1
|
Kim MS, Kim DH, Lee JS. A review of environmental epigenetics in aquatic invertebrates. MARINE POLLUTION BULLETIN 2024; 208:117011. [PMID: 39326327 DOI: 10.1016/j.marpolbul.2024.117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
Aquatic ecosystems face significant challenges due to increasing human-induced environmental stressors. Recent studies emphasize the role of epigenetic mechanisms in the stress responses and adaptations of organisms to those stressors. Epigenetics influences gene expression, enabling phenotypic plasticity and transgenerational effects. Therefore, understanding the epigenetic responses of aquatic invertebrates to environmental stressors is imperative for aquatic ecosystem research. In this study, we organize the mechanisms of epigenetics in aquatic invertebrates and explore their roles in the responses of aquatic invertebrates to environmental stressors. Furthermore, we discuss the inheritance of epigenetic changes and their influence across generations in aquatic invertebrates. A comprehensive understanding of epigenetic responses is crucial for long-term ecosystem management and conservation strategies in the face of irreversible climate change in aquatic environments. In this review, we synthesize existing knowledge about environmental epigenetics in aquatic invertebrates to provide insights and suggest directions for future research.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
2
|
Cui TT, Huang JX, Ning BL, Mu F, Chen HY, Xing TY, Li H, Wang N. DNA methylation promotes the expression of PPARγ transcript 1 at least in part by preventing NRF1 binding to the promoter P1 of chicken PPARγ gene. Poult Sci 2024; 103:103559. [PMID: 38430780 PMCID: PMC10912915 DOI: 10.1016/j.psj.2024.103559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/16/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a master regulator of adipogenesis. Our previous study revealed that chicken PPARγ has 3 alternative promoters named as P1, P2, and P3, and the DNA methylation of promoter P3 was negatively associated with PPARγ mRNA expression in abdominal adipose tissue (AAT). However, the methylation status of promoters P1 and P2 is unclear. Here we assessed promoter P1 methylation status in AAT of Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF). The results showed that promoter P1 methylation differed in AAT between the lean and fat lines of NEAUHLF at 7 wk of age (p < 0.05), and AAT expression of PPARγ transcript 1 (PPARγ1), which was derived from the promoter P1, was greatly higher in fat line than in lean line at 2 and 7 wk of age. The results of the correlation analysis showed that P1 methylation was positively correlated with PPARγ1 expression at 7 wk of age (Pearson's r = 0.356, p = 0.0242), suggesting P1 methylation promotes PPARγ1 expression. To explore the underlying molecular mechanism of P1 methylation on PPARγ1 expression, bioinformatics analysis, dual-luciferase reporter assay, pyrosequencing, and electrophoresis mobility shift assay (EMSA) were performed. The results showed that transcription factor NRF1 repressed the promoter activity of the unmethylated P1, but not the methylated P1. Of all the 4 CpGs (CpG48, CpG49, CpG50, and CpG51), which reside within or nearby the NRF1 binding sites of the P1, only CpG49 methylation in AAT was remarkably higher in the fat line than in lean line at 7 wk of age (3.18 to 0.57, p < 0.05), and CpG49 methylation was positively correlated with PPARγ1 expression (Pearson's r = 0.3716, p = 0.0432). Furthermore, EMSA showed that CpG49 methylation reduced the binding of NRF1 to the P1. Taken together, our findings illustrate that P1 methylation promotes PPARγ1 expression at least in part by preventing NRF1 from binding to the promoter P1.
Collapse
Affiliation(s)
- T T Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - J X Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - B L Ning
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - F Mu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - H Y Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - T Y Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - H Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - N Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China.
| |
Collapse
|
3
|
Perez M, Aroh O, Sun Y, Lan Y, Juniper SK, Young CR, Angers B, Qian PY. Third-Generation Sequencing Reveals the Adaptive Role of the Epigenome in Three Deep-Sea Polychaetes. Mol Biol Evol 2023; 40:msad172. [PMID: 37494294 PMCID: PMC10414810 DOI: 10.1093/molbev/msad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
The roles of DNA methylation in invertebrates are poorly characterized, and critical data are missing for the phylum Annelida. We fill this knowledge gap by conducting the first genome-wide survey of DNA methylation in the deep-sea polychaetes dominant in deep-sea vents and seeps: Paraescarpia echinospica, Ridgeia piscesae, and Paralvinella palmiformis. DNA methylation calls were inferred from Oxford Nanopore sequencing after assembling high-quality genomes of these animals. The genomes of these worms encode all the key enzymes of the DNA methylation metabolism and possess a mosaic methylome similar to that of other invertebrates. Transcriptomic data of these polychaetes support the hypotheses that gene body methylation strengthens the expression of housekeeping genes and that promoter methylation acts as a silencing mechanism but not the hypothesis that DNA methylation suppresses the activity of transposable elements. The conserved epigenetic profiles of genes responsible for maintaining homeostasis under extreme hydrostatic pressure suggest DNA methylation plays an important adaptive role in these worms.
Collapse
Affiliation(s)
- Maeva Perez
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, China
- Department of Biological Sciences, Université de Montréal, Montréal, Canada
| | - Oluchi Aroh
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Yanan Sun
- Laboratory of Marine Organism Taxonomy and Phylogeny, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, China
| | - Stanley Kim Juniper
- School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada
| | | | - Bernard Angers
- Department of Biological Sciences, Université de Montréal, Montréal, Canada
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, China
| |
Collapse
|
4
|
Zhu D, Feng T, Mo N, Han R, Lu W, Shao S, Cui Z. New insights for the regulatory feedback loop between type 1 crustacean female sex hormone ( CFSH-1) and insulin-like androgenic gland hormone ( IAG) in the Chinese mitten crab ( Eriocheir sinensis). Front Physiol 2022; 13:1054773. [PMID: 36388120 PMCID: PMC9662296 DOI: 10.3389/fphys.2022.1054773] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 08/13/2023] Open
Abstract
To clarify the hormone control on sex determination and differentiation, we studied the Chinese mitten crab, Eriocheir sinensis (Henri Milne Edwards, 1854), a species with importantly economic and ecological significance. The crustacean female sex hormone (CFSH) and the insulin-like androgenic gland hormone (IAG) have been found to be related to the sex determination and/or differentiation. CFSH-1 of E. sinensis (EsCFSH-1) encoded a 227 amino-acid protein including a signal peptide, a CFSH-precursor-related peptide, and a mature CFSH peptide. Normally, EsCFSH-1 was highly expressed in the eyestalk ganglion of adult female crabs, while the expression was declined in the intersex crabs (genetic females). The intersex crabs had the androgenic glands, and the expression level of EsIAG was close to that of male crabs. During the embryogenesis and larval development, the changes of EsCFSH-1 and EsIAG genes expression in male and female individuals were shown after the zoea IV stage. Next, we confirmed the existence of the regulatory feedback loop between EsCFSH-1 and EsIAG by RNA interference experiment. The feminization function of EsCFSH-1 was further verified by examining the morphological change of external reproductive organs after EsCFSH-1 knockdown. The findings of this study reveal that the regulatory interplay between CFSH and IAG might play a pivotal role in the process of sex determination and/or differentiation in decapod crustaceans.
Collapse
Affiliation(s)
- Dandan Zhu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Tianyi Feng
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Rui Han
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wentao Lu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shucheng Shao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Vogt G. Paradigm shifts in animal epigenetics: Research on non-model species leads to new insights into dependencies, functions and inheritance of DNA methylation. Bioessays 2022; 44:e2200040. [PMID: 35618444 DOI: 10.1002/bies.202200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/06/2022]
Abstract
Recent investigations with non-model species and whole-genome approaches have challenged several paradigms in animal epigenetics. They revealed that epigenetic variation in populations is not the mere consequence of genetic variation, but is a semi-independent or independent source of phenotypic variation, depending on mode of reproduction. DNA methylation is not positively correlated with genome size and phylogenetic position as earlier believed, but has evolved differently between and within higher taxa. Epigenetic marks are usually not completely erased in the zygote and germ cells as generalized from mouse, but often persist and can be transgenerationally inherited, making them evolutionarily relevant. Gene body methylation and promoter methylation are similar in vertebrates and invertebrates with well methylated genomes but transposon silencing through methylation is variable. The new data also suggest that animals use epigenetic mechanisms to cope with rapid environmental changes and to adapt to new environments. The main benefiters are asexual populations, invaders, sessile taxa and long-lived species.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|