1
|
Su C, Huang T, Zhang M, Zhang Y, Zeng Y, Chen X. Glucocorticoid receptor signaling in the brain and its involvement in cognitive function. Neural Regen Res 2025; 20:2520-2537. [PMID: 39248182 PMCID: PMC11801288 DOI: 10.4103/nrr.nrr-d-24-00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 07/06/2024] [Indexed: 09/10/2024] Open
Abstract
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucocorticoids in response to environmental challenges. In the brain, a nuclear receptor transcription factor, the glucocorticoid receptor, is an important component of the hypothalamic-pituitary-adrenal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity. The glucocorticoid receptor influences cognitive processes, including glutamate neurotransmission, calcium signaling, and the activation of brain-derived neurotrophic factor-mediated pathways, through a combination of genomic and non-genomic mechanisms. Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor, thereby affecting the hypothalamic-pituitary-adrenal axis and stress-related cognitive functions. An appropriate level of glucocorticoid receptor expression can improve cognitive function, while excessive glucocorticoid receptors or long-term exposure to glucocorticoids may lead to cognitive impairment. Patients with cognitive impairment-associated diseases, such as Alzheimer's disease, aging, depression, Parkinson's disease, Huntington's disease, stroke, and addiction, often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression. This review provides a comprehensive overview of the functions of the glucocorticoid receptor in the hypothalamic-pituitary-adrenal axis and cognitive activities. It emphasizes that appropriate glucocorticoid receptor signaling facilitates learning and memory, while its dysregulation can lead to cognitive impairment. This provides clues about how glucocorticoid receptor signaling can be targeted to overcome cognitive disability-related disorders.
Collapse
Affiliation(s)
- Chonglin Su
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Taiqi Huang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Meiyu Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanyu Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Sueyoshi T, Petrillo MG, Jewell CM, Bortner CD, Perera L, Xu X, Aguayo FI, Diaz-Jimenez D, Robinson AG, Cook ME, Oakley RH, Cidlowski JA. Molecular interactions of glucocorticoid and mineralocorticoid receptors define novel transcription and biological functions. J Biol Chem 2025:108488. [PMID: 40209952 DOI: 10.1016/j.jbc.2025.108488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/12/2025] Open
Abstract
Glucocorticoids are primary stress hormones necessary for life that function to maintain homeostasis. These hormones and their synthetic derivatives are widely used in the clinic to combat disease but are limited by development of resistance and by severe side effects. Understanding how glucocorticoids signal is crucial for developing safer and more effective glucocorticoids. Mechanistically glucocorticoid ligands induce glucocorticoid receptor (GR) homodimerization and regulation of gene expression. Here we show that GR and mineralocorticoid receptor (MR) form molecular complexes with distinct transcriptional responses that alter the biological roles of GR. MR inhibited GR interaction with genomic DNA and diminished glucocorticoid-regulated gene expression as well as suppressed cell apoptosis induced by GR signaling. Provocatively, multiple therapeutic glucocorticoids differentially induced the GR-MR interaction revealing unknown drug effects that are exploitable for fine-tuning glucocorticoid drug treatments. Molecular modeling of the GR-MR complex predicted an interaction interface residing in the LBD of both GR and MR. Mutation of a key amino acid in the interface of GR compromised GR - MR interaction without affecting GR activity in a gene reporter assay. Overall, our findings uncovered unique crosstalk mechanisms between distinct nuclear receptors providing a novel mechanism of diversity in the action of glucocorticoids that may contribute to context-dependent GR signaling in human health and disease.
Collapse
Affiliation(s)
- Tatsuya Sueyoshi
- Molecular Endocrinology Group, Signal Transduction Laboratory, NIEHS, NIH, DHHS, 111 TW Alexander Drive, RTP, NC 27709
| | - Maria G Petrillo
- Molecular Endocrinology Group, Signal Transduction Laboratory, NIEHS, NIH, DHHS, 111 TW Alexander Drive, RTP, NC 27709
| | - Christine M Jewell
- Molecular Endocrinology Group, Signal Transduction Laboratory, NIEHS, NIH, DHHS, 111 TW Alexander Drive, RTP, NC 27709
| | - Carl D Bortner
- Flow Cytometry Center, NIEHS, NIH, DHHS, 111 TW Alexander Drive, RTP, NC 27709
| | - Lalith Perera
- Computational Chemistry & Molecular Modeling Support Group, Genomic Integrity & Structural Biology Laboratory, NIEHS, NIH, DHHS, 111 TW Alexander Drive, RTP, NC 27709
| | - Xiaojiang Xu
- Integrative Bioinformatics group, NIEHS, NIH, DHHS, 111 TW Alexander Drive, RTP, NC 27709; Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Felipe I Aguayo
- Molecular Endocrinology Group, Signal Transduction Laboratory, NIEHS, NIH, DHHS, 111 TW Alexander Drive, RTP, NC 27709
| | - David Diaz-Jimenez
- Molecular Endocrinology Group, Signal Transduction Laboratory, NIEHS, NIH, DHHS, 111 TW Alexander Drive, RTP, NC 27709
| | - Anastasia G Robinson
- Molecular Endocrinology Group, Signal Transduction Laboratory, NIEHS, NIH, DHHS, 111 TW Alexander Drive, RTP, NC 27709
| | - Molly E Cook
- Epigenomics and DNA Sequence Core Facility, NIEHS, NIH, DHHS, 111 TW Alexander Drive, RTP, NC 27709
| | - Robert H Oakley
- Molecular Endocrinology Group, Signal Transduction Laboratory, NIEHS, NIH, DHHS, 111 TW Alexander Drive, RTP, NC 27709
| | - John A Cidlowski
- Molecular Endocrinology Group, Signal Transduction Laboratory, NIEHS, NIH, DHHS, 111 TW Alexander Drive, RTP, NC 27709.
| |
Collapse
|
3
|
Zheng E, Warchoł I, Mejza M, Możdżan M, Strzemińska M, Bajer A, Madura P, Żak J, Plewka M. Exploring Anti-Inflammatory Treatment as Upstream Therapy in the Management of Atrial Fibrillation. J Clin Med 2025; 14:882. [PMID: 39941553 PMCID: PMC11818443 DOI: 10.3390/jcm14030882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Inflammation has been widely recognized as one of the major pathophysiological drivers of the development of atrial fibrillation (AF), which works in tandem with other risk factors of AF including obesity, diabetes, hypertension, and heart failure (HF). Our current understanding of the role of inflammation in the natural history of AF remains elusive; however, several key players, including the NLRP3 (NLR family pyrin domain containing 3) inflammasome, have been acknowledged to be heavily influential on chronic inflammation in the atrial myocardium, which leads to fibrosis and eventual degradation of its electrical function. Nevertheless, our current methods of pharmacological modalities with reported immunomodulatory properties, including well-established classes of drugs e.g., drugs targeting the renin-angiotensin-aldosterone system (RAAS), statins, and vitamin D, have proven effective in reducing the overall risk of developing AF, the onset of postoperative atrial fibrillation (POAF), and reducing overall mortality among patients with AF. This might bring hope for further progress in developing new treatment modalities targeting cellular checkpoints of the NLRP3 inflammasome pathway, or revisiting other well-known anti-inflammatory drugs e.g., colchicine, vitamin C, nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticosteroids, and antimalarial drugs. In our review, we aim to find relevant upstream anti-inflammatory treatment methods for the management of AF and present the most current real-world evidence of their clinical utility.
Collapse
|
4
|
Krysiak R, Claahsen-van der Grinten HL, Reisch N, Touraine P, Falhammar H. Cardiometabolic Aspects of Congenital Adrenal Hyperplasia. Endocr Rev 2025; 46:80-148. [PMID: 39240753 PMCID: PMC11720181 DOI: 10.1210/endrev/bnae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/17/2024] [Accepted: 09/05/2024] [Indexed: 09/08/2024]
Abstract
Treatment of classic congenital adrenal hyperplasia (CAH) is directed at replacing deficient hormones and reducing androgen excess. However, even in the era of early diagnosis and lifelong hormonal substitution, the presence of CAH is still associated with numerous complications and also with increased mortality. The aim of this article was to create an authoritative and balanced review concerning cardiometabolic risk in patients with CAH. The authors searched all major databases and scanned reference lists of all potentially eligible articles to find relevant articles. The risk was compared with that in other forms of adrenal insufficiency. The reviewed articles, most of which were published recently, provided conflicting results, which can be partially explained by differences in the inclusion criteria and treatment, small sample sizes, and gene-environment interactions. However, many studies showed that the presence of CAH is associated with an increased risk of weight gain, worsening of insulin sensitivity, high blood pressure, endothelial dysfunction, early atherosclerotic changes in the vascular wall, and left ventricular diastolic dysfunction. These complications were more consistently reported in patients with classic than nonclassic CAH and were in part related to hormonal and functional abnormalities associated with this disorder and/or to the impact of overtreatment and undertreatment. An analysis of available studies suggests that individuals with classic CAH are at increased cardiometabolic risk. Excess cardiovascular and metabolic morbidity is likely multifactorial, related to glucocorticoid overtreatment, imperfect adrenal hormone replacement therapy, androgen excess, and adrenomedullary failure. Cardiometabolic effects of new therapeutic approaches require future targeted studies.
Collapse
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, 40-555 Katowice, Poland
| | | | - Nicole Reisch
- Medizinische Klinik und Poliklinik IV, LMU Klinikum München, 80336 Munich, Germany
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Hôpital Pitié Salpêtrière, Sorbonne University Medicine, 75651 Paris, France
| | - Henrik Falhammar
- Department of Endocrinology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| |
Collapse
|
5
|
Nethathe GD, Lipman J, Anderson R, Fuller PJ, Feldman C. Glucocorticoids with or without fludrocortisone in septic shock: a narrative review from a biochemical and molecular perspective. Br J Anaesth 2024; 132:53-65. [PMID: 38030548 PMCID: PMC10797514 DOI: 10.1016/j.bja.2023.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Two randomised controlled trials have reported a reduction in mortality when adjunctive hydrocortisone is administered in combination with fludrocortisone compared with placebo in septic shock. A third trial did not support this finding when hydrocortisone administered in combination with fludrocortisone was compared with hydrocortisone alone. The underlying mechanisms for this mortality benefit remain poorly understood. We review the clinical implications and potential mechanisms derived from laboratory and clinical data underlying the beneficial role of adjunctive fludrocortisone with hydrocortisone supplementation in septic shock. Factors including distinct biological effects of glucocorticoids and mineralocorticoids, tissue-specific and mineralocorticoid receptor-independent effects of mineralocorticoids, and differences in downstream signalling pathways between mineralocorticoid and glucocorticoid binding at the mineralocorticoid receptor could contribute to this interaction. Furthermore, pharmacokinetic and pharmacodynamic disparities exist between aldosterone and its synthetic counterpart fludrocortisone, potentially influencing their effects. Pending publication of well-designed, randomised controlled trials, a molecular perspective offers valuable insights and guidance to help inform clinical strategies.
Collapse
Affiliation(s)
- Gladness D Nethathe
- School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia; Academy of Critical Care, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Jeffrey Lipman
- Academy of Critical Care, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia; Jamieson Trauma Institute and Intensive Care Services, Royal Brisbane and Women's Hospital, Butterfield Street, Herston, Brisbane, 4029, QLD, Australia; Nimes University Hospital, University of Montpellier, Nimes, France
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Peter J Fuller
- Endocrinology Unit, Monash Health, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Charles Feldman
- School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
7
|
Kalyakulina A, Yusipov I, Kondakova E, Bacalini MG, Giuliani C, Sivtseva T, Semenov S, Ksenofontov A, Nikolaeva M, Khusnutdinova E, Zakharova R, Vedunova M, Franceschi C, Ivanchenko M. Epigenetics of the far northern Yakutian population. Clin Epigenetics 2023; 15:189. [PMID: 38053163 PMCID: PMC10699032 DOI: 10.1186/s13148-023-01600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Yakuts are one of the indigenous populations of the subarctic and arctic territories of Siberia characterized by a continental subarctic climate with severe winters, with the regular January average temperature in the regional capital city of Yakutsk dipping below - 40 °C. The epigenetic mechanisms of adaptation to such ecologies and environments and, in particular, epigenetic age acceleration in the local population have not been studied before. RESULTS This work reports the first epigenetic study of the Yakutian population using whole-blood DNA methylation data, supplemented with the comparison to the residents of Central Russia. Gene set enrichment analysis revealed, among others, geographic region-specific differentially methylated regions associated with adaptation to climatic conditions (water consumption, digestive system regulation), aging processes (actin filament activity, cell fate), and both of them (channel activity, regulation of steroid and corticosteroid hormone secretion). Further, it is demonstrated that the epigenetic age acceleration of the Yakutian representatives is significantly higher than that of Central Russia counterparts. For both geographic regions, we showed that epigenetically males age faster than females, whereas no significant sex differences were found between the regions. CONCLUSIONS We performed the first study of the epigenetic data of the Yakutia cohort, paying special attention to region-specific features, aging processes, age acceleration, and sex specificity.
Collapse
Affiliation(s)
- Alena Kalyakulina
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia.
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia.
| | - Igor Yusipov
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Elena Kondakova
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | | | - Cristina Giuliani
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126, Bologna, Italy
| | - Tatiana Sivtseva
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Sergey Semenov
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Artem Ksenofontov
- State Budgetary Institution of the Republic of Sakha (Yakutia) Republican Center for Public Health and Medical Prevention, Yakutsk, 677001, Russia
| | - Maria Nikolaeva
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia, 450054
| | - Raisa Zakharova
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Maria Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Mikhail Ivanchenko
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
8
|
Opałka B, Żołnierczuk M, Grabowska M. Immunosuppressive Agents-Effects on the Cardiovascular System and Selected Metabolic Aspects: A Review. J Clin Med 2023; 12:6935. [PMID: 37959400 PMCID: PMC10647341 DOI: 10.3390/jcm12216935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The widespread use of immunosuppressive drugs makes it possible to reduce inflammation in autoimmune diseases, as well as prevent transplant rejection in organ recipients. Despite their key action in blocking the body's immune response, these drugs have many side effects. These actions primarily affect the cardiovascular system, and the incidence of complications in patients using immunosuppressive drugs is significant, being associated with a higher incidence of cardiovascular incidents such as myocardial infarction and stroke. This paper analyzes the mechanisms of action of commonly used immunosuppressive drugs and their impact on the cardiovascular system. The adverse effect of immunosuppressive drugs is associated with toxicity within the cardiovascular system, which may be a problem in the clinical management of patients after transplantation. Immunosuppressants act on the cardiovascular system in a variety of ways, including fibrosis and myocardial remodeling, endothelium disfunction, hypertension, atherosclerosis, dyslipidemia or hyperglycaemia, metabolic syndrome, and hyperuricemia. The use of multidrug protocols makes it possible to develop regimens that can reduce the incidence of cardiovascular events. A better understanding of their mechanism of action and the range of complications could enable physicians to select the appropriate therapy for a given patient, as well as to reduce complications and prolong life.
Collapse
Affiliation(s)
- Bianka Opałka
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, 71-210 Szczecin, Poland;
| | - Michał Żołnierczuk
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University, 72-010 Szczecin, Poland;
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, 71-210 Szczecin, Poland;
| |
Collapse
|
9
|
Escandon P, Nicholas SE, Vasini B, Cunningham RL, Murphy DA, Riaz KM, Karamichos D. Selective Modulation of the Keratoconic Stromal Microenvironment by FSH and LH. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1762-1775. [PMID: 36822267 PMCID: PMC10726429 DOI: 10.1016/j.ajpath.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Keratoconus (KC) affects the corneal structure, with thinning and bulging outward into a conelike shape. Irregular astigmatism and decreased visual acuity appear during puberty and progress into the mid-30s, with unpredictable disease severity. The cause of KC is recognized as multifactorial, but remains poorly understood. Hormone imbalances are a significant modulator of the onset of KC. This study sought to investigate the role of gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) in KC, using a three-dimensional, self-assembled matrix in vitro model. Healthy corneal fibroblasts and human KC cells in the corneal stroma were isolated, cultured, and stimulated with stable vitamin C to promote extracellular matrix assembly. Cultures were further stimulated with 2.5 or 10 mIU/mL FSH and 5 or 35 mIU/mL LH. Samples were evaluated for cell proliferation and morphology via BrdU assay and imaging; protein expression was assessed via Western blot analysis. Proliferation was significantly greater in human KC cells compared to healthy corneal fibroblasts with LH stimulation, but no changes were found with FSH stimulation. Additionally, in sex hormone receptors, fibrotic markers, proteoglycans, and members of the gonadotropin signaling pathway were significantly changed, largely driven by exogenous LH. The impact of exogenous FSH/LH in the KC stromal microenvironment was demonstrated. These results highlight the need to further examine the role of FSH/LH in KC and in human corneal homeostasis.
Collapse
Affiliation(s)
- Paulina Escandon
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas
| | - Sarah E Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas
| | - Brenda Vasini
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas
| | - David A Murphy
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kamran M Riaz
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas.
| |
Collapse
|
10
|
Feng Q, Xia W, Feng Z, Tan Y, Zhang Y, Liu D, Zhang G. The accelerated organ senescence and proteotoxicity in thyrotoxicosis mice. J Cell Physiol 2023; 238:2481-2498. [PMID: 37750538 DOI: 10.1002/jcp.31108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 09/27/2023]
Abstract
The mechanism of aging has always been the focus of research, because aging is related to disease susceptibility and seriously affects people's quality of life. The diseases also accelerate the aging process, especially the pathological changes of substantive organs, such as cardiac hypertrophy, severely shortened lifespan. So, lesions in organs are both a consequence and a cause of aging. However, the disease in a given organ is not in isolation but is a systemic problem. Our previous study found that thyrotoxicosis mice model has aging characteristics including immunosenescence, lipotoxicity, malnutrition. But all these characteristics will lead to organ senescence, therefore, this study continued to study the aging changes of important organs such as heart, liver, and kidney in thyrotoxicosis mice using tandem mass tags (TMT) proteomics method. The results showed that the excess thyroxine led to cardiac hypertrophy. In the liver, the ability to synthesize functional proteins, detoxify, and metabolism were declined. The effect on the kidney was the decreased ability of detoxify and metabolism. The main finding of the present study was that the acceleration of organ senescence by excess thyroxine was due to proteotoxicity. The shared cause of proteotoxicity in the three organs included the intensify of oxidative phosphorylation, the redundancy production of ribosomes, and the lack of splicing and ubiquitin proteasome system function. Totally, proteotoxicity was another parallel between thyrotoxicosis and aging in addition to lipotoxicity. Our research provided a convenient and appropriate animal model for exploring aging mechanism and antiaging drugs.
Collapse
Affiliation(s)
- Qin Feng
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Wenkai Xia
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Zhong Feng
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Yujun Tan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Yongxia Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Guimin Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| |
Collapse
|
11
|
Galow AM, Brenmoehl J, Hoeflich A. Synergistic effects of hormones on structural and functional maturation of cardiomyocytes and implications for heart regeneration. Cell Mol Life Sci 2023; 80:240. [PMID: 37541969 PMCID: PMC10403476 DOI: 10.1007/s00018-023-04894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
The limited endogenous regenerative capacity of the human heart renders cardiovascular diseases a major health threat, thus motivating intense research on in vitro heart cell generation and cell replacement therapies. However, so far, in vitro-generated cardiomyocytes share a rather fetal phenotype, limiting their utility for drug testing and cell-based heart repair. Various strategies to foster cellular maturation provide some success, but fully matured cardiomyocytes are still to be achieved. Today, several hormones are recognized for their effects on cardiomyocyte proliferation, differentiation, and function. Here, we will discuss how the endocrine system impacts cardiomyocyte maturation. After detailing which features characterize a mature phenotype, we will contemplate hormones most promising to induce such a phenotype, the routes of their action, and experimental evidence for their significance in this process. Due to their pleiotropic effects, hormones might be not only valuable to improve in vitro heart cell generation but also beneficial for in vivo heart regeneration. Accordingly, we will also contemplate how the presented hormones might be exploited for hormone-based regenerative therapies.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| |
Collapse
|
12
|
Gnanasekaran R, Aickareth J, Hawwar M, Sanchez N, Croft J, Zhang J. CmPn/CmP Signaling Networks in the Maintenance of the Blood Vessel Barrier. J Pers Med 2023; 13:jpm13050751. [PMID: 37240921 DOI: 10.3390/jpm13050751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) arise when capillaries within the brain enlarge abnormally, causing the blood-brain barrier (BBB) to break down. The BBB serves as a sophisticated interface that controls molecular interactions between the bloodstream and the central nervous system. The neurovascular unit (NVU) is a complex structure made up of neurons, astrocytes, endothelial cells (ECs), pericytes, microglia, and basement membranes, which work together to maintain blood-brain barrier (BBB) permeability. Within the NVU, tight junctions (TJs) and adherens junctions (AJs) between endothelial cells play a critical role in regulating the permeability of the BBB. Disruptions to these junctions can compromise the BBB, potentially leading to a hemorrhagic stroke. Understanding the molecular signaling cascades that regulate BBB permeability through EC junctions is, therefore, essential. New research has demonstrated that steroids, including estrogens (ESTs), glucocorticoids (GCs), and metabolites/derivatives of progesterone (PRGs), have multifaceted effects on blood-brain barrier (BBB) permeability by regulating the expression of tight junctions (TJs) and adherens junctions (AJs). They also have anti-inflammatory effects on blood vessels. PRGs, in particular, have been found to play a significant role in maintaining BBB integrity. PRGs act through a combination of its classic and non-classic PRG receptors (nPR/mPR), which are part of a signaling network known as the CCM signaling complex (CSC). This network couples both nPR and mPR in the CmPn/CmP pathway in endothelial cells (ECs).
Collapse
Affiliation(s)
- Revathi Gnanasekaran
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Justin Aickareth
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Majd Hawwar
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Nickolas Sanchez
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jacob Croft
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
13
|
Khadka S, Druffner SR, Duncan BC, Busada JT. Glucocorticoid regulation of cancer development and progression. Front Endocrinol (Lausanne) 2023; 14:1161768. [PMID: 37143725 PMCID: PMC10151568 DOI: 10.3389/fendo.2023.1161768] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Glucocorticoids are steroid hormones that regulate a host of cellular and physiological functions. However, they are arguably best known for their potent anti-inflammatory properties. Chronic inflammation is well-known to promote the development and progression of numerous types of cancer, and emerging evidence suggests that glucocorticoid regulation of inflammation affects cancer development. However, the timing, intensity, and duration of glucocorticoid signaling have important but often contradictory effects on cancer development. Moreover, glucocorticoids are widely used in parallel with radiation and chemotherapy to control pain, dyspnea, and swelling, but their use may compromise anti-tumor immunity. This review will explore the effects of glucocorticoids on cancer development and progression with particular focus on pro and anti-tumor immunity.
Collapse
|
14
|
Mousa SA, Dehe L, Aboryag N, Shaqura M, Beyer A, Schäfer M, Treskatsch S. Identification of glucocorticoid receptors as potential modulators of parasympathetic and sympathetic neurons within rat intracardiac ganglia. Front Neuroanat 2022; 16:902738. [PMID: 36213610 PMCID: PMC9539283 DOI: 10.3389/fnana.2022.902738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background Emerging evidences indicate that glucocorticoid receptors (GR) play a regulatory role in cardiac function, particularly with regard to the autonomic nervous system. Therefore, this study aimed to demonstrate the expression and the precise anatomical location of GR in relation to the parasympathetic and sympathetic innervations of the heart. Methods The present study used tissue samples from rat heart atria to perform conventional reverse-transcriptase polymerase chain reaction (RT-PCR), Western blot, and double immunofluorescence confocal analysis of GR with the neuronal markers vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP) as well as the mineralocorticoid receptor (MR). Results Double immunofluorescence labeling revealed that GRs were co-expressed with VAChT in parasympathetic principal neuronal somata and nerve terminals innervating atrium. Also, GR colocalized with the sympathetic neuronal marker TH in a cluster of small intensely fluorescent (SIF) cells, on intracardiac nerve terminals and in the atrial myocardium. GR immunoreactivity was scarcely identified on CGRP-immunoreactive sensory nerve terminals. Approximately 20% of GR immunoreactive neuronal somata co-localized with MR. Finally, conventional RT-PCR and Western blot confirmed the presence of GR and MR in rat heart atria. Conclusion This study provides evidence for the existence of GR predominantly on cardiac parasympathetic neurons and TH-immunoreactive SIF cells suggesting a functional role of cardiac GR on cardiovascular function by modulation of the cardiac autonomic nervous system.
Collapse
Affiliation(s)
- Shaaban A. Mousa
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Lukas Dehe
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Noureddin Aboryag
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Mohammed Shaqura
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Antje Beyer
- Department of Anaesthesiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Schäfer
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Sascha Treskatsch
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
15
|
Analysis of Genetic Variants in the Glucocorticoid Receptor Gene NR3C1 and Stenosis of the Carotid Artery in a Polish Population with Coronary Artery Disease. Biomedicines 2022; 10:biomedicines10081912. [PMID: 36009459 PMCID: PMC9405671 DOI: 10.3390/biomedicines10081912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Early diagnosis and elimination of risk factors are crucial for better managing CVDs. Atherosclerosis, whose development might be associated with glucocorticoids (GCs), is a critical factor in the development of carotid artery (CA) stenosis and most other CVDs. Aim: To investigate the association of Tth111I, N363S, and ER22/23EK-NR3C1 polymorphisms and the incidence of CA stenosis. Methods: The study group consisted of 117 patients diagnosed with coronary artery disease (CAD) and CA stenosis and 88 patients with CAD and ruled out CA stenosis. Genomic DNA was extracted from blood, and genotyping was carried out using Tth111I, N363S, and ER22/23EK-NR3C1 polymorphism sequencing. Results: No significant association between studied polymorphisms and the incidence or the severity of CA stenosis in the Polish population with CAD was found. Conclusion: This is the first study that proves that common NR3C1 gene variants do not influence CA stenosis and probably are not associated with atherosclerosis. The search for genes that can act as prognostic markers in predicting CA stenosis is still ongoing.
Collapse
|
16
|
Abstract
Mammalian cardiomyocytes mostly utilize oxidation of fatty acids to generate ATP. The fetal heart, in stark contrast, mostly uses anaerobic glycolysis. During perinatal development, thyroid hormone drives extensive metabolic remodeling in the heart for adaptation to extrauterine life. These changes coincide with critical functional maturation and exit of the cell cycle, making the heart a post-mitotic organ. Here, we review the current understanding on the perinatal shift in metabolism, hormonal status, and proliferative potential in cardiomyocytes. Thyroid hormone and glucocorticoids have roles in adult cardiac metabolism, and both pathways have been implicated as regulators of myocardial regeneration. We discuss the evidence that suggests these processes could be interrelated and how this can help explain variation in cardiac regeneration across ontogeny and phylogeny, and we note what breakthroughs are still to be made.
Collapse
Affiliation(s)
- Niall Graham
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
- Correspondence: Guo N Huang, Ph.D., University of California San Francisco, 555 Mission Bay Blvd South, Room 352V, San Francisco, CA 94158, USA.
| |
Collapse
|
17
|
Pilz S, Theiler-Schwetz V, Trummer C, Keppel MH, Grübler MR, Verheyen N, Odler B, Meinitzer A, Voelkl J, März W. Associations of Serum Cortisol with Cardiovascular Risk and Mortality in Patients Referred to Coronary Angiography. J Endocr Soc 2021; 5:bvab017. [PMID: 33869979 PMCID: PMC8041336 DOI: 10.1210/jendso/bvab017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 12/26/2022] Open
Abstract
CONTEXT Serum cortisol may be associated with cardiovascular risk factors and mortality in patients undergoing coronary angiography, but previous data on this topic are limited and controversial. OBJECTIVE We evaluated whether morning serum cortisol is associated with cardiovascular risk factors, lymphocyte subtypes, and mortality. METHODS This is a prospective cohort study performed at a tertiary care centre in south-west Germany between 1997 and 2000. We included 3052 study participants who underwent coronary angiography. The primary outcome measures were cardiovascular risk factors, lymphocyte subtypes, and all-cause and cardiovascular mortality. RESULTS Serum cortisol was associated with an adverse cardiovascular risk profile, but there was no significant association with coronary artery disease or acute coronary syndrome. In a subsample of 2107 participants, serum cortisol was positively associated with certain lymphocyte subsets, including CD16+CD56+ (natural killer) cells (P < 0.001). Comparing the fourth versus the first serum cortisol quartile, the crude Cox proportional hazard ratios (with 95% CIs) were 1.22 (1.00-1.47) for all-cause and 1.32 (1.04-1.67) for cardiovascular mortality, respectively. After adjustments for various cardiovascular risk factors, these associations were attenuated to 0.93 (0.76-1.14) for all-cause, and 0.97 (0.76-1.25) for cardiovascular mortality, respectively. CONCLUSIONS Despite significant associations with classic cardiovascular risk factors and natural killer cells, serum cortisol was not a significant and independent predictor of mortality in patients referred to coronary angiography. These findings might reflect that adverse cardiovascular effects of cortisol could be counterbalanced by some cardiovascular protective actions.
Collapse
Affiliation(s)
- Stefan Pilz
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria
| | - Verena Theiler-Schwetz
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria
| | - Christian Trummer
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria
| | - Martin H Keppel
- University Institute for Medical and Chemical Laboratory Diagnostics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Martin R Grübler
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria
- Department of Geriatrics and Aging Research, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Nicolas Verheyen
- Department of Cardiology, Medical University of Graz, 8036 Graz, Austria
| | - Balazs Odler
- Department of Internal Medicine, Division of Nephrology, Medical University of Graz, 8036 Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics Medical, University of Graz, 8036 Graz, Austria
| | - Jakob Voelkl
- Institute for Physiology, Johannes Kepler University Linz, 4040 Linz, Austria
- Departments of Nephrology and Medical Intensive Care and Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10785 Berlin, Germany
| | - Winfried März
- Department of Internal Medicine, Division of Nephrology, Medical University of Graz, 8036 Graz, Austria
- Synlab Academy, 68159 Mannheim, Germany
- Medical Clinic V (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
18
|
Cruz-Topete D. Meet Our Editorial Board Member. Curr Drug Targets 2021. [DOI: 10.2174/138945012206210309121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- D. Cruz-Topete
- LSU Health Sciences Center-Shreveport Shreveport, LA,United States
| |
Collapse
|
19
|
Amram AV, Cutie S, Huang GN. Hormonal control of cardiac regenerative potential. Endocr Connect 2021; 10:R25-R35. [PMID: 33320107 PMCID: PMC7923045 DOI: 10.1530/ec-20-0503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 01/07/2023]
Abstract
Research conducted across phylogeny on cardiac regenerative responses following heart injury implicates endocrine signaling as a pivotal regulator of both cardiomyocyte proliferation and heart regeneration. Three prominently studied endocrine factors are thyroid hormone, vitamin D, and glucocorticoids, which canonically regulate gene expression through their respective nuclear receptors thyroid hormone receptor, vitamin D receptor, and glucocorticoid receptor. The main animal model systems of interest include humans, mice, and zebrafish, which vary in cardiac regenerative responses possibly due to the differential onsets and intensities of endocrine signaling levels throughout their embryonic to postnatal organismal development. Zebrafish and lower vertebrates tend to retain robust cardiac regenerative capacity into adulthood while mice and other higher vertebrates experience greatly diminished cardiac regenerative potential in their initial postnatal period that is sustained throughout adulthood. Here, we review recent progress in understanding how these three endocrine signaling pathways regulate cardiomyocyte proliferation and heart regeneration with a particular focus on the controversial findings that may arise from different assays, cellular-context, age, and species. Further investigating the role of each endocrine nuclear receptor in cardiac regeneration from an evolutionary perspective enables comparative studies between species in hopes of extrapolating the findings to novel therapies for human cardiovascular disease.
Collapse
Affiliation(s)
- Alexander V Amram
- Department of Physiology, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| | - Stephen Cutie
- Department of Physiology, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| | - Guo N Huang
- Department of Physiology, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
- Correspondence should be addressed to G N Huang:
| |
Collapse
|