1
|
Duong V, Bergerat A, Pooladanda V, Mitchell CM. Effect of Reproductive Tract Microbiota on Vaginal Fibroblasts in Pelvic Organ Prolapse. UROGYNECOLOGY (PHILADELPHIA, PA.) 2024:02273501-990000000-00316. [PMID: 39715050 DOI: 10.1097/spv.0000000000001615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
IMPORTANCE The effect of vaginal bacteria on wound healing is an evolving area of study. Bacterial vaginosis (BV), characterized by an overgrowth of anaerobic bacteria, is linked to increased surgical site infections after pelvic surgery. While BV-associated microbes are known to impair epithelial repair, their effects on fibroblasts, which are crucial for wound healing and prolapse recurrence after pelvic organ prolapsesurgery, are unclear. Understanding these interactions can deepen knowledge of vaginal tissue remodeling. OBJECTIVE This study aimed to compare the effects of BV-associated bacteria and commensal lactobacilli on fibroblast cell number and function, using estradiol as a positive control. STUDY DESIGN Fibroblasts were isolated from vaginal wall biopsies of 9 participants undergoing pelvic organ prolapse surgery. Cells were co-cultured in media alone, media containing estradiol, and media with cell-free supernatants (CFS) from Lactobacillus crispatus, Lactobacillus iners, and Gardnerella vaginalis. Intact cell number was assessed using an lactate dehydrogenase assay at 0, 24, and 48 hours, and ELISA measured IL-6, type I collagen, and fibronectin levels. RESULTS Fibroblasts exposed to G vaginalis CFS showed significantly reduced cell number and type I collagen production, with increased fibronectin levels. Cell-free supernatants from L crispatus and L iners did not affect fibroblast proliferation. While some donor cells showed an increase in cell number with estradiol, the change was inconsistent and not statistically significant. IL-6 levels showed a nonsignificant increase with any bacterial CFS. CONCLUSIONS G vaginalis significantly impairs fibroblast cell number and type I collagen production, suggesting BV-associated microbes may alter fibroblast function, emphasizing the vaginal microbiome's role in outcomes.
Collapse
Affiliation(s)
- Vi Duong
- From the Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Boston, MA
| | - Agnes Bergerat
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Vincent Center for Reproductive Biology, Boston, MA
| | | | - Caroline M Mitchell
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Vincent Center for Reproductive Biology, Boston, MA
| |
Collapse
|
2
|
Hinton A, Neikirk K, Le H, Harris C, Oliver A, Martin P, Gaye A. Estrogen receptors in mitochondrial metabolism: age-related changes and implications for pregnancy complications. AGING ADVANCES 2024; 1:154-171. [PMID: 39839811 PMCID: PMC11748122 DOI: 10.4103/agingadv.agingadv-d-24-00012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/24/2024] [Indexed: 01/23/2025]
Abstract
Estrogen hormones are primarily associated with their role as female sex hormones responsible for primary and secondary sexual development. Estrogen receptors are known to undergo age-dependent decreases due to age-related changes in hormone production. In the mitochondria, estrogen functions by reducing the production of reactive oxygen species in the electron transport chain, inhibiting apoptosis, and regulating mitochondrial DNA content. Moreover, estrogen receptors may be the key components in maintaining mitochondrial membrane potential and structure. Although estrogen plays a crucial role in the development of pregnancy, our understanding of how estrogen receptors change with aging during pregnancy remains limited. During pregnancy, estrogen levels are significantly elevated, with a corresponding upregulation of estrogen receptors, which play various roles in pregnancy. However, the exact role of estrogen receptors in pregnancy complications remains to be further investigated. The paper reviews the role of estrogen receptors in the regulation of mitochondrial metabolism and in pregnancy complications, with a special focus on the effect of age-related changes on estrogen levels and estrogen receptors function. We also address how estrogen maintains mitochondrial function, including reducing the production of reactive oxygen species in the electron transport chain, inhibiting apoptosis, regulating mitochondrial DNA content, and maintaining mitochondrial membrane potential and structure. However, the effects of estrogen on mitochondria-endoplasmic reticulum contacts have not been well studied. Based on these emergent roles in mitochondria, the differential roles of estrogen receptors in pregnancy complications are of great relevance. The paper emphasizes the association between maternal health and estrogen receptors and indicates the need for future research to elucidate the interdependence of estrogen receptor-regulated maternal health with mitochondrial function and their relationship with the gut microbiome. Overall, we summarize the important role of estrogen receptors during pregnancy and highlight the need for further research to better understand the role of estrogen receptors in aging and pregnancy complications. This not only helps to reveal the mechanism underlying the role of estrogen in maternal health but also has potential clinical implications for the development of new therapies targeting age-related diseases and pregnancy complications.
Collapse
Affiliation(s)
- Antentor Hinton
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kit Neikirk
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Han Le
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Chanel Harris
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Sciences, Meharry Medical College, Nashville, TN, USA
| | - Ashton Oliver
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Sciences, Meharry Medical College, Nashville, TN, USA
| | - Pamela Martin
- Department of Biomedical Sciences, Meharry Medical College, Nashville, TN, USA
| | - Amadou Gaye
- Department of Integrative Genomics and Epidemiology, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
3
|
Gudde AN, van Velthoven MJJ, Kouwer PHJ, Roovers JPWR, Guler Z. Injectable polyisocyanide hydrogel as healing supplement for connective tissue regeneration in an abdominal wound model. Biomaterials 2023; 302:122337. [PMID: 37793268 DOI: 10.1016/j.biomaterials.2023.122337] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/07/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023]
Abstract
In pelvic organ prolapse (POP) patients, the uterus, bladder and/or rectum descends into vagina due to weakened support tissues. High recurrence rates after POP surgery suggest an urgent need for improved surgical outcomes. Our aim is to promote connective tissue healing that results in stimulated tissue support functions by surgically applying a hydrogel functionalized with biological cues. We used known vaginal wound healing promoting factors (basic fibroblast growth factor, β-estradiol, adipose-derived stem cells) in the biomimetic and injectable polyisocyanide (PIC) hydrogel, which in itself induces regenerative vaginal fibroblast behavior. The regenerative capacity of injected PIC hydrogel, and the additional pro-regenerative effects of these bioactive factors was evaluated in abdominal wounds in rabbits. Assessment of connective tissue healing (tensile testing, histology, immunohistochemistry) revealed that injection with all PIC formulations resulted in a statistically significant stiffness and collagen increase over time, in contrast to sham. Histological evaluation indicated new tissue growth with moderate to mild immune activity at the hydrogel - tissue interface. The results suggest that PIC injection in an abdominal wound improves healing towards regaining load-bearing capacity, which encourages us to investigate application of the hydrogel in a more translational vaginal model for POP surgery in sheep.
Collapse
Affiliation(s)
- Aksel N Gudde
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Melissa J J van Velthoven
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands; Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Jan-Paul W R Roovers
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Zeliha Guler
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Wu X, Liu X, Li T. Potential molecular targets for intervention in pelvic organ prolapse. Front Med (Lausanne) 2023; 10:1158907. [PMID: 37731721 PMCID: PMC10508236 DOI: 10.3389/fmed.2023.1158907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/17/2023] [Indexed: 09/22/2023] Open
Abstract
Pelvic organ prolapse (POP) is a concerning gynecological benign illness in middle-aged and senior women. Its etiology is complex, the incidence rate is high, symptoms are clinically subjective, and its influence tends to be polarized. At present, for those who need medical treatment, whether surgical or non-surgical, complications cannot be ignored, and treatment effect needs to be optimized. However, there is a lack of accurate molecular biological interventions for the prevention, diagnosis, progression delay, and treatment of POP. Here, we reviewed the current state of understanding of the molecular mechanisms and factors associated with POP etiology. These factors include cyclins, matrix metal peptidases/tissue inhibitors of metalloproteinases, microRNAs, homeobox A11, transforming growth factor β1, insulin-like growth factor 1, fibulin 5, lysyl oxidase-like 1, oxidative stress, inflammatory response, estrogen, and other potential biomarkers associated with POP. In addition, relevant molecular targets that may be used to intervene in POP are summarized. The aim of this review was to provide more information to identify accurate potential biomarkers and/or molecular targets for the prevention, diagnosis, progression delay, and treatment of POP, with the goal of improving medical treatment for patients at-risk for POP or having POP. Continued research is needed to identify additional details of currently accepted molecular mechanisms and to identify additional mechanisms that contribute to POP.
Collapse
Affiliation(s)
| | - Xiaochun Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | | |
Collapse
|
5
|
Cai P, Yuan H, Gao Z, Qiao H, Zhang W, Jiang S, Xiong Y, Gong Y, Wu Y, Jin S, Fu H. 17β-Estradiol Induced Sex Reversal and Gonadal Transcriptome Analysis in the Oriental River Prawn ( Macrobrachium nipponense): Mechanisms, Pathways, and Potential Harm. Int J Mol Sci 2023; 24:ijms24108481. [PMID: 37239827 DOI: 10.3390/ijms24108481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Sex reversal induced by 17β-estradiol (E2) has shown the potential possibility for monoculture technology development. The present study aimed to determine whether dietary supplementation with different concentrations of E2 could induce sex reversal in M. nipponense, and select the sex-related genes by performing the gonadal transcriptome analysis of normal male (M), normal female (FM), sex-reversed male prawns (RM), and unreversed male prawns (NRM). Histology, transcriptome analysis, and qPCR were performed to compare differences in gonad development, key metabolic pathways, and genes. Compared with the control, after 40 days, feeding E2 with 200 mg/kg at PL25 (PL: post-larvae developmental stage) resulted in the highest sex ratio (female: male) of 2.22:1. Histological observations demonstrated the co-existence of testis and ovaries in the same prawn. Male prawns from the NRM group exhibited slower testis development without mature sperm. RNA sequencing revealed 3702 differentially expressed genes (DEGs) between M vs. FM, 3111 between M vs. RM, and 4978 between FM vs. NRM. Retinol metabolism and nucleotide excision repair pathways were identified as the key pathways for sex reversal and sperm maturation, respectively. Sperm gelatinase (SG) was not screened in M vs. NRM, corroborating the results of the slice D. In M vs. RM, reproduction-related genes such as cathepsin C (CatC), heat shock protein cognate (HSP), double-sex (Dsx), and gonadotropin-releasing hormone receptor (GnRH) were expressed differently from the other two groups, indicating that these are involved in the process of sex reversal. Exogenous E2 can induce sex reversal, providing valuable evidence for the establishment of monoculture in this species.
Collapse
Affiliation(s)
- Pengfei Cai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Zijian Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shubo Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
6
|
Bhatia V, Stevens T, Derks MFL, Dunkelberger J, Knol EF, Ross JW, Dekkers JCM. Identification of the genetic basis of sow pelvic organ prolapse. Front Genet 2023; 14:1154713. [PMID: 37144137 PMCID: PMC10151575 DOI: 10.3389/fgene.2023.1154713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction: Pelvic organ prolapse (POP) is one contributor to recent increases in sow mortality that have been observed in some populations and environments, leading to financial losses and welfare concerns. Methods: With inconsistent previous reports, the objective here was to investigate the role of genetics on susceptibility to POP, using data on 30,429 purebred sows, of which 14,186 were genotyped (25K), collected from 2012 to 2022 in two US multiplier farms with a high POP incidence of 7.1% among culled and dead sows and ranging from 2% to 4% of all sows present by parity. Given the low incidence of POP for parities 1 and >6, only data from parities 2 to 6 were retained for analyses. Genetic analyses were conducted both across parities, using cull data (culled for POP versus another reason), and by parity, using farrowing data. (culled for POP versus culled for another reason or not culled). Results and Discussion: Estimates of heritability from univariate logit models on the underlying scale were 0.35 ± 0.02 for the across-parity analysis and ranged from 0.41 ± 0.03 in parity 2 to 0.15 ± 0.07 in parity 6 for the by-parity analyses. Estimates of genetic correlations of POP between parities based on bivariate linear models indicated a similar genetic basis of POP across parities but less similar with increasing distance between parities. Genome wide association analyses revealed six 1 Mb windows that explained more than 1% of the genetic variance in the across-parity data. Most regions were confirmed in several by-parity analyses. Functional analyses of the identified genomic regions showed a potential role of several genes on chromosomes 1, 3, 7, 10, 12, and 14 in susceptibility to POP, including the Estrogen Receptor gene. Gene set enrichment analyses showed that genomic regions that explained more variation for POP were enriched for several terms from custom transcriptome and gene ontology libraries. Conclusion: The influence of genetics on susceptibility to POP in this population and environment was confirmed and several candidate genes and biological processes were identified that can be targeted to better understand and mitigate the incidence of POP.
Collapse
Affiliation(s)
- Vishesh Bhatia
- Department of Animal Science, Iowa State University, Ames, IA, United States
- *Correspondence: Vishesh Bhatia,
| | - Tomas Stevens
- Topigs Norsvin Research Center, Beuningen, Netherlands
| | | | | | | | - Jason W. Ross
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Jack C. M. Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
Verhorstert K, Gudde A, Weitsz C, Bezuidenhout D, Roovers JP, Guler Z. Absorbable Electrospun Poly-4-hydroxybutyrate Scaffolds as a Potential Solution for Pelvic Organ Prolapse Surgery. ACS APPLIED BIO MATERIALS 2022; 5:5270-5280. [PMID: 36315937 PMCID: PMC9682484 DOI: 10.1021/acsabm.2c00691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Women with pelvic organ prolapse (POP) have bothersome complaints that significantly affect their quality of life. While native tissue repair is associated with high recurrence rates, polypropylene knitted implants have caused specific implant-related adverse events that have detrimental, often irreversible, effects. We hypothesize that surgical outcome can be improved with a tissue-engineered solution using an absorbable implant that mimics the natural extracellular matrix (ECM) structure, releases estrogen, and activates collagen metabolism by fibroblasts as the main regulators of wound healing. To this aim, we produced electrospun poly-4-hydroxybutyrate (P4HB) scaffolds and biofunctionalized them with estradiol (E2). The cell-implant interactions relevant for POP repair were assessed by seeding primary POP vaginal fibroblasts isolated from patients on electrospun P4HB scaffolds with 1%, 2%, or 5% E2 and without E2. To test our hypothesis on whether ECM mimicking structures should improve regeneration, electrospun P4HB was compared to knitted P4HB implants. We evaluated vaginal fibroblast proliferation, ECM deposition, and metabolism by quantification of collagen, elastin, and matrix metalloproteinases and by gene expression analysis for 28 days. We established effective E2 drug loading with a steady release over time. Significantly higher cell proliferation, collagen-, and elastin deposition were observed on electrospun P4HB scaffolds as compared to knitted P4HB. For this study, physical properties of the scaffolds were more determinant on the cell response than the release of E2. These results indicate that making these electrospun P4HB scaffolds E2-releasing appears to be technically feasible. In addition, electrospun P4HB scaffolds promote the cellular response of vaginal fibroblasts and further studies are merited to assess if their use results in improved surgical outcomes in case of POP repair.
Collapse
Affiliation(s)
- Kim Verhorstert
- Department
of Obstetrics and Gynecology, Amsterdam
UMC, University of Amsterdam, Meibergdreef 9, 1105
AZAmsterdam, The Netherlands,Amsterdam
Reproduction and Development Research Institute, Meibergdreef 9, 1105
AZAmsterdam, The Netherlands
| | - Aksel Gudde
- Department
of Obstetrics and Gynecology, Amsterdam
UMC, University of Amsterdam, Meibergdreef 9, 1105
AZAmsterdam, The Netherlands,Amsterdam
Reproduction and Development Research Institute, Meibergdreef 9, 1105
AZAmsterdam, The Netherlands
| | - Carmen Weitsz
- Cardiovascular
Research Unit, Department of Surgery, University
of Cape Town, 203 Chris Barnard Building, Anzio Road, Observatory7925Cape Town, South Africa
| | - Deon Bezuidenhout
- Cardiovascular
Research Unit, Department of Surgery, University
of Cape Town, 203 Chris Barnard Building, Anzio Road, Observatory7925Cape Town, South Africa
| | - Jan-Paul Roovers
- Department
of Obstetrics and Gynecology, Amsterdam
UMC, University of Amsterdam, Meibergdreef 9, 1105
AZAmsterdam, The Netherlands,Amsterdam
Reproduction and Development Research Institute, Meibergdreef 9, 1105
AZAmsterdam, The Netherlands
| | - Zeliha Guler
- Department
of Obstetrics and Gynecology, Amsterdam
UMC, University of Amsterdam, Meibergdreef 9, 1105
AZAmsterdam, The Netherlands,Amsterdam
Reproduction and Development Research Institute, Meibergdreef 9, 1105
AZAmsterdam, The Netherlands,
| |
Collapse
|
8
|
Xie T, Guo D, Guo T, Zhu Y, Li F, Zhang S, Lang J, Sun Z. The protective effect of 17 β-estradiol on human uterosacral ligament fibroblasts from postmenopausal women with pelvic organ prolapse. Front Physiol 2022; 13:980843. [PMID: 36299259 PMCID: PMC9589284 DOI: 10.3389/fphys.2022.980843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
This study aims to explore the protective effects of 17 β-estradiol on the human uterosacral ligament fibroblasts (hUSLFs) under static or stretched conditions. The experiments were performed on hUSLFs derived from pelvic organ prolapse (POP) and non-POP patients. Fibroblasts were cultured after collagenase digestion and identified by morphological observation and immunocytochemical methods. 17 β-estradiol (10−10 M and 10−9 M) and mechanical stress induced by the FX-5000 T-cell stress loading system under a loading strain of 1/2 sin waveform uniaxial cyclic stress with a tensile strain of 20% and a frequency of 0.5 Hz were either or both applied on hUSLFs. Cell proliferation was measured by CCK8, and cell apoptosis and death were detected using Annexin V/7-AAD staining and flow cytometric analysis. We found that the fibroblasts growth rate of POP patients was significantly lower than controls. The cell apoptosis and death rate increased as the mechanical load intensifying. After 20% mechanical stretching for 24 h, the dead cell rate was higher in POP than control. Notably, 17 β-estradiol treatment reversed mechanical stress induced hUSLFs apoptosis and death in both POP and Control cells. The protein and mRNA levels of anti-apoptotic PARP1 (poly-ADP-ribose polymerase) and Bcl-2 were increased by estrogen treatment. Meanwhile, expression of estrogen receptor α, a target of Poly-ADP-Ribosylation of PARP1, was also enhanced by 17 β-estradiol under the mechanical load. In conclusion, estrogen application ameliorates the mechanical strain induced cell apoptosis and death in hUSLFs from POP patients. PARP1 might be involved in this protective process, providing novel insights into the mechanical biology of and possible therapies for POP.
Collapse
Affiliation(s)
- Ting Xie
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dan Guo
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Guo
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Yapei Zhu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Fangyuan Li
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sumei Zhang
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Zhijing Sun
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
- *Correspondence: Zhijing Sun,
| |
Collapse
|
9
|
Wang X, He R, Nian S, Xiao B, Wang Y, Zhang L, Wang X, Guo R, Lu Y. Treatment of Pelvic Organ Prolapse by the Downregulation of the Expression of Mitofusin 2 in Uterosacral Ligament Tissue via Mesenchymal Stem Cells. Genes (Basel) 2022; 13:genes13050829. [PMID: 35627214 PMCID: PMC9141332 DOI: 10.3390/genes13050829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The relationship between pelvic organ prolapse (POP), an aging-related disease, and the senescence-related protein mitofusin 2 (Mfn2) has rarely been studied. The aim of the present study was to explore the therapeutic effects of the downregulation of Mfn2 expression by stem cells on POP through animal experiments. Methods: First, a rat POP model was constructed by ovariectomy and traction. The rats in the non-pelvic organ prolapse (NPOP) and POP groups were divided into four groups for negative controls (N1−N4, N1: NPOP-normal saline; N2: NPOP-untransfected stem cells; N3: NPOP-short hairpin negative control (NPOP-sh-NC); N4: NPOP-short hairpin-Mfn2 (NPOP-sh-Mfn2)), and four groups for prolapse (P1−P4, P1: POP-normal saline; P2: POP-untransfected stem cells; P3: POP-sh-NC; P4: POP-sh-Mfn2), respectively. Stem cells were then cultured and isolated. The expression of Mfn2 was inhibited by lentivirus transfection, and the stem cells were injected into the uterosacral ligament of the rats in each group. The expression levels of Mfn2 and procollagen 1A1/1A2/3A1 in the uterosacral ligaments of the rats were observed at 0, 7, 14, and 21 days after injection. Results: Compared to the rats in the NPOP group, the POP rats had significant prolapse. The Mfn2 expression in the uterosacral ligaments of the POP rats was significantly increased (p < 0.05, all), and the expression of procollagen 1A1/1A2/3A1 was significantly decreased (p < 0.001, all). The POP rat model maintained the same trend after 21 days (without stem cell injection). At day 14, compared to the rats in the N1 group, the Mfn2 expression in the uterosacral ligament of the rats in the N4 group was significantly decreased (p < 0.05, all), and the expression of procollagens was significantly increased (p < 0.05, all). Similarly, compared to the rats in the P1 group, the Mfn2 expression in the uterosacral ligament of the rats in the P4 group was significantly decreased (p < 0.05, all), and the expression of procollagens was significantly increased (p < 0.05, all). Similarly, on day 21, the Mfn2 mRNA and protein expression in the uterosacral ligament of the POP and NPOP rats was significantly decreased (p < 0.05, all), and the expression of procollagens was significantly increased (p < 0.05, all) in the rats in the sh-Mfn2 group (N4, P4) compared to the rats in the saline group (N1, P1). Conclusions: The downregulation of Mfn2 expression by stem cells decreased the expression of Mfn2 and increased the expression of procollagen1A1/1A2/3A1 in the uterosacral ligament of the POP rats; this effect was significant 14−21 days after the injection. Thus, Mfn2 may be a new target for POP control.
Collapse
|