1
|
Pierret ACS, Patel AH, Daniels E, Comninos AN, Dhillo WS, Abbara A. Kisspeptin as a test of hypothalamic dysfunction in pubertal and reproductive disorders. Andrology 2025. [PMID: 39834030 DOI: 10.1111/andr.13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The hypothalamic-pituitary-gonadal axis is regulated by the gonadotropin-releasing hormone pulse generator in the hypothalamus. This is comprised of neurons that secrete kisspeptin in a pulsatile manner to stimulate the release of GnRH, and, in turn, downstream gonadotropins from the pituitary gland, and subsequently sex steroids and gametogenesis from the gonads. Many reproductive disorders in both males and females are characterized by hypothalamic dysfunction, including functional disorders (such as age-related hypogonadism, obesity-related secondary hypogonadism, hyperprolactinemia, functional hypothalamic amenorrhea and polycystic ovary syndrome), structural pathologies (such as craniopharyngiomas or radiation or surgery-related hypothalamic dysfunction), and pubertal disorders (constitutional delay of growth and puberty and congenital hypogonadotropic hypogonadism). However, in many of these conditions, the relative contribution of hypothalamic dysfunction to the observed hypogonadism is unclear; as to date, there is no direct method of evaluating hypothalamic reproductive function in humans. Indeed, it is not possible to directly measure gonadotropin-releasing hormone levels in the hypothalamo-pituitary portal vessels, such that secondary (i.e., pituitary dysfunction) and tertiary (i.e., hypothalamic dysfunction) hypogonadism are often conflated as one entity. In this review, we examine the evidence for the use of kisspeptin as a method of directly evaluating hypothalamic reproductive dysfunction, and deliberate its potential future role in the evaluation of pubertal and reproductive disorders.
Collapse
Affiliation(s)
- Aureliane C S Pierret
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Aaran H Patel
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Elisabeth Daniels
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare Trust, London, UK
| |
Collapse
|
2
|
Yang X, Wang Z, Chen Y, Ding H, Fang Y, Ma X, Liu H, Guo J, Zhao J, Wang J, Lu W. ALKBH5 Reduces BMP15 mRNA Stability and Regulates Bovine Puberty Initiation Through an m6A-Dependent Pathway. Int J Mol Sci 2024; 25:11605. [PMID: 39519156 PMCID: PMC11546126 DOI: 10.3390/ijms252111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
The timing of puberty significantly influences subsequent reproductive performance in cattle. N6-methyladenosine (m6A) is a key epigenetic modification involved in the regulation of pubertal onset. However, limited research has investigated alterations in m6A methylation within the hypothalamic-pituitary-ovarian (HPO) axis during the onset of puberty. In this study, combined analysis of methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and RNA sequencing (RNA-seq) is used to describe the overall modification pattern of m6A in the HPO axis, while GSEA, KEGG, and GO analyses are used to describe the enrichment pathways of differentially expressed genes and differentially methylated genes. The m6A modifications of the differential genes KL, IGSF10, PAPPA2, and BMP15 and the pathways of cell adhesion molecules (CAMs), TGF-β, cell cycle, and steroid hormone synthesis may play roles in regulating the function of the HPO axis tissue during pubertal transition. Notably, BMP15's m6A modification depends on the action of the demethylase ALKBH5, which is recognized by the reader protein YTHDF2, promoting bovine granulosa cell proliferation, steroid production, and estrogen secretion. This study reveals for the first time the modification mechanism of BMP15 m6A during the initiation of bovine puberty, which will provide useful information for improving the reproductive efficiency of Chinese beef cattle.
Collapse
Affiliation(s)
- Xiaorui Yang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ziming Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yue Chen
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - He Ding
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yi Fang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xin Ma
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Guo
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Paganoni AJJ, Cannarella R, Oleari R, Amoruso F, Antal R, Ruzza M, Olivieri C, Condorelli RA, La Vignera S, Tolaj F, Cariboni A, Calogero AE, Magni P. Insulin-like Growth Factor 1, Growth Hormone, and Anti-Müllerian Hormone Receptors Are Differentially Expressed during GnRH Neuron Development. Int J Mol Sci 2023; 24:13073. [PMID: 37685880 PMCID: PMC10487694 DOI: 10.3390/ijms241713073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are key neuroendocrine cells in the brain as they control reproduction by regulating hypothalamic-pituitary-gonadal axis function. In this context, anti-Müllerian hormone (AMH), growth hormone (GH), and insulin-like growth factor 1 (IGF1) were shown to improve GnRH neuron migration and function in vitro. Whether AMH, GH, and IGF1 signaling pathways participate in the development and function of GnRH neurons in vivo is, however, currently still unknown. To assess the role of AMH, GH, and IGF1 systems in the development of GnRH neuron, we evaluated the expression of AMH receptors (AMHR2), GH (GHR), and IGF1 (IGF1R) on sections of ex vivo mice at different development stages. The expression of AMHR2, GHR, and IGF1R was assessed by immunofluorescence using established protocols and commercial antibodies. The head sections of mice were analyzed at E12.5, E14.5, and E18.5. In particular, at E12.5, we focused on the neurogenic epithelium of the vomeronasal organ (VNO), where GnRH neurons, migratory mass cells, and the pioneering vomeronasal axon give rise. At E14.5, we focused on the VNO and nasal forebrain junction (NFJ), the two regions where GnRH neurons originate and migrate to the hypothalamus, respectively. At E18.5, the median eminence, which is the hypothalamic area where GnRH is released, was analyzed. At E12.5, double staining for the neuronal marker ß-tubulin III and AMHR2, GHR, or IGF1R revealed a signal in the neurogenic niches of the olfactory and VNO during early embryo development. Furthermore, IGF1R and GHR were expressed by VNO-emerging GnRH neurons. At E14.5, a similar expression pattern was found for the neuronal marker ß-tubulin III, while the expression of IGF1R and GHR began to decline, as also observed at E18.5. Of note, hypothalamic GnRH neurons labeled for PLXND1 tested positive for AMHR2 expression. Ex vivo experiments on mouse sections revealed differential protein expression patterns for AMHR2, GHR, and IGF1R at any time point in development between neurogenic areas and hypothalamic compartments. These findings suggest a differential functional role of related systems in the development of GnRH neurons.
Collapse
Affiliation(s)
- Alyssa J. J. Paganoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (S.L.V.); (A.E.C.)
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 10681, USA
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Federica Amoruso
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Renata Antal
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Marco Ruzza
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Chiara Olivieri
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (S.L.V.); (A.E.C.)
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (S.L.V.); (A.E.C.)
| | - Fationa Tolaj
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (S.L.V.); (A.E.C.)
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
| |
Collapse
|
4
|
Akram M, Handelsman DJ, Qayyum M, Kennerson M, Rauf S, Ahmed S, Ishtiaq O, Ismail M, Mansoor Q, Naseem AA, Rizvi SSR. Genetic analysis of failed male puberty using whole exome sequencing. J Pediatr Endocrinol Metab 2022; 35:1410-1421. [PMID: 36103668 DOI: 10.1515/jpem-2022-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Although at least 598 genes are involved in the development of the hypothalamo-pituitary-testicular (HPT) axis, mutations in only 75 genes have so far been shown to cause delayed puberty. METHODS Six male patients with failed puberty, manifested as absence of pubertal changes by 18 years of age, underwent whole exome sequencing of genomic DNA with subsequent bioinformatics analysis and confirmation of selected variants by Sanger sequencing. Genes having plausibly pathogenic non-synonymous variants were characterized as group A (previously reported to cause delayed puberty), group B (expressed in the HPT-axis but no mutations therein were reported to cause delayed puberty) or group C (not reported previously to be connected with HPT-axis). RESULTS We identified variants in genes involved in GnRH neuron differentiation (2 in group A, 1 in group C), GnRH neuron migration (2 each in groups A and C), development of GnRH neural connections with supra-hypothalamic and hypothalamic neurons (2 each in groups A and C), neuron homeostasis (1 in group C), molecules regulating GnRH neuron activity (2 each in groups B and C), receptors/proteins expressed on GnRH neurons (1 in group B), signaling molecules (3 in group C), GnRH synthesis (1 in group B), gonadotropins production and release (1 each in groups A, B, and C) and action of the steroid hormone (1 in group A). CONCLUSIONS Non-synonymous variants were identified in 16 genes of the HPT-axis, which comprised 4 in group A that contains genes previously reported to cause delayed puberty, 4 in group B that are expressed along HPT-axis but no mutations therein were reported previously to cause delayed puberty and 8 in group C that contains novel candidate genes, suggesting wider genetic causes of failed male puberty.
Collapse
Affiliation(s)
- Maleeha Akram
- Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - David J Handelsman
- The ANZAC Research Institute (ARI), University of Sydney, Concord, NSW, Australia
| | - Mazhar Qayyum
- Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Marina Kennerson
- The ANZAC Research Institute (ARI), University of Sydney, Concord, NSW, Australia
| | - Sania Rauf
- Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan.,Department of Biosciences, University of Wah, Quaid Avenue, Wah Cantt, Pakistan
| | - Shahid Ahmed
- Department of Endocrinology, Military Hospital, Rawalpindi, Pakistan
| | - Osama Ishtiaq
- The Endocrinology and Diabetes Department, Shifa International Hospitals Ltd, Islamabad, Pakistan
| | - Muhammad Ismail
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Qaisar Mansoor
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Afzaal Ahmed Naseem
- Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Syed Shakeel Raza Rizvi
- Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
5
|
Abstract
Pediatric endocrinologists often evaluate and treat youth with delayed puberty. Stereotypically, these patients are 14-year-old young men who present due to lack of pubertal development. Concerns about stature are often present, arising from gradual shifts to lower height percentiles on the population-based, cross-sectional curves. Fathers and/or mothers may have also experienced later than average pubertal onset. In this review, we will discuss a practical clinical approach to the evaluation and management of youth with delayed puberty, including the differential diagnosis and key aspects of evaluation and management informed by recent review of the existing literature. We will also discuss scenarios that pose additional clinical challenges, including: (1) the young woman whose case poses questions regarding how presentation and approach differs for females vs males; (2) the 14-year-old female or 16-year-old young man who highlight the need to reconsider the most likely diagnoses, including whether idiopathic delayed puberty can still be considered constitutional delay of growth and puberty at such late ages; and finally (3) the 12- to 13-year-old whose presentation raises questions about whether age cutoffs for the diagnosis and treatment of delayed puberty should be adjusted downward to coincide with the earlier onset of puberty in the general population.
Collapse
Affiliation(s)
- Jennifer Harrington
- Division of Endocrinology, Women's and Children's Health Network, North Adelaide, 5006, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, 5000, Australia
| | - Mark R Palmert
- Division of Endocrinology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Departments of Pediatrics and Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
6
|
Faienza MF, Urbano F, Moscogiuri LA, Chiarito M, De Santis S, Giordano P. Genetic, epigenetic and enviromental influencing factors on the regulation of precocious and delayed puberty. Front Endocrinol (Lausanne) 2022; 13:1019468. [PMID: 36619551 PMCID: PMC9813382 DOI: 10.3389/fendo.2022.1019468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The pubertal development onset is controlled by a network of genes that regulate the gonadotropin releasing hormone (GnRH) pulsatile release and the subsequent increase of the circulating levels of pituitary gonadotropins that activate the gonadal function. Although the transition from pre-pubertal condition to puberty occurs physiologically in a delimited age-range, the inception of pubertal development can be anticipated or delayed due to genetic and epigenetic changes or environmental conditions. Most of the genetic and epigenetic alterations concern genes which encode for kisspeptin, GnRH, LH, FSH and their receptor, which represent crucial factors of the hypothalamic-pituitary-gonadal (HPG) axis. Recent data indicate a central role of the epigenome in the regulation of genes in the hypothalamus and pituitary that could mediate the flexibility of pubertal timing. Identification of epigenetically regulated genes, such as Makorin ring finger 3 (MKRN3) and Delta-like 1 homologue (DLK1), respectively responsible for the repression and the activation of pubertal development, provides additional evidence of how epigenetic variations affect pubertal timing. This review aims to investigate genetic, epigenetic, and environmental factors responsible for the regulation of precocious and delayed puberty.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
- Giovanni XXIII Pediatric Hospital, Bari, Italy
- *Correspondence: Maria Felicia Faienza,
| | | | | | | | - Stefania De Santis
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Giordano
- Giovanni XXIII Pediatric Hospital, Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
7
|
Delayed Puberty in Girls with Primary Amenorrhea: A Report of Cases. JOURNAL OF BIOMEDICINE AND TRANSLATIONAL RESEARCH 2021. [DOI: 10.14710/jbtr.v7i2.12054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background:Female puberty starts when the pituitary hormone producing follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which will stimulate the ovaries to produce estrogen. Delayed puberty with primary amenorrhea in female is the lack of breast development followed by the absence of menses 3 years after the initiation of breast development. Sex chromosomes have an important role in determining the sex, germ cell differentiation of foetus, and reproductive functions of an offspring, thus, sex chromosomal aberrations frequently cause primary amenorrheaCase presentation: We report two delayed puberty cases with the chief complain of primary amenorrhea. Both cases showed hypoplasia of uterus and ovaries on pelvic imaging and hormonal assay showed low of FSH. The first case was gonadal dysgenesis with 46,XX karyotype and low level of estrogen and the second case was a turner syndrome with 45,X karyotype and normal level of estrogen. Conclusion:This study reported delayed puberty with primary amenorrhea cases due to different chromosomal aberration pattern which have similar clinical features. Therefore, cytogenetic examination is needed for any primary amenorrhea cases in order to accomplish the confirmatory diagnosis and for the clinicians to make a correct intervention and treatment.
Collapse
|
8
|
Ling B, Liao X, Tang Q, Ye G, Bin X, Wang J, Pang Y, Qi G. MicroRNA-106b-5p inhibits growth and progression of lung adenocarcinoma cells by downregulating IGSF10. Aging (Albany NY) 2021; 13:18740-18756. [PMID: 34351868 PMCID: PMC8351668 DOI: 10.18632/aging.203318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/18/2021] [Indexed: 12/04/2022]
Abstract
In this study, we investigated the mechanistic role and prognostic significance of IGSF10 in lung adenocarcinoma. Oncomine database analysis showed that IGSF10 expression was significantly reduced in most cancer types, including lung adenocarcinoma (LUAD). In the TCGA-LUAD dataset, IGSF10 expression correlated positively with proportions of tumor-infiltrated B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells. Kaplan-Meier survival analysis showed that overall survival of patients with low IGSF10 expression was significantly shorter than those with high IGSF10 expression. MiRWalk2.0 database analysis and dual luciferase reporter assays confirmed that miR-106b-5p suppressed IGSF10 expression by binding to its 3’UTR. MiR-106b-5p levels inversely correlated with IGSF10 expression in the TCGA-LUAD dataset. Moreover, inhibition of miR-106b-5p significantly decreased in vitro proliferation, migration, and invasion by LUAD cells, whereas miR-106b-5p overexpression reversed those effects. These results demonstrate that IGSF10 is an independent prognostic factor for LUAD. Furthermore, miR-106b-5p suppressed IGSF10 expression in LUAD tissues by binding to its 3’UTR, which makes IGSF10 and miR-106b-5p potential prognostic biomarkers and therapeutic targets in LUAD patients.
Collapse
Affiliation(s)
- Bo Ling
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Xianjiu Liao
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Qiang Tang
- Department of Burn and Plastic Surgery and Wound Repair, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Guangbin Ye
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.,Medical College of Guangxi University, Nanning 530004, Guangxi, China
| | - Xiaoyun Bin
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Yaqin Pang
- College of Medical Laboratory, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Guangzi Qi
- College of Public Health and Management, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| |
Collapse
|
9
|
Barbieri F, Inzaghi E, Caruso Nicoletti M, Cassio A, Grandone A, DE Sanctis L, Bizzarri C. Biological clock and heredity in pubertal timing: what is new? Minerva Pediatr (Torino) 2021; 73:537-548. [PMID: 34264049 DOI: 10.23736/s2724-5276.21.06511-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Puberty represents a milestone during a person's life and is characterized by several physical and psychological changes which end with the achievement of sexual maturation and of fertility. Puberty onset depends on a series of sophisticated, not completely understood, mechanisms certainly involving Gonadotropin-Releasing Hormone (GnRH) and its effects on pituitary gonadotropins. As recent evidence has demonstrated that pubertal timing deeply affects future adult health life, much efforts have been performed in order to clarify the exact actors involved in the onset and progression of puberty. Genetic factors are undoubtedly essential players in the regulation of pubertal development, accounting for approximately 50-80% of its variability. Mutations in genes such as KISS1, MKRN3 and DLK1 have been associated with central precocious puberty. Interestingly, a possible involvement of epigenetic mechanisms has been proposed as additional element able to affect pubertal phase. Environmental factors have recently attracted much attention. Indeed, an overall decrease in the age of puberty has been observed in the last decades. As genetic factors require long time to exert their effect, other players, such as environmental ones, may be involved. Special focus has been posed on nutritional status, endocrine-disrupting chemicals with non-conclusive results. Pubertal timing deeply affects future life, suggesting the need to clarify mechanisms driving pubertal onset and progression, in order to identify tailored therapeutic strategies and targets.
Collapse
Affiliation(s)
- Flavia Barbieri
- Pediatric Section, Department of translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Elena Inzaghi
- Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manuela Caruso Nicoletti
- Pediatric Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandra Cassio
- Pediatric Unit, Department of Medical and Surgical Sciences, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Anna Grandone
- Departement of Women's and Children's Health and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Luisa DE Sanctis
- Pediatric Endocrinology Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Carla Bizzarri
- Unit of Endocrinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy -
| |
Collapse
|
10
|
Cannarella R, Paganoni AJJ, Cicolari S, Oleari R, Condorelli RA, La Vignera S, Cariboni A, Calogero AE, Magni P. Anti-Müllerian Hormone, Growth Hormone, and Insulin-Like Growth Factor 1 Modulate the Migratory and Secretory Patterns of GnRH Neurons. Int J Mol Sci 2021; 22:ijms22052445. [PMID: 33671044 PMCID: PMC7957759 DOI: 10.3390/ijms22052445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 12/04/2022] Open
Abstract
Anti-Müllerian hormone (AMH) is secreted by Sertoli or granulosa cells. Recent evidence suggests that AMH may play a role in the pathogenesis of hypogonadotropic hypogonadism (HH) and that its serum levels could help to discriminate HH from delayed puberty. Moreover, the growth hormone (GH)/insulin-like growth factor 1 (IGF1) system may be involved in the function of gonadotropin-releasing hormone (GnRH) neurons, as delayed puberty is commonly found in patients with GH deficiency (GHD) or with Laron syndrome, a genetic form of GH resistance. The comprehension of the stimuli enhancing the migration and secretory activity of GnRH neurons might shed light on the causes of delay of puberty or HH. With these premises, we aimed to better clarify the role of the AMH, GH, and IGF1 on GnRH neuron migration and GnRH secretion, by taking advantage of previously established models of immature (GN11 cell line) and mature (GT1-7 cell line) GnRH neurons. Expression of Amhr, Ghr, and Igf1r genes was confirmed in both cell lines. Cells were then incubated with increasing concentrations of AMH (1.5–150 ng/mL), GH (3–1000 ng/mL), or IGF1 (1.5–150 ng/mL). All hormones were able to support GN11 cell chemomigration. AMH, GH, and IGF1 significantly stimulated GnRH secretion by GT1-7 cells after a 90-min incubation. To the best of our knowledge, this is the first study investigating the direct effects of GH and IGF1 in GnRH neuron migration and of GH in the GnRH secreting pattern. Taken together with previous basic and clinical studies, these findings may provide explanatory mechanisms for data, suggesting that AMH and the GH-IGF1 system play a role in HH or the onset of puberty.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (S.L.V.); (A.E.C.)
- Correspondence: (R.C.); (A.C.)
| | - Alyssa J. J. Paganoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (S.C.); (R.O.); (P.M.)
| | - Stefania Cicolari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (S.C.); (R.O.); (P.M.)
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (S.C.); (R.O.); (P.M.)
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (S.L.V.); (A.E.C.)
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (S.L.V.); (A.E.C.)
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (S.C.); (R.O.); (P.M.)
- Correspondence: (R.C.); (A.C.)
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (S.L.V.); (A.E.C.)
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (S.C.); (R.O.); (P.M.)
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
| |
Collapse
|