1
|
Lin C, Zheng Q, Yu H, Wu T, Chen L, Lin W, Pang J, Yang Y. Uric acid-induced cardiomyocytic polyamines' insufficience: a potential mechanism mediates cardiomyocytic injury. Front Endocrinol (Lausanne) 2025; 16:1504614. [PMID: 40260285 PMCID: PMC12009720 DOI: 10.3389/fendo.2025.1504614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/04/2025] [Indexed: 04/23/2025] Open
Abstract
Introduction Maintaining polyamines homeostasis is essential for cardiovascular health, whereas elevated uric acid levels are recognized as a significant risk factor for the onset and progression of cardiovascular diseases. However, the interaction between uric acid and the regulation of polyamine homeostasis has not been extensively investigated. The objective of this study was to investigate the influence of uric acid on cardiac polyamines regulation and elucidate the role of polyamines in uric acid induced cardiomyocytic injury. Methods The in vitro experiments utilized H9C2 cardiomyocytes, the hyperuricemic mouse model was established via potassium oxonate and hypoxanthine. Techniques included energy metabolomics, HPLC for polyamine quantification, qPCR, ELISA, immunofluorescence, and mitochondrial membrane potential assessment using JC-1 staining, MTT cell viability analysis. Results Uric acid treatment can alter ornithine metabolism in cardiomyocytes, revealed a potential of shifting it from the traditional ornithine cycle towards the polyamine cycle. Both ODC1 and SAT1 protein levels were up-regulated in hyperuricemic mice indicated a dysorder of polyamines homostasis. A downregulation tendency of spermidine and spermine levels were observed in cardiomyocytes under uric acid treatment. Notably, exogenous supplementation with spermidine or spermine effectively mitigated the uric acid-induced decline in cardiomyocyte viability and mitochondrial membrane potential. Discussion Uric acid disrupts polyamine homeostasis, leading to mitochondrial dysfunction and cardiomyocyte damage. Exogenous polyamine supplementation demonstrates therapeutic potential by preserving mitochondrial integrity. These findings unveil a potential mechanism underlying uric acid-induced cardiac injury and propose polyamine replenishment as a viable intervention strategy for hyperuricemia-related cardiovascular complications.
Collapse
Affiliation(s)
- Cuiting Lin
- Department of Pharmacy, Pingshan Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Department of Pharmacy, Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Neurology Department of Shenzhen Qianhai Taikang Hospital, Shenzhen, Guangdong, China
| | - Qiang Zheng
- Department of Pharmacy, Pingshan Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Department of Pharmacy, Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Haiyan Yu
- Department of Pharmacy, Pingshan Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Department of Pharmacy, Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Lin Chen
- Department of Pharmacy, Pingshan Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Department of Pharmacy, Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Weihao Lin
- Department of Pharmacy, Pingshan Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Department of Pharmacy, Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Yang
- Department of Pharmacy, Pingshan Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Department of Pharmacy, Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong, China
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| |
Collapse
|
2
|
Liu B, Wei Y, He J, Feng B, Chen Y, Guo R, Griffin MD, Hynes SO, Shen S, Liu Y, Cui H, Ma J, O'Brien T. Human umbilical cord-derived mesenchymal stromal cells improve myocardial fibrosis and restore miRNA-133a expression in diabetic cardiomyopathy. Stem Cell Res Ther 2024; 15:120. [PMID: 38659015 PMCID: PMC11040946 DOI: 10.1186/s13287-024-03715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a serious health-threatening complication of diabetes mellitus characterized by myocardial fibrosis and abnormal cardiac function. Human umbilical cord mesenchymal stromal cells (hUC-MSCs) are a potential therapeutic tool for DCM and myocardial fibrosis via mechanisms such as the regulation of microRNA (miRNA) expression and inflammation. It remains unclear, however, whether hUC-MSC therapy has beneficial effects on cardiac function following different durations of diabetes and which mechanistic aspects of DCM are modulated by hUC-MSC administration at different stages of its development. This study aimed to investigate the therapeutic effects of intravenous administration of hUC-MSCs on DCM following different durations of hyperglycemia in an experimental male model of diabetes and to determine the effects on expression of candidate miRNAs, target mRNA and inflammatory mediators. METHODS A male mouse model of diabetes was induced by multiple low-dose streptozotocin injections. The effects on severity of DCM of intravenous injections of hUC-MSCs and saline two weeks previously were compared at 10 and 18 weeks after diabetes induction. At both time-points, biochemical assays, echocardiography, histopathology, polymerase chain reaction (PCR), immunohistochemistry and enzyme-linked immunosorbent assays (ELISA) were used to analyze blood glucose, body weight, cardiac structure and function, degree of myocardial fibrosis and expression of fibrosis-related mRNA, miRNA and inflammatory mediators. RESULTS Saline-treated diabetic male mice had impaired cardiac function and increased cardiac fibrosis after 10 and 18 weeks of diabetes. At both time-points, cardiac dysfunction and fibrosis were improved in hUC-MSC-treated mice. Pro-fibrotic indicators (α-SMA, collagen I, collagen III, Smad3, Smad4) were reduced and anti-fibrotic mediators (FGF-1, miRNA-133a) were increased in hearts of diabetic animals receiving hUC-MSCs compared to saline. Increased blood levels of pro-inflammatory cytokines (IL-6, TNF, IL-1β) and increased cardiac expression of IL-6 were also observed in saline-treated mice and were reduced by hUC-MSCs at both time-points, but to a lesser degree at 18 weeks. CONCLUSION Intravenous injection of hUC-MSCs ameliorated key functional and structural features of DCM in male mice with diabetes of shorter and longer duration. Mechanistically, these effects were associated with restoration of intra-myocardial expression of miRNA-133a and its target mRNA COL1AI as well as suppression of systemic and localized inflammatory mediators.
Collapse
Affiliation(s)
- Boxin Liu
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China
| | - Yan Wei
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China
| | - Jingjing He
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China
| | - Baofeng Feng
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
- Human Anatomy Department, Hebei Medical University, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China
| | - Yimeng Chen
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China
| | - Ruiyun Guo
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China
| | - Matthew D Griffin
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| | - Seán O Hynes
- Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| | - Sanbing Shen
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| | - Yan Liu
- Department of Endocrinology, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, 050051, China
| | - Huixian Cui
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China.
- Human Anatomy Department, Hebei Medical University, Hebei Province, 050017, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China.
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China.
| | - Jun Ma
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province, 050017, China.
- Human Anatomy Department, Hebei Medical University, Hebei Province, 050017, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei Province, China.
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Hebei Province, China.
| | - Timothy O'Brien
- Stem Cell Research Center, Hebei Medical University-University of Galway, Hebei Medical University, Hebei Province, 050017, China.
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland.
| |
Collapse
|
3
|
Transcriptomics Coupled to Proteomics Reveals Novel Targets for the Protective Role of Spermine in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5909378. [PMID: 35437457 PMCID: PMC9013312 DOI: 10.1155/2022/5909378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022]
Abstract
Background Diabetic cardiomyopathy (DbCM) is the main complication and the cause of high mortality of diabetes. Exploring the transcriptomics and proteomics of DbCM is of great significance for understanding the biology of the disease and for guiding new therapeutic targets for the potential therapeutic effect of spermine (SPM). Methods and Results By using a mouse DbCM model, we analyzed the overall transcriptome and proteome of the myocardium, before/after treatment with SPM. The general state and cardiac structure and function changes of each group were also compared. Diabetes induced an increased blood glucose and serum triglyceride content, a decreased body weight, serum insulin level, and cardiac function-related indexes, accompanied by disrupted myocardial tissue morphology and ultrastructure damage. Using RNA sequencing (RNA-seq), we identified thousands of differentially expressed genes (DEGs) in DbCM with or without SPM treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the DEGs were significantly enriched in lipid metabolism and amino acid metabolism pathways. Specifically, quantitative real-time PCR (qRT-PCR) confirmed that SPM protected DbCM by reversing the expressions of lipid metabolism and amino acid metabolism-related genes, including Alox15, Gm13033, pla2g12a, Ptges, Pnpla2, and Acot1. To further reveal the pathogenesis of DbCM, we used proteome-based data-independent acquisition (DIA) and identified 139 differentially expressed proteins (DEPs) with 67 being upregulated and 72 being downregulated in DbCM. Venn intersection analysis showed 37 coexpressed genes and proteins in DbCM, including 29 upregulation and 8 downregulation in DbCM. In the protein-protein interaction (PPI) network constructed by the STRING database, the metabolism-related coexpressed genes and proteins, such as Acot2, Ephx2, Cyp1a1, Comt, Acox1, Hadhb, Hmgcs2, Acot1, Inmt, and Cat, can interact with the identified DEGs and DEPs. Conclusion The biomarkers and canonical pathways identified in this study may hold the key to understand the mechanisms of DbCM pathobiology and provide new targets for the therapeutic effect of SPM against DbCM by targeting lipid and amino acid metabolism pathways.
Collapse
|