-related long noncoding RNA (HRL) prognostic model for predicting the overall survival (OS) of patients with breast cancer. Methods: The gene expression profiles were downloaded from The Cancer Genome Atlas (TCGA) database. A total of 200 hypoxia-related mRNAs were obtained from the Molecular Signatures Database. The co-expression analysis between differentially expressed hypoxia-related mRNAs and lncRNAs based on Spearman's rank correlation was performed to screen out 166 HRLs. Based on univariate Cox regression and least absolute shrinkage and selection operator Cox regression analysis in the training set, we filtered out 12 optimal prognostic hypoxia-related lncRNAs (PHRLs) to develop a prognostic model. Kaplan-Meier survival analysis, receiver operating characteristic curves, area under the curve, and univariate and multivariate Cox regression analyses were used to test the predictive ability of the risk model in the training, testing, and total sets. Results: A 12-HRL prognostic model was developed to predict the survival outcome of patients with breast cancer. Patients in the high-risk group had significantly shorter median OS, DFS (disease-free survival), and predicted lower chemosensitivity (paclitaxel, docetaxel) compared with those in the low-risk group. Also, the risk score based on the expression of the 12 HRLs acted as an independent prognostic factor. The immune cell infiltration analysis revealed that the immune scores of patients in the high-risk group were lower than those of the patients in the low-risk group. RT-qPCR assays were conducted to verify the expression of the 12 PHRLs in breast cancer tissues and cell lines. Conclusion: Our study uncovered dozens of potential prognostic biomarkers and therapeutic targets related to the hypoxia signaling pathway in breast cancer.
Collapse
Affiliation(s)
- Peng Gu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhang
- Department of Vascular Surgery, Intervention Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruitao Wang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wentao Ding
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Liu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhao Wang
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zuyin Li
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China
| | - Bin Yan
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Sun
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Luo Z, Nong B, Ma Y, Fang D. Autophagy related long non-coding RNA and breast cancer prognosis analysis and prognostic risk model establishment. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:58. [PMID: 35282059 PMCID: PMC8848359 DOI: 10.21037/atm-21-6251] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 12/19/2022]
Abstract
Background The role of autophagy-related long-stranded non-coding RNA (lncRNA) in breast cancer (BRCA) is unclear. We proposed to screen autophagy-related lncRNAs in BRCA and construct a prognostic risk assessment model to explore prognostic correlates. Methods We extracted BRCA lncRNAs from The Cancer Genome Atlas (TCGA) database and autophagy-related genes from the Human Autophagy Database (HADb), to screen for autophagy-related lncRNA pairs (ARLP) in BRCA. Single-factor Cox regression analysis and multi-factor Cox regression analysis were used to screen lncRNAs associated with BRCA prognosis, and risk models were established. We divided BRCA patients into high-risk and low-risk groups based on median risk scores. The single-sample gene set enrichment analysis (ssGSEA) algorithm was used to calculate the abundance of 28 immune cells in the TCGA-BRCA cohort and to analyze the relationship between the risk score and the level of immune cell infiltration by ARLP characteristics. Results Univariate Cox regression results showed that 42 ARLPs were significantly associated with overall survival (OS) in BRCA patients. Further multifactorial analysis showed that a total of 11 lncRNAs, including SEMA3B-AS1, ST7-AS1, AL136295.7, AC090912.1, LINC01871, AL136531.1, AC024361.1, OTUD6B-AS1, LINC01786, AL122010.1, and MAPT-AS1, were prognostically independent influencers of BRCA. The risk model developed was further validated as a new independent prognostic factor for BRCA patients by Kaplan-Meier (KM) analysis, univariate and multivariate Cox regression analysis to calculate the risk score. In addition, the results of the relationship between risk score and immune infiltration showed that low risk score was associated with T-lymphocyte subpopulation. Conclusions Our study suggested that a risk model consisting of 11 autophagy-related lncRNAs can be used to assess the prognosis of BRCA patients.
Collapse
Affiliation(s)
- Zhizhai Luo
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Binbin Nong
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yanfei Ma
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Dalang Fang
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
14
|
Li PP, Li RG, Huang YQ, Lu JP, Zhang WJ, Wang ZY. LncRNA OTUD6B-AS1 promotes paclitaxel resistance in triple negative breast cancer by regulation of miR-26a-5p/MTDH pathway-mediated autophagy and genomic instability. Aging (Albany NY) 2021; 13:24171-24191. [PMID: 34740994 PMCID: PMC8610138 DOI: 10.18632/aging.203672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022]
Abstract
Genomic instability (GIN) is pivotal in regulating tumor drug resistance, which blocked the treatment of triple negative breast cancer (TNBC). Although recent studies implied that non-coding RNA (ncRNA)-mediated autophagy abolishment promoted tumorigenesis by up-regulation of GIN, autophagy was known as a risk factor in tumor drug resistance. However, previous study also pointed that up-regulation of autophagy promoted GIN. Therefore, the relationship between autophagy and GIN is not clear, and more work is needed. And, if an ncRNA is identified to be a co-regulator of autophagy and GIN, it will be a potential therapy target of chemotherapy resistance in TNBC. In our study, we recognized both autophagy-GIN-associated microRNA (mi-26a-5p) by big data analysis, which was prognosis-correlated in breast cancer. Next, we identified the up-stream regulators (long non-coding RNA, lncRNA) and down-stream targets of miR-26a-5p by bioinformatics analysis (online public databases). Finally, we established lncRNA OTUD6B-AS1/miR-26a-5p/MTDH signaling pathway, and verified their functions by cytological, molecular biological and zoological experiments. In general, our study found (1) miR-26a-5p was a protective factor of breast cancer, while OTUD6B-AS1 and MTDH were risk factors; (2) OTUD6B-AS1 was the up-stream regulator of miR-26a-5p verified by luciferase; (3) up-regulation of miR-26a-5p and down-regulation of MTDH promoted cellular cytotoxicity of paclitaxel (PTX) in vitro and in vivo. (4) down-regulation of miR-26a-5p, overexpression of MTDH and OTUD6B-AS1 promoted autophagy and DNA damage; (5) up-regulation of OTUD6B-AS1 and MTDH inhibited DNA damage response (DDR) by inhibiting the phosphorylated activation of RAD51, ATR and ATM.
Collapse
Affiliation(s)
- Peng-Ping Li
- Department of Breast-Thyroid Surgery, Department of General Surgery, The First Hospital of Xiaoshan District, Hangzhou, Zhejiang Province 311000, China
| | - Rong-Guo Li
- Department of Breast-Thyroid Surgery, Department of General Surgery, The First Hospital of Xiaoshan District, Hangzhou, Zhejiang Province 311000, China
| | - Yu-Qing Huang
- Department of Breast-Thyroid Surgery, Department of General Surgery, The First Hospital of Xiaoshan District, Hangzhou, Zhejiang Province 311000, China
| | - Jin-Pian Lu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310000, China
| | - Wei-Jun Zhang
- Department of Breast-Thyroid Surgery, Department of General Surgery, The First Hospital of Xiaoshan District, Hangzhou, Zhejiang Province 311000, China
| | - Zhen-Yu Wang
- Department of Breast-Thyroid Surgery, Department of General Surgery, The First Hospital of Xiaoshan District, Hangzhou, Zhejiang Province 311000, China
| |
Collapse
|
15
|
Rothzerg E, Ho XD, Xu J, Wood D, Märtson A, Kõks S. Upregulation of 15 Antisense Long Non-Coding RNAs in Osteosarcoma. Genes (Basel) 2021; 12:genes12081132. [PMID: 34440306 PMCID: PMC8394133 DOI: 10.3390/genes12081132] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
The human genome encodes thousands of natural antisense long noncoding RNAs (lncRNAs); they play the essential role in regulation of gene expression at multiple levels, including replication, transcription and translation. Dysregulation of antisense lncRNAs plays indispensable roles in numerous biological progress, such as tumour progression, metastasis and resistance to therapeutic agents. To date, there have been several studies analysing antisense lncRNAs expression profiles in cancer, but not enough to highlight the complexity of the disease. In this study, we investigated the expression patterns of antisense lncRNAs from osteosarcoma and healthy bone samples (24 tumour-16 bone samples) using RNA sequencing. We identified 15 antisense lncRNAs (RUSC1-AS1, TBX2-AS1, PTOV1-AS1, UBE2D3-AS1, ERCC8-AS1, ZMIZ1-AS1, RNF144A-AS1, RDH10-AS1, TRG-AS1, GSN-AS1, HMGA2-AS1, ZNF528-AS1, OTUD6B-AS1, COX10-AS1 and SLC16A1-AS1) that were upregulated in tumour samples compared to bone sample controls. Further, we performed real-time polymerase chain reaction (RT-qPCR) to validate the expressions of the antisense lncRNAs in 8 different osteosarcoma cell lines (SaOS-2, G-292, HOS, U2-OS, 143B, SJSA-1, MG-63, and MNNG/HOS) compared to hFOB (human osteoblast cell line). These differentially expressed IncRNAs can be considered biomarkers and potential therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (E.R.); (J.X.); (D.W.)
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Xuan Dung Ho
- Department of Oncology, College of Medicine and Pharmacy, Hue University, Hue 53000, Vietnam;
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (E.R.); (J.X.); (D.W.)
| | - David Wood
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (E.R.); (J.X.); (D.W.)
| | - Aare Märtson
- Department of Traumatology and Orthopaedics, University of Tartu, Tartu University Hospital, 50411 Tartu, Estonia;
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: ; Tel.: +61-(0)-8-6457-0313
| |
Collapse
|
16
|
Kim SH, Baek KH. Regulation of Cancer Metabolism by Deubiquitinating Enzymes: The Warburg Effect. Int J Mol Sci 2021; 22:ijms22126173. [PMID: 34201062 PMCID: PMC8226939 DOI: 10.3390/ijms22126173] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer is a disorder of cell growth and proliferation, characterized by different metabolic pathways within normal cells. The Warburg effect is a major metabolic process in cancer cells that affects the cellular responses, such as proliferation and apoptosis. Various signaling factors down/upregulate factors of the glycolysis pathway in cancer cells, and these signaling factors are ubiquitinated/deubiquitinated via the ubiquitin-proteasome system (UPS). Depending on the target protein, DUBs act as both an oncoprotein and a tumor suppressor. Since the degradation of tumor suppressors and stabilization of oncoproteins by either negative regulation by E3 ligases or positive regulation of DUBs, respectively, promote tumorigenesis, it is necessary to suppress these DUBs by applying appropriate inhibitors or small molecules. Therefore, we propose that the DUBs and their inhibitors related to the Warburg effect are potential anticancer targets.
Collapse
|
17
|
Cai Y, Li Y, Shi C, Zhang Z, Xu J, Sun B. LncRNA OTUD6B-AS1 inhibits many cellular processes in colorectal cancer by sponging miR-21-5p and regulating PNRC2. Hum Exp Toxicol 2021; 40:1463-1473. [PMID: 33686892 DOI: 10.1177/0960327121997976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Accumulating evidence has revealed that long noncoding RNAs (lncRNAs) play essential roles in regulating cellular process of various cancers. There have been many studies on the biological functions of lncRNAs in colorectal cancer (CRC). In this research, we explored the role and mechanism of lncRNA ovarian tumor domain containing 6B antisense RNA1 (OTUD6B-AS1) in CRC. Here, we detected OTUD6B-AS1 expression in CRC tissues and cells by RT-qPCR. Functional experiments were performed to test alterations in different cellular processes. Moreover, to verify the binding ability among the indicated RNA molecules, we carried out RIP, RNA pull-down and luciferase reporter assays. According to our data, OTUD6B-AS1 expression was low in CRC tissues and cells. Functionally, overexpression of OTUD6B-AS1 inhibited cell proliferation, migration, invasion and EMT, and promoted cell apoptosis. Bioinformatic analysis and mechanistical experiments confirmed that OTUD6B-AS1 could act as a competitive endogenous RNA (ceRNA) to upregulate Proline-Rich Nuclear Receptor Coactivator 2 (PNRC2) expression by sequestering miR-21-5p. Further rescue experiments validated the inhibitory function of the OTUD6B-AS1/miR-21-5p/PNRC2 axis in cellular process of CRC. Overall, OTUD6B-AS1 inhibits cellular development in CRC by sponging miR-21-5p and upregulating PNRC2, providing a novel insight into the exploration on CRC treatment.
Collapse
Affiliation(s)
- Y Cai
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Y Li
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - C Shi
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Z Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - J Xu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - B Sun
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
18
|
Wang W, Cheng X, Zhu J. Long non-coding RNA OTUD6B-AS1 overexpression inhibits the proliferation, invasion and migration of colorectal cancer cells via downregulation of microRNA-3171. Oncol Lett 2021; 21:193. [PMID: 33574932 PMCID: PMC7816294 DOI: 10.3892/ol.2021.12454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a common digestive system malignancy and a major cause of cancer-associated mortality worldwide. Aberrant expression of long non-coding RNAs has been reported in several types of cancer. The aim of the present study was to investigate the role of ovarian tumor domain containing 6B antisense RNA1 (OTUD6B-AS1) in CRC and its underlying mechanisms. OTUD6B-AS1 expression in CRC cell lines was examined using reverse transcription-quantitative PCR. Furthermore, The Cancer Genome Atlas database was utilized to examine the expression levels of OTUD6B-AS1 in CRC tissues. Following OTUD6B-AS1 overexpression, Cell Counting Kit-8 and colony formation assays were used to detect the proliferation ability of HCT116 cells. The expression levels of proliferation-related protein Ki67 were determined using immunofluorescence staining. Subsequently, Transwell and wound healing assays were used to evaluate the invasion and migration of HCT116 cells, respectively. The expression levels of migration-related proteins (MMP2 and MMP9) were measured using western blotting. Additionally, a luciferase reporter assay was used to verify the potential interaction between OTUD6B-AS1 and microRNA-3171 (miR-3171). Subsequently, rescue assays were performed to clarify the regulatory effects of OTUD6B-AS1 and miR-3171 on CRC development. The results demonstrated that OTUD6B-AS1 expression was low in CRC cells and tissues. Overexpression of OTUD6B-AS1 inhibited the proliferation, invasion and migration of HCT116 cells. Furthermore, miR-3171 was demonstrated to be a direct target of OTUD6B-AS1 using a luciferase reporter assay. The rescue assays revealed that miR-3171 mimics markedly reversed the inhibitory effects of OTUD6B-AS1 overexpression on proliferation, invasion and migration of CRC cells. Overall, these findings demonstrated that OTUD6B-AS1 overexpression inhibited the proliferation, invasion and migration of HCT116 cells via downregulation of miR-3171, suggesting that OTUD6B-AS1 may serve as a novel biomarker for CRC treatment.
Collapse
Affiliation(s)
- Wei Wang
- Department of Emergency Traumatic Surgery, Shanghai Pudong New District Zhoupu Hospital (Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital), Shanghai 201318, P.R. China
| | - Xia Cheng
- Graduate School, Dalian Medical University, Dalian, Liaoning 116000, P.R. China.,Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116000, P.R. China
| | - Jianhua Zhu
- Department of Emergency Traumatic Surgery, Shanghai Pudong New District Zhoupu Hospital (Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital), Shanghai 201318, P.R. China
| |
Collapse
|
19
|
Ma W, Zhao F, Yu X, Guan S, Suo H, Tao Z, Qiu Y, Wu Y, Cao Y, Jin F. Immune-related lncRNAs as predictors of survival in breast cancer: a prognostic signature. J Transl Med 2020; 18:442. [PMID: 33225954 PMCID: PMC7681988 DOI: 10.1186/s12967-020-02522-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/08/2020] [Indexed: 01/13/2023] Open
Abstract
Background Breast cancer is a highly heterogeneous disease, this poses challenges for classification and management. Long non-coding RNAs play acrucial role in the breast cancersdevelopment and progression, especially in tumor-related immune processes which have become the most rapidly investigated area. Therefore, we aimed at developing an immune-related lncRNA signature to improve the prognosis prediction of breast cancer. Methods We obtained breast cancer patient samples and corresponding clinical data from The Cancer Genome Atlas (TCGA) database. Immune-related lncRNAs were screened by co-expression analysis of immune-related genes which were downloaded from the Immunology Database and Analysis Portal (ImmPort). Clinical patient samples were randomly separated into training and testing sets. In the training set, univariate Cox regression analysis and LASSO regression were utilized to build a prognostic immune-related lncRNA signature. The signature was validated in the training set, testing set, and whole cohorts by the Kaplan–Meier log-rank test, time-dependent ROC curve analysis, principal component analysis, univariate andmultivariate Cox regression analyses. Results A total of 937 immune- related lncRNAs were identified, 15 candidate immune-related lncRNAs were significantly associated with overall survival (OS). Eight of these lncRNAs (OTUD6B-AS1, AL122010.1, AC136475.2, AL161646.1, AC245297.3, LINC00578, LINC01871, AP000442.2) were selected for establishment of the risk prediction model. The OS of patients in the low-risk group was higher than that of patients in the high-risk group (p = 1.215e − 06 in the training set; p = 0.0069 in the validation set; p = 1.233e − 07 in whole cohort). The time-dependent ROC curve analysis revealed that the AUCs for OS in the first, eighth, and tenth year were 0.812, 0.81, and 0.857, respectively, in the training set, 0.615, 0.68, 0.655 in the validation set, and 0.725, 0.742, 0.741 in the total cohort. Multivariate Cox regression analysis indicated the model was a reliable and independent indicator for the prognosis of breast cancer in the training set (HR = 1.432; 95% CI 1.204–1.702, p < 0.001), validation set (HR = 1.162; 95% CI 1.004–1.345, p = 0.044), and whole set (HR = 1.240; 95% CI 1.128–1.362, p < 0.001). GSEA analysis revealed a strong connection between the signature and immune-related biological processes and pathways. Conclusions We constructed and verified a robust signature of 8 immune-related lncRNAs for the prediction of breast cancer patient survival.
Collapse
Affiliation(s)
- Wei Ma
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xinmiao Yu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shu Guan
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Huandan Suo
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zuo Tao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yue Qiu
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yunfei Wu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yu Cao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|