1
|
Andrani M, Dall’Olio E, De Rensis F, Tummaruk P, Saleri R. Bioactive Peptides in Dairy Milk: Highlighting the Role of Melatonin. Biomolecules 2024; 14:934. [PMID: 39199322 PMCID: PMC11352677 DOI: 10.3390/biom14080934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Melatonin, an endogenous indolamine derived from tryptophan, is primarily synthesized by the pineal gland in mammals and regulated by a complex neural system. Its release follows a circadian rhythm, which is crucial for regulating physiological processes in response to light-dark cycles in both humans and animals. In this review, we report that the presence of this hormone in bovine milk, with significant differences in concentration between daytime and nighttime milking, has increased interest in milk as a natural source of bioactive molecules. Melatonin lowers cortisol levels at night, reduces body temperature and blood pressure, coinciding with decreased alertness and performance, acts as an antioxidant and anti-inflammatory agent, modulates the immune system, offers neuroprotective benefits, and supports gastrointestinal health by scavenging free radicals and reducing oxidative stress in dairy cows. Many factors influence the release of melatonin, such as the intensity of artificial lighting during nighttime milking, the frequency of milkings, milk yield, and genetic differences between animals. Nocturnal milking under low-intensity light boosts melatonin, potentially reducing oxidative damage and mastitis risk. Additionally, ultra-high temperature (UHT) treatment does not significantly affect the melatonin content in milk. However, further research on its stability during milk processing and storage is crucial for ensuring product efficacy. In some countries, nighttime milk with naturally elevated melatonin content is already commercialized as a natural aid for sleep. Thus, naturally melatonin-rich milk may be a promising alternative to synthetic supplements for promoting better sleep and overall well-being.
Collapse
Affiliation(s)
- Melania Andrani
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (E.D.); (F.D.R.); (R.S.)
| | - Eleonora Dall’Olio
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (E.D.); (F.D.R.); (R.S.)
| | - Fabio De Rensis
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (E.D.); (F.D.R.); (R.S.)
| | - Padet Tummaruk
- Centre of Excellence in Swine Reproduction, Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Roberta Saleri
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (E.D.); (F.D.R.); (R.S.)
| |
Collapse
|
2
|
Lin WW, Ou GY, Dai HF, Zhao WJ. Neuregulin 4 (Nrg4) cooperates with melatonin to regulate the PRL expression via ErbB4/Erk signaling pathway as a potential prolactin (PRL) regulator. J Cell Biochem 2024; 125:e30551. [PMID: 38465779 DOI: 10.1002/jcb.30551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Neuregulin-4 (Nrg4) and melatonin play vital roles in endocrine diseases. However, there is little discussion about the function and potential mechanism of Nrg4 and melatonin in prolactin (PRL) regulation. The human normal pituitary data from Gene Expression Profiling Interactive Analysis (GEPIA) database was used to explore the correlation between NRG4 and PRL. The expression and correlation of NRG4 and PRL were determined by Immunofluorescence staining (IF) and human normal pituitary tissue microarray. Western Blot (WB) was used to detect the expression of PRL, p-ErbB2/3/4, ErbB2/3/4, p-Erk1/2, Erk1/2, p-Akt and Akt in PRL-secreting pituitary GH3 and RC-4B/C cells treated by Nrg4, Nrg4-small interfering RNA, Erk1/2 inhibitor FR180204 and melatonin. The expression of NRG4 was significantly positively correlated with that of PRL in the GEPIA database and normal human pituitary tissues. Nrg4 significantly increased the expression and secretion of PRL and p-Erk1/2 expression in GH3 cells and RC-4B/C cells. Inhibition of Nrg4 significantly inhibited PRL expression. The increased levels of p-Erk1/2 and PRL induced by Nrg4 were abolished significantly in response to FR180204 in GH3 and RC-4B/C cells. Additionally, Melatonin promotes the expression of Nrg4, p-ErbB4, p-Erk1/2, and PRL and can further promote the expression of p-Erk1/2 and PRL in combination with Nrg4. Further investigation into the function of Nrg4 and melatonin on PRL expression and secretion may provide new clues to advance the clinical control of prolactinomas and hyperprolactinemia.
Collapse
Affiliation(s)
- Wen-Wen Lin
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Guan-Yong Ou
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hui-Fang Dai
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Wei-Jiang Zhao
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Royan MR, Hodne K, Nourizadeh-Lillabadi R, Weltzien FA, Henkel C, Fontaine R. Day length regulates gonadotrope proliferation and reproduction via an intra-pituitary pathway in the model vertebrate Oryzias latipes. Commun Biol 2024; 7:388. [PMID: 38553567 PMCID: PMC10980775 DOI: 10.1038/s42003-024-06059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/16/2024] [Indexed: 04/01/2024] Open
Abstract
In seasonally breeding mammals and birds, the production of the hormones that regulate reproduction (gonadotropins) is controlled by a complex pituitary-brain-pituitary pathway. Indeed, the pituitary thyroid-stimulating hormone (TSH) regulates gonadotropin expression in pituitary gonadotropes, via dio2-expressing tanycytes, hypothalamic Kisspeptin, RFamide-related peptide, and gonadotropin-releasing hormone neurons. However, in fish, how seasonal environmental signals influence gonadotropins remains unclear. In addition, the seasonal regulation of gonadotrope (gonadotropin-producing cell) proliferation in the pituitary is, to the best of our knowledge, not elucidated in any vertebrate group. Here, we show that in the vertebrate model Japanese medaka (Oryzias latipes), a long day seasonally breeding fish, photoperiod (daylength) not only regulates hormone production by the gonadotropes but also their proliferation. We also reveal an intra-pituitary pathway that regulates gonadotrope cell number and hormone production. In this pathway, Tsh regulates gonadotropes via folliculostellate cells within the pituitary. This study suggests the existence of an alternative regulatory mechanism of seasonal gonadotropin production in fish.
Collapse
Affiliation(s)
- Muhammad Rahmad Royan
- Department of Preclinical Science and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Kjetil Hodne
- Department of Preclinical Science and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Department of Preclinical Science and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Finn-Arne Weltzien
- Department of Preclinical Science and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Christiaan Henkel
- Department of Preclinical Science and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Romain Fontaine
- Department of Preclinical Science and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
4
|
Kong X, Meerlo P, Hut RA. Melatonin Does Not Affect the Stress-Induced Phase Shifts of Peripheral Clocks in Male Mice. Endocrinology 2023; 165:bqad183. [PMID: 38128120 PMCID: PMC11083644 DOI: 10.1210/endocr/bqad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 12/23/2023]
Abstract
Repeated or chronic stress can change the phase of peripheral circadian rhythms. Melatonin (Mel) is thought to be a circadian clock-controlled signal that might play a role in synchronizing peripheral rhythms, in addition to its direct suppressing effects on the stress axis. In this study we test whether Mel can reduce the social-defeat stress-induced phase shifts in peripheral rhythms, either by modulating circadian phase or by modulating the stress axis. Two experiments were performed with male Mel-deficient C57BL/6J mice carrying the circadian reporter gene construct (PER2::LUC). In the first experiment, mice received night-restricted (ZT11-21) Mel in their drinking water, resulting in physiological levels of plasma Mel peaking in the early dark phase. This treatment facilitated re-entrainment of the activity rhythm to a shifted light-dark cycle, but did not prevent the stress-induced (ZT21-22) reduction of activity during stress days. Also, this treatment did not attenuate the phase-delaying effects of stress in peripheral clocks in the pituitary, lung, and kidney. In a second experiment, pituitary, lung, and kidney collected from naive mice (ZT22-23), were treated with Mel, dexamethasone (Dex), or a combination of the two. Dex application affected PER2 rhythms in the pituitary, kidney, and lung by changing period, phase, or both. Administering Mel did not influence PER2 rhythms nor did it alleviate Dex-induced delays in PER2 rhythms in those tissues. We conclude that exogenous Mel is insufficient to affect peripheral PER2 rhythms and reduce stress effects on locomotor activity and phase changes in peripheral tissues.
Collapse
Affiliation(s)
- Xiangpan Kong
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747AG, the Netherlands
- School of Medicine, Hunan Normal University, Changsha 410013, PR China
| | - Peter Meerlo
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747AG, the Netherlands
| | - Roelof A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747AG, the Netherlands
| |
Collapse
|
5
|
Feng J, Yang J, Jiang Z, Zhou N, Liu X, Zhang G, Yan X, Wang J, Xu X, Guo S, Wang T. Melatonin modulates the hypothalamic-pituitary neuroendocrine axis to regulate physiological color change in teleost fish. Int J Biol Sci 2023; 19:2914-2933. [PMID: 37324950 PMCID: PMC10266084 DOI: 10.7150/ijbs.81055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/21/2023] [Indexed: 06/17/2023] Open
Abstract
Melatonin (MT) is a crucial neuroendocrine regulator of various physiological activities in vertebrates, especially in circadian or seasonal rhythm control. In the present study, the large yellow croaker (Larimichthys crocea), a marine bony fish with circadian body color change behavior, is chosen for functional investigation on teleost MT signaling systems that remain uncharacterized. All five melatonin receptors (LcMtnr1a1, LcMtnr1a2, LcMtnr1b1, LcMtnr1b2, and LcMtnr1c) were significantly activated by MT, triggering extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation through different G protein coupling signaling pathways, with exclusive Gαi-dependency for LcMtnr1a2 and LcMtnr1c, and Gαq-dependency for two LcMtnr1b paralogs, whereas LcMtnr1a1 activated Gαi and Gαs dual-dependent signaling pathways. A comprehensive model of the MT signaling system in the hypothalamic-pituitary neuroendocrine axis was further constructed based on ligand-receptor interaction analysis using single-cell RNA-seq data, as well as spatial expression patterns of Mtnrs and related neuropeptides in central neuroendocrine tissues. A novel regulatory pathway of MT/melanin-concentrating hormone (MCH) and MT/(tachykinin precursor 1 (TAC1)+corticotropin-releasing hormone (CRH))/melanocyte-stimulating hormone (MSH) was discovered that functions in chromatophore mobilization and physiological color change and was further validated by pharmacological experiments. Together, our findings define multiple intracellular signaling pathways mediated by L. crocea melatonin receptors and provide the first in-depth evidence that uncover the upstream modulating roles of the MT signaling system in the hypothalamic-pituitary neuroendocrine axis of a marine teleost species, particularly in chromatophore mobilization and physiological color change.
Collapse
Affiliation(s)
- Jiaqian Feng
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Jingwen Yang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Zhijing Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xue Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Guangbo Zhang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Xiaojun Yan
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Jixiu Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Xiuwen Xu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Su Guo
- Programs in Human Genetics and Biological Sciences, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Tianming Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| |
Collapse
|
6
|
Gómez-Domínguez EG, Toriz CG, González-Pozos S, González-Del-Pliego M, Aguirre-Benítez EL, Pérez-Torres A, Flores-Martinez YM, Solano-Agama C, Rodríguez-Mata V, García-Godínez A, Martínez-Fong D, Mendoza-Garrido ME. Characterization of the rat pituitary capsule: Evidence that the cerebrospinal fluid filled the pituitary cleft and the inner side of the capsule. PLoS One 2023; 18:e0286399. [PMID: 37235567 DOI: 10.1371/journal.pone.0286399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
In humans, the pituitary gland is covered by a fibrous capsule and is considered a continuation of the meningeal sheath. However, in rodents some studies concluded that only the pars tuberalis (PT) and pars nervosa (PN) are enwrapped by the pia mater, while others showed that the whole gland is covered by this sheath. At PT the median eminence subarachnoid drains cerebrospinal fluid (CSF) to its cisternal system representing a pathway to the hypothalamus. In the present study we examined the rat pituitary capsule to elucidate its configuration, its physical interaction with the pituitary border and its relationship with the CSF. Furthermore, we also revisited the histology of the pituitary cleft and looked whether CSF drained in it. To answer such questions, we used scanning and transmission electron microscopy, intracerebroventricular infusion of Evan´s blue, fluorescent beads, and sodium fluorescein. The latter was measured in the pars distalis (PD) and various intracranial tissues. We found a pituitary capsule resembling leptomeninges, thick at the dorsal side of the pars intermedia (PI) and PD, thicker at the level of PI in contiguity with the PN and thinner at the rostro-ventral side as a thin membrane of fibroblast-like cells embedded in a fibrous layer. The capsule has abundant capillaries on all sides. Our results showed that the CSFs bathe between the capsule and the surface of the whole gland, and ciliate cells are present in the pituitary border. Our data suggest that the pituitary gland intercommunicates with the central nervous system (CNS) through the CSF.
Collapse
Affiliation(s)
- Edgar Giovanhi Gómez-Domínguez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - César Gabriel Toriz
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - Sirenia González-Pozos
- Coordinación General de Servicios Experimentales, Microscopía Electrónica, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - Margarita González-Del-Pliego
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Elsa Liliana Aguirre-Benítez
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Yazmin Monserrat Flores-Martinez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - Carmen Solano-Agama
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - Verónica Rodríguez-Mata
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alejandro García-Godínez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - Daniel Martínez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - María Eugenia Mendoza-Garrido
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
7
|
Nakagawa Y, Yamada S. Alterations in Brain Neural Network and Stress System in Atopic Dermatitis: Novel Therapeutic Interventions. J Pharmacol Exp Ther 2023; 385:78-87. [PMID: 36828629 DOI: 10.1124/jpet.122.001482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/02/2023] [Accepted: 02/03/2023] [Indexed: 02/26/2023] Open
Abstract
Atopic dermatitis is a common chronic inflammatory skin disease, with most cases experiencing skin barrier dysfunction and enhanced allergen entry, accompanied by cytokine production which evokes predominantly type-2-skewed immune responses, itch, and scratching behavior. Although intense itch and excessive scratching behavior affect progression of skin lesions, it is unclear what causes them. Data suggest that scratching behavior stimulates brain dopaminergic reward and habit learning systems, strengthening habitual scratching behavior, while nocturnal scratching behavior presumably increases locus coeruleus-noradrenergic system activity, prompting sleep disturbances. At the early stage of atopic dermatitis, increased cortisol levels, due to hypothalamic-pituitary-adrenal axis overactivation caused by such system stimulation, can induce dorsolateral prefrontal cortex disturbance with reinforcement of habitual scratching behavior and may aggravate type-2-skewed immune responses in the skin. During the later phases, whereas blunted hypothalamic-pituitary-adrenal axis function and the shift of type-2-dominated to type-1-co-dominated inflammation are induced, noradrenergic system overactivation-associated dorsolateral prefrontal cortex disruption is ongoing and responsible for itch cognitive distortion to catastrophize about itch, which leads to a vicious spiral along with habitual scratching behavior and skin lesions. Data are presented in this review indicating that while skin immune system dysfunction initiates pathologic changes in atopic dermatitis, brain neural network and stress system alterations can promote the progression of this condition. It is also suggested that cognitive distortion contributes to pathology in atopic dermatitis as with some psychiatric disorders and chronic pain. The proposed mechanistic model could lead to development of novel medications for slowing or terminating the relentless progression of this disorder. SIGNIFICANCE STATEMENT: Although conventional pharmacological interventions focusing on skin homeostasis and itch occurrence significantly attenuate clinical signs in atopic dermatitis patients, achievement of 100% improvement is less than 40% in several double-blind, randomized, placebo-controlled trials. Our model predicts that itch cognitive distortion, due to dorsolateral prefrontal cortex disturbance, can significantly contribute to the progression of atopic dermatitis and that agents capable of improving brain neural network, stress system, and skin homeostasis may be effective as interventions in the treatment of this condition.
Collapse
Affiliation(s)
- Yutaka Nakagawa
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan
| | - Shizuo Yamada
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
8
|
Tekin S, Akgün EE, Ömür AD. A neuroscience-based approach to the assessment of sexual behavior in animals. Front Vet Sci 2023; 10:1136332. [PMID: 37082135 PMCID: PMC10110897 DOI: 10.3389/fvets.2023.1136332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023] Open
Abstract
Sexual behavior in animals is important in ensuring the continuity of the generation. These behaviors differ in animal species. Sexual behaviors are shaped under the control of the reproductive system. Physiological stimuli produced by the reproductive system find their counterparts in the organism as reproductive activity. Reproductive activity display a critical role by transferring on the genetic heritage of organisms to the next generations. This activity, which is built on delicate balances, is associated with many systems in the organism. Nervous system, hormonal system, and circulatory system are the main ones. The regular formation of the reproductive activity in species is due to the effect of various factors. In domestic mammals, the reproductive activity is regulated by hormones secreted from brain and endocrine glands. Many hormones have duties in terms of the sustainability of reproductive activity. GnRH is the main hormone responsible for initiating this reproductive activity. Gonadotropin-releasing hormone (GnRH), which is a small molecule peptide from certain nerve cells in the nucleus infundibularis region of the hypothalamus and consists of different amino acids, is secreted under the influence of smell, temperature, light, and physical stimulation. Besides, GnRH release is controlled by various neurotransmitters (adrenaline, noradrenaline, dopamine, acetylcholine, serotonin). On the other hand, various genetic factors in secretory glands, gonadal cells, reproductive tissues can lead to significant changes on reproductive activity through specific molecular pathways and mechanisms.
Collapse
Affiliation(s)
- Samet Tekin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Elif Ece Akgün
- Department of Histology-Embryology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
- *Correspondence: Elif Ece Akgün
| | - Ali Doğan Ömür
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
- Ali Doğan Ömür
| |
Collapse
|
9
|
Ruviaro Tuleski GL, Silveira MF, Bastos RF, Pscheidt MJGR, Prieto WDS, Sousa MG. Behavioral and cardiovascular effects of a single dose of gabapentin or melatonin in cats: a randomized, double-blind, placebo-controlled trial. J Feline Med Surg 2022; 24:e524-e534. [PMID: 36350565 PMCID: PMC10812368 DOI: 10.1177/1098612x221124359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES The aim of this study was to verify whether a single oral dose of gabapentin (100 mg) or melatonin (3 mg) given 60 mins before a cardiac evaluation would reduce anxiety without interfering with heart rate (HR), systemic blood pressure (SBP), electrocardiogram (ECG) and echocardiographic indexes. METHODS Seventy-five client-owned healthy cats underwent two sets of cardiac assessments 60 mins apart, randomly divided into gabapentin, melatonin and placebo groups. The interval between treatment and the second ECG and SBP measurement was 60 mins, and 70 mins for echocardiography. A compliance score (CS) classified the behavior, focusing on the ease of handling. RESULTS Most variables did not change between the examinations. The placebo group showed more significant changes (SBP, tricuspid annular plane systolic excursion, HR during echocardiography, aortic flow velocity, S' wave from lateral mitral annulus), but they were not considered to be hemodynamically relevant. Gabapentin and melatonin significantly increased the cats' compliance without interfering with cardiac assessment. Eight cats presented with mild sedation, seven after gabapentin and one after melatonin. No major side effects were observed. CONCLUSIONS AND RELEVANCE Gabapentin tranquilized the cats when it was given 60 mins prior to ECG and SBP measurement, and 70 mins prior to echocardiography, without interfering with systolic echocardiographic indexes. Melatonin also decreased the CS, but without sedation in most cases. The waiting period may have relaxed the cats in the placebo group, resulting in lower SBP measurements. However, this tranquility did not last as some echocardiographic changes signaled a sympathetic predominance.
Collapse
Affiliation(s)
- Giovana Lais Ruviaro Tuleski
- Laboratory of Comparative Cardiology, Department of Veterinary Medicine, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Matheus Folgearini Silveira
- Laboratory of Comparative Cardiology, Department of Veterinary Medicine, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Rodrigo Franco Bastos
- Laboratory of Comparative Cardiology, Department of Veterinary Medicine, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | | | - Wiliam da Silva Prieto
- Laboratory of Comparative Cardiology, Department of Veterinary Medicine, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Marlos G Sousa
- Laboratory of Comparative Cardiology, Department of Veterinary Medicine, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| |
Collapse
|
10
|
Wang B, Mechaly AS, Somoza GM. Overview and New Insights Into the Diversity, Evolution, Role, and Regulation of Kisspeptins and Their Receptors in Teleost Fish. Front Endocrinol (Lausanne) 2022; 13:862614. [PMID: 35392133 PMCID: PMC8982144 DOI: 10.3389/fendo.2022.862614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/21/2022] [Indexed: 01/04/2023] Open
Abstract
In the last two decades, kisspeptin (Kiss) has been identified as an important player in the regulation of reproduction and other physiological functions in vertebrates, including several fish species. To date, two ligands (Kiss1, Kiss2) and three kisspeptin receptors (Kissr1, Kissr2, Kissr3) have been identified in teleosts, likely due to whole-genome duplication and loss of genes that occurred early in teleost evolution. Recent results in zebrafish and medaka mutants have challenged the notion that the kisspeptin system is essential for reproduction in fish, in marked contrast to the situation in mammals. In this context, this review focuses on the role of kisspeptins at three levels of the reproductive, brain-pituitary-gonadal (BPG) axis in fish. In addition, this review compiled information on factors controlling the Kiss/Kissr system, such as photoperiod, temperature, nutritional status, sex steroids, neuropeptides, and others. In this article, we summarize the available information on the molecular diversity and evolution, tissue expression and neuroanatomical distribution, functional significance, signaling pathways, and gene regulation of Kiss and Kissr in teleost fishes. Of particular note are recent advances in understanding flatfish kisspeptin systems, which require further study to reveal their structural and functional diversity.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| | - Alejandro S. Mechaly
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Mar del Plata, Argentina
- Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| | - Gustavo M. Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| |
Collapse
|
11
|
Badruzzaman M, Goswami C, Sayed MA. Photoperiodic light pulse induces ovarian development in the catfish, Mystus cavasius: Possible roles of dopamine and melatonin in the brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112941. [PMID: 34710816 DOI: 10.1016/j.ecoenv.2021.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/02/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
In the freshwater catfish, Mystus cavasius, locally known as gulsha, ovarian maturation is triggered by long-day conditions. Using dopaminergic neuronal activity in the brain, the purpose of this study was to identify the brain's detection of a nocturnal light pulse that induced ovarian development. Since direct inhibition of pituitary gonadotropin release is exerted by dopamine (DA), it may serve as a neuromodulator of photoperiodic stimulation in teleosts. We studied functional effects of photoperiodicity on dopaminergic rhythmicity in gulsha brain. Nocturnal illumination and Nanda-Hamner photocycles revealed that ovarian development is induced by a 1 h light pulse between zeitgeber time (ZT) 12 and 13. Daily fluctuations in DA, 3, 4-dihydroxyphenylacetic acid (DOPAC) and DOPAC/DA were observed under a 12L:12D photoperiod. Fish exhibited increased levels during the daytime and decreased levels at night. Rhythmic patterns of dopaminergic activity also showed clear circadian oscillations under constant light, but not constant dark conditions. After 7 days of exposure to long photoperiod (14L:10D), DA, DOPAC and DOPAC/DA in the brain at ZT12 and ZT16 were significantly higher than during a short photoperiod (10L:14D). Melatonin-containing water inhibited the release of DA and DOPAC 6 h and 24 h after treatment, respectively, and DOPAC/DA 6 h after treatment. This inhibition was blocked by the melatonin receptor antagonist, luzindole. These results suggest that a 1 h nocturnal light pulse induces ovarian development through alteration of dopaminergic neuronal excitability in the brain, via oscillation in melatonin triggered by photic stimuli, which may interfere with the reproductive endocrine axis in gulsha.
Collapse
Affiliation(s)
- Muhammad Badruzzaman
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Chayon Goswami
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Abu Sayed
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| |
Collapse
|