1
|
Gutierrez E, García N, Carrera O. Disordered eating in anorexia nervosa: give me heat, not just food. Front Public Health 2024; 12:1433470. [PMID: 39568611 PMCID: PMC11576214 DOI: 10.3389/fpubh.2024.1433470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/30/2024] [Indexed: 11/22/2024] Open
Abstract
The recommendation to apply external heat to patients with anorexia nervosa (AN) was first documented by William Gull in 1874. Gull encountered this practice during his tenure as a consultant physician, responsible for issuing medical certifications for wealthy clients seeking admission to Ticehurst Asylum, one of the most successful and reputable private asylums in England. Gull attributed the origins of this practice to the studies by Charles Chossat (1796-1875), a physiologist, physician, and politician from Geneva, who discovered the therapeutic effects of heat on starved animals by chance. In the 20th century, further evidence of the beneficial effects of heat on starved animals emerged serendipitously when anomalies were observed following a malfunction in laboratory thermostats controlling animal temperatures. Moving into the 21st century, experimental research has empirically substantiated the crucial role of ambient temperature (AT) in the animal model of activity-based anorexia (ABA). Recent translational studies have shown that a warmed environment significantly reduces anxiety around mealtime in AN patients, a method shown to be more effective than exposure-based procedures. Despite the overwhelming evidence from both animal and patient studies, it is difficult to comprehend how the impact of providing a warm environment to AN patients, particularly around mealtimes, continues to be a neglected area of research.
Collapse
Affiliation(s)
- Emilio Gutierrez
- Department of Clinical Psychology and Psychobiology, College of Psychology, University of Santiago, Santiago de Compostela, Spain
- Venres Clínicos Unit, College of Psychology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Naomi García
- Venres Clínicos Unit, College of Psychology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Olaia Carrera
- Venres Clínicos Unit, College of Psychology, University of Santiago de Compostela, Santiago de Compostela, Spain
- Hospital Unidad de Salud Mental Infanto-Juvenil, Complexo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela, Spain
| |
Collapse
|
2
|
Encinas P, Rodriguez-Arias JL, Pérez LML, Cortizo D, Gutierrez E. Ambient temperature modulates body weight changes in patients with advanced oncological diseases and anorexia cachexia syndrome. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:1451-1459. [PMID: 37400741 PMCID: PMC10432328 DOI: 10.1007/s00484-023-02513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVE To assess the impact of ambient temperature (AT) on the evolution of bodyweight in patients with heterogeneous types of cancer in advanced stages of the disease (stages III and IV) and anorexia- cachexia syndrome (ACS). METHODS A prospective naturalistic multicenter study of patients undergoing oncological treatment at four hospitals during a three-year period (2017-2020) in the Autonomous Community of Extremadura in southwestern Spain with a continentalized Mediterranean climate of mild and relatively rainy winters, and particularly hot and sunny summers. Bodyweight changes were obtained from the medical records of 84 oncological patients (59 men and 25 women, age range 37-91 yrs). Mean monthly AT was used to examine the association of weight changes across cold and warm bimesters -BIMs (December and January, vs. July and August), Trimesters -TRIMs (July to September vs. December to February), and Semesters -SEMs (May to October vs. November to April). Weight changes between two consecutive weight measures were categorized as weight gain, weight loss, or no weight change. Differences across cold and warm seasons were analysed using parametric (ANOVA), and nonparametric statistics (Chi-square and binomial z tests). An alpha-rate of 0.05 was used for all analyses. RESULTS A weight loss trend was observed during BIMs cold periods in comparison to warm ones (p 0.04). However, differences in average bodyweight were not significant. The negative impact of cold periods was more marked in men than in women, (p = 0.05; p = 0.03, for cold vs. warm BIMs and TRIMs, respectively). In contrast, significantly higher weight gain percentages were found in women during warm TRIMs and SEMs (p = 0.03, and p = 0.01, respectively). As for the number of patients dying during the study (N = 56; 39 men, 17 women), there were a significant interaction between temperature (cold/warm), and mean weight F (1, 499) = 6.06, p = 0.01, which revealed a pattern of weight loss in the cold semester as opposed to weight gain during the warm SEM months. CONCLUSIONS AT temperature modulated body weight changes in patients with advanced oncological disease and ACS. Two main limitations of the study were the absence of information on diets as a moderating factor of weight loss/gain, and the lack of the patients' weight measurements closest to the date of diagnosis prior to admittance to the study. As for the practical implications, it remains to be seen whether an adjunctive heat supply will serve a buffering effect on weight loss during colder seasons for patients with advanced cancer and ACS.
Collapse
Affiliation(s)
- Paloma Encinas
- Departamento de Psicología y Antropología. Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Jose Luis Rodriguez-Arias
- Servicio de Salud Mental. Complexo Hospitalario Universitario de A Coruña (C.H.U.A.C.), Coruña, Spain
| | - Luis Miguel Luengo Pérez
- Departamento de Ciencias Biomédicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
| | - Daniel Cortizo
- Unidad Venres Clínicos, Servicio de Psicología, Facultad de Psicología, Universidad de Santiago de Compostela, Santiago, Spain
| | - Emilio Gutierrez
- Unidad Venres Clínicos, Servicio de Psicología, Facultad de Psicología, Universidad de Santiago de Compostela, Santiago, Spain.
- Departamento de Psicología Clínica y Psicobiología, Facultad de Psicología, Universidad de Santiago de Compostela, Campus Vida, 15706, Santiago de Compostela, Spain.
| |
Collapse
|
3
|
Staffeld A, Gill S, Zimmermann A, Böge N, Schuster K, Lang S, Kipp M, Palme R, Frintrop L. Establishment of a Murine Chronic Anorexia Nervosa Model. Cells 2023; 12:1710. [PMID: 37443744 PMCID: PMC10340390 DOI: 10.3390/cells12131710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Anorexia nervosa (AN) is associated with hyperactivity, amenorrhea, and brain atrophy. The underlying pathophysiology is mostly unknown, and new targets for therapeutic interventions are needed. This study aimed to systematically establish a murine AN model with the parameter extent of starvation, animal age, and length of starvation for functional studies. The activity-based anorexia (ABA) model combines food restriction with running wheel access. Early adolescent and adolescent mice received 40% of their baseline food intake until a 20% or 25% weight reduction was reached (acute starvation). To mimic chronic starvation, body weight loss was maintained for another two weeks. Running activity was examined using wheel sensors, while amenorrhea was investigated by analysis of vaginal smears. Brain sections were used to analyze cerebral cortex volumes. Acute starvation did not lead to either AN-related symptoms, whereas chronic starvation led to hyperactivity and amenorrhea except in the adolescent cohort with 20% weight reduction. Only ABA mice with 25% weight reduction revealed a cortex volume reduction. The optimal parameters to mirror AN-related symptoms included a 25% weight reduction, early adolescent or adolescent mice, and chronic starvation. The ABA model enables functional analysis of the impact of chronic AN on the underlying hormonal, behavioral, and brain pathophysiology.
Collapse
Affiliation(s)
- Anna Staffeld
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Sadaf Gill
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Annelie Zimmermann
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Natalie Böge
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Katharina Schuster
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Stephan Lang
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria
| | - Linda Frintrop
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
4
|
Dedoni S, Scherma M, Camoglio C, Siddi C, Fratta W, Fadda P. Anaplastic Lymphoma Kinase Receptor: Possible Involvement in Anorexia Nervosa. Nutrients 2023; 15:2205. [PMID: 37432348 DOI: 10.3390/nu15092205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 07/12/2023] Open
Abstract
The pathophysiology of Anorexia Nervosa (AN) has not been fully elucidated. Anaplastic lymphoma kinase (ALK) receptor is a protein-tyrosine kinase mainly known as a key oncogenic driver. Recently, a genetic deletion of ALK in mice has been found to increase energy expenditure and confers resistance to obesity in these animals, suggesting its role in the regulation of thinness. Here, we investigated the expression of ALK and the downstream intracellular pathways in female rats subjected to the activity-based anorexia (ABA) model, which reproduces important features of human AN. In the hypothalamic lysates of ABA rats, we found a reduction in ALK receptor expression, a downregulation of Akt phosphorylation, and no change in the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) phosphorylation. After the recovery from body weight loss, ALK receptor expression returned to the control baseline values, while it was again suppressed during a second cycle of ABA induction. Overall, this evidence suggests a possible involvement of the ALK receptor in the pathophysiology of AN, that may be implicated in its stabilization, resistance, and/or its exacerbation.
Collapse
Affiliation(s)
- Simona Dedoni
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Science, University of Cagliari, 09124 Cagliari, Italy
| | - Maria Scherma
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Science, University of Cagliari, 09124 Cagliari, Italy
| | - Chiara Camoglio
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Science, University of Cagliari, 09124 Cagliari, Italy
| | - Carlotta Siddi
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Science, University of Cagliari, 09124 Cagliari, Italy
| | - Walter Fratta
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Science, University of Cagliari, 09124 Cagliari, Italy
| | - Paola Fadda
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Science, University of Cagliari, 09124 Cagliari, Italy
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), 09042 Cagliari, Italy
| |
Collapse
|
5
|
The BDNF Val66Met Polymorphism Does Not Increase Susceptibility to Activity-Based Anorexia in Rats. BIOLOGY 2022; 11:biology11050623. [PMID: 35625351 PMCID: PMC9138045 DOI: 10.3390/biology11050623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary Genetic animal models are a valuable tool for understanding how human pathologies develop. The type of animal model chosen is important for uncovering effects specific to certain behaviours and neurobiological functions. A polymorphism in the brain-derived neurotrophic factor (BDNF) has been linked with various clinical conditions in human subjects and with mouse models of anorectic behaviour. This study investigated for the first time the role of the BDNF Val66Met allelic substitution in a rat model of anorexia nervosa (AN), known as activity-based anorexia (ABA). Contrary to reports of altered BDNF signaling in patients with AN and increased anorectic behaviour in a mouse model containing the same allelic variation, it showed that 66Met did not alter susceptibility to weight loss or aspects of energy balance, including feeding and exercise in the rat model. It highlights the need to consider species–specific differences when evaluating animal models of human pathologies. Abstract Brain-derived neurotrophic factor (BDNF) is abundantly expressed in brain regions involved in both homeostatic and hedonic feeding, and it circulates at reduced levels in patients with anorexia nervosa (AN). A single nucleotide polymorphism in the gene encoding for BDNF (Val66Met) has been associated with worse outcomes in patients with AN, and it is shown to promote anorectic behaviour in a mouse model of caloric restriction paired with social isolation stress. Previous animal models of the Val66Met polymorphism have been in mice because of the greater ease in modification of the mouse genome, however, the most widely-accepted animal model of AN, known as activity-based anorexia (ABA), is most commonly conducted in rats. Here, we examine ABA outcomes in a novel rat model of the BDNF Val66Met allelic variation (Val68Met), and we investigate the role of this polymorphism in feeding, food choice and sucrose preference, and energy expenditure. We demonstrate that the BDNF Val68Met polymorphism does not influence susceptibility to ABA or any aspect of feeding behaviour. The discrepancy between these results and previous reports in mice may relate to species–specific differences in stress reactivity.
Collapse
|
6
|
Rial-Pensado E, Freire-Agulleiro O, Ríos M, Guo DF, Contreras C, Seoane-Collazo P, Tovar S, Nogueiras R, Diéguez C, Rahmouni K, López M. Obesity induces resistance to central action of BMP8B through a mechanism involving the BBSome. Mol Metab 2022; 59:101465. [PMID: 35218946 PMCID: PMC8933534 DOI: 10.1016/j.molmet.2022.101465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Bone morphogenetic protein 8B (BMP8B) plays a major role in the regulation of energy homeostasis by modulating brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. Here, we investigated whether BMP8B's role in metabolism is affected by obesity and the possible molecular mechanisms underlying that action. Methods Central treatments with BMP8B were performed in rats fed a standard (SD) and high-fat diet (HFD), as well as in genetically modified mice. Energy balance studies, infrared thermographic analysis of BAT and molecular analysis of the hypothalamus, BAT and WAT were carried out. Results We show for the first time that HFD-induced obesity elicits resistance to the central actions of BMP8B on energy balance. This obesity-induced BMP8B resistance is explained by i) lack of effects on AMP-activated protein kinase (AMPK) signaling, ii) decreased BMP receptors signaling and iii) reduced expression of Bardet-Biedl Syndrome 1 (BBS1) protein, a key component of the protein complex BBSome in the ventromedial nucleus of the hypothalamus (VMH). The possible mechanistic involvement of BBS1 in this process is demonstrated by lack of a central response to BMP8B in mice carrying a single missense disease-causing mutation in the Bbs1 gene. Conclusions Overall, our data uncover a new mechanism of central resistance to hormonal action that may be of relevance in the pathophysiology of obesity. Central BMP8B induces BAT activation and browning through hypothalamic AMPK. Obesity elicits resistance to the central effects of BMP8B on energy balance. Obesity impairs the effect of BMP8B on AMPK, BMP Type I receptors signaling and BBS1 in the hypothalamus. Lack of BBS1 function recapitulates the thermogenic-induced resistance to central BMP8B.
Collapse
Affiliation(s)
- Eva Rial-Pensado
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Oscar Freire-Agulleiro
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Marcos Ríos
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Deng Fu Guo
- Department of Neuroscience & Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Patricia Seoane-Collazo
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Sulay Tovar
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Kamal Rahmouni
- Department of Neuroscience & Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| |
Collapse
|
7
|
Mukherjee S, Skrede S, Milbank E, Andriantsitohaina R, López M, Fernø J. Understanding the Effects of Antipsychotics on Appetite Control. Front Nutr 2022; 8:815456. [PMID: 35047549 PMCID: PMC8762106 DOI: 10.3389/fnut.2021.815456] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
Antipsychotic drugs (APDs) represent a cornerstone in the treatment of schizophrenia and other psychoses. The effectiveness of the first generation (typical) APDs are hampered by so-called extrapyramidal side effects, and they have gradually been replaced by second (atypical) and third-generation APDs, with less extrapyramidal side effects and, in some cases, improved efficacy. However, the use of many of the current APDs has been limited due to their propensity to stimulate appetite, weight gain, and increased risk for developing type 2 diabetes and cardiovascular disease in this patient group. The mechanisms behind the appetite-stimulating effects of the various APDs are not fully elucidated, partly because their diverse receptor binding profiles may affect different downstream pathways. It is critical to identify the molecular mechanisms underlying drug-induced hyperphagia, both because this may lead to the development of new APDs, with lower appetite-stimulating effects but also because such insight may provide new knowledge about appetite regulation in general. Hence, in this review, we discuss the receptor binding profile of various APDs in relation to the potential mechanisms by which they affect appetite.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Silje Skrede
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Edward Milbank
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Madrid, Spain.,SOPAM, U1063, INSERM, University of Angers, SFR ICAT, Bat IRIS-IBS, Angers, France
| | | | - Miguel López
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Madrid, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
8
|
Spadini S, Ferro M, Lamanna J, Malgaroli A. Activity-based anorexia animal model: a review of the main neurobiological findings. J Eat Disord 2021; 9:123. [PMID: 34600568 PMCID: PMC8487535 DOI: 10.1186/s40337-021-00481-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The genesis of anorexia nervosa (AN), a severe eating disorder with a pervasive effect on many brain functions such as attention, emotions, reward processing, cognition and motor control, has not yet been understood. Since our current knowledge of the genetic aspects of AN is limited, we are left with a large and diversified number of biological, psychological and environmental risk factors, called into question as potential triggers of this chronic condition with a high relapse rate. One of the most valid and used animal models for AN is the activity-based anorexia (ABA), which recapitulates important features of the human condition. This model is generated from naïve rodents by a self-motivated caloric restriction, where a fixed schedule food delivery induces spontaneous increased physical activity. AIM In this review, we sought to provide a summary of the experimental research conducted using the ABA model in the pursuit of potential neurobiological mechanism(s) underlying AN. METHOD The experimental work presented here includes evidence for neuroanatomical and neurophysiological changes in several brain regions as well as for the dysregulation of specific neurochemical synaptic and neurohormonal pathways. RESULTS The most likely hypothesis for the mechanism behind the development of the ABA phenotype relates to an imbalance of the neural circuitry that mediates reward processing. Evidence collected here suggests that ABA animals show a large set of alterations, involving regions whose functions extend way beyond the control of reward mechanisms and eating habits. Hence, we cannot exclude a primary role of these alterations from a mechanistic theory of ABA induction. CONCLUSIONS These findings are not sufficient to solve such a major enigma in neuroscience, still they could be used to design ad hoc further experimental investigation. The prospect is that, since treatment of AN is still challenging, the ABA model could be more effectively used to shed light on the complex AN neurobiological framework, thus supporting the future development of therapeutic strategies but also the identification of biomarkers and diagnostic tools. Anorexia Nervosa (AN) is a severe eating disorder with a dramatic effect on many functions of our brain, such as attention, emotions, cognition and motion control. Since our current knowledge of the genetic aspects behind the development of AN is still limited, many biological, psychological and environmental factors must be taken into account as potential triggers of this condition. One of the most valid animal models for studying AN is the activity-based anorexia (ABA). In this model, rodents spontaneously limit food intake and start performing increased physical activity on a running wheel, a result of the imposition of a fixed time schedule for food delivery. In this review, we provide a detailed summary of the experimental research conducted using the ABA model, which includes extended evidence for changes in the anatomy and function of the brain of ABA rodents. The hope is that such integrated view will support the design of future experiments that will shed light on the complex brain mechanisms behind AN. Such advanced knowledge is crucial to find new, effective strategies for both the early diagnosis of AN and for its treatment.
Collapse
Affiliation(s)
- Sara Spadini
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Mattia Ferro
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy.
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|