1
|
Georg B, Jørgensen HL, Hannibal J. PER1 Oscillation in Rat Parathyroid Hormone and Calcitonin Producing Cells. Int J Mol Sci 2024; 25:13006. [PMID: 39684716 DOI: 10.3390/ijms252313006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Many endocrine glands exhibit circadian rhythmicity, but the interplay between the central circadian clock in the suprachiasmatic nucleus (SCN), the peripheral endocrine clock, and hormones is sparsely understood. We therefore studied the cellular localizations of the clock protein PER1, parathyroid hormone (PTH) and calcitonin (CT) in the parathyroid and thyroid glands, respectively. Thyroid glands, including the parathyroids, were dissected at different time-points from rats housed in 12 h:12 h light-darkness cycles, and were double-immunostained for PER1 and PTH or CT. Sera were analyzed for PTH, CT, phosphate, and calcium. In both glands, PER1 expression peaked late at night, while limited staining was seen during the daytime. High-resolution microscopy revealed cytosolic PER1 at zeitgeber time (ZT)12, and nucleic staining at ZT24 in both PTH and CT cells. PTH peaked at Z12-ZT16, while neither CT staining nor serum CT oscillated during the daily cycle. Serum PTH was significantly higher at ZT12 than ZT24, but only phosphate was found to exhibit significant diurnal oscillation. The staining of the calcium-sensitive receptor (CSR) did not demonstrate circadian oscillation. In conclusion, PER1 expression peaked late at night/early in the morning in hormone-producing cells of both the thyroid and parathyroid glands. In the parathyroids, this was preceded by a PTH peak, while neither CT nor CRS were found to oscillate.
Collapse
Affiliation(s)
- Birgitte Georg
- Department of Clinical Biochemistry, Bispebjerg University Hospital, 2400 Copenhagen, Denmark
| | - Henrik L Jørgensen
- Department of Clinical Biochemistry, Amager and Hvidovre Hospital, 2650 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg University Hospital, 2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
2
|
European Food Safety Authority (EFSA), Crivellente F, Hernández‐Jerez AF, Lanzoni A, Metruccio F, Mohimont L, Nikolopoulou D, Castoldi AF. Specific effects on the thyroid relevant for performing a dietary cumulative risk assessment of pesticide residues: 2024 update. EFSA J 2024; 22:e8672. [PMID: 38500786 PMCID: PMC10945593 DOI: 10.2903/j.efsa.2024.8672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
EFSA updated its previous work on the establishment of specific effects that are considered relevant for grouping pesticide residues targeting the thyroid and for performing the retrospective assessment of dietary cumulative risk (CRA). The two specific effects already selected in 2019 leading to the two cumulative assessment groups (CAGs) 'hypothyroidism' and 'C-cell hypertrophy, hyperplasia and neoplasia' were reconfirmed. Compared to 2019, the list of indicators that can be used to identify these specific effects was refined to only include histopathological changes. In a second phase of the work, data will be extracted on indicators of the specific effects from the dossiers on active substances (a.s.) used as plant protection products. The criteria for including a.s. into CAGs were also updated, together with the hazard characterisation methodology and the lines of evidence for assessing CAG-membership probabilities. The tasks related to the data extraction and the establishment of the CAGs on hypothyroidism and on C-cell hypertrophy, hyperplasia and neoplasia are beyond the scope of this report. This part of the CRA process has been outsourced and will be the subject of a separate report.
Collapse
|
3
|
Fu J, Fan Z, He L, Liu Q, Liu H, Li Y, Guan H. Circadian clock disruption in autoimmune thyroiditis. Eur Thyroid J 2023; 12:e230035. [PMID: 37548297 PMCID: PMC10503217 DOI: 10.1530/etj-23-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/07/2023] [Indexed: 08/08/2023] Open
Abstract
Objective A vicious cycle between circadian disruption and escalating immune responses has been described in diverse inflammatory disease. The current study aimed to explore the role of circadian clock disruption in autoimmune thyroiditis (AIT). Methods Thirty AIT patients and 30 controls were enrolled and biopsied for thyroid tissues. Alterations of core clock genes expression in AIT thyroid tissues, and its association with serum and tissue inflammatory biomarkers were assessed. For animal studies, C57BL/6J mice administered with porcine thyroglobulin or PBS (as control) combined with adjuvants were sacrificed at four time points to investigate the circadian characteristic of experimental autoimmune thyroiditis (EAT). Light shift (LS) conditions were used to explore the influence of external circadian disturbance on EAT. Results The expression of clock genes BMAL1 and PER2 was significantly reduced in thyroid tissues from AIT patients and was negatively correlated to levels of thyroid peroxidase antibodies. In mouse models, diurnal fluctuations of proinflammatory cytokines were demonstrated, and further exposing mice to LS led to overproduction of TNF-α, IFN-γ, and anti-thyroglobulin antibodies. Circadian analysis revealed significant oscillations of Bmal1, Clock, Per2, Cry1, Ror, and Rev-erb, which was broadly disturbed in EAT, LS, and EAT + LS groups. Conclusions This study demonstrates that expression pattern of clock genes was disrupted in AIT thyroid, and chronic circadian disruption may aggravate the inflammatory responses in AIT. Whether maintaining a regular circadian rhythm can alleviate autoimmune thyroid diseases warrants further research.
Collapse
Affiliation(s)
- Jinrong Fu
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zihao Fan
- Department of Geriatrics, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Liang He
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qian Liu
- Department of Endocrinology and Metabolism, Jilin Cancer Hospital, Changchun, Jilin, China
| | - He Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yushu Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Paulson OB, Schousboe A, Hultborn H. The history of Danish neuroscience. Eur J Neurosci 2023; 58:2893-2960. [PMID: 37477973 DOI: 10.1111/ejn.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023]
Abstract
The history of Danish neuroscience starts with an account of impressive contributions made at the 17th century. Thomas Bartholin was the first Danish neuroscientist, and his disciple Nicolaus Steno became internationally one of the most prominent neuroscientists in this period. From the start, Danish neuroscience was linked to clinical disciplines. This continued in the 19th and first half of the 20th centuries with new initiatives linking basic neuroscience to clinical neurology and psychiatry in the same scientific environment. Subsequently, from the middle of the 20th century, basic neuroscience was developing rapidly within the preclinical university sector. Clinical neuroscience continued and was even reinforced during this period with important translational research and a close co-operation between basic and clinical neuroscience. To distinguish 'history' from 'present time' is not easy, as many historical events continue in present time. Therefore, we decided to consider 'History' as new major scientific developments in Denmark, which were launched before the end of the 20th century. With this aim, scientists mentioned will have been born, with a few exceptions, no later than the early 1960s. However, we often refer to more recent publications in documenting the developments of initiatives launched before the end of the last century. In addition, several scientists have moved to Denmark after the beginning of the present century, and they certainly are contributing to the present status of Danish neuroscience-but, again, this is not the History of Danish neuroscience.
Collapse
Affiliation(s)
- Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, 9 Blegdamsvej, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Hultborn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Hitrec T, Petit C, Cryer E, Muir C, Tal N, Fustin JM, Hughes AT, Piggins HD. Timed exercise stabilizes behavioral rhythms but not molecular programs in the brain's suprachiasmatic clock. iScience 2023; 26:106002. [PMID: 36866044 PMCID: PMC9971895 DOI: 10.1016/j.isci.2023.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/25/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Timed daily access to a running-wheel (scheduled voluntary exercise; SVE) synchronizes rodent circadian rhythms and promotes stable, 24h rhythms in animals with genetically targeted impairment of neuropeptide signaling (Vipr2 -/- mice). Here we used RNA-seq and/or qRT-PCR to assess how this neuropeptide signaling impairment as well as SVE shapes molecular programs in the brain clock (suprachiasmatic nuclei; SCN) and peripheral tissues (liver and lung). Compared to Vipr2 +/+ animals, the SCN transcriptome of Vipr2 -/- mice showed extensive dysregulation which included core clock components, transcription factors, and neurochemicals. Furthermore, although SVE stabilized behavioral rhythms in these animals, the SCN transcriptome remained dysregulated. The molecular programs in the lung and liver of Vipr2 -/- mice were partially intact, although their response to SVE differed to that of these peripheral tissues in the Vipr2 +/+ mice. These findings highlight that SVE can correct behavioral abnormalities in circadian rhythms without causing large scale alterations to the SCN transcriptome.
Collapse
Affiliation(s)
- Timna Hitrec
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Cheryl Petit
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Emily Cryer
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Charlotte Muir
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Natalie Tal
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jean-Michel Fustin
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Alun T.L. Hughes
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK,School of Biological and Environmental Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, UK,Corresponding author
| | - Hugh D. Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK,School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK,Corresponding author
| |
Collapse
|