1
|
Shen T, Yang Y, Lai Y, Zhang H, Liu D, Wang C, Li L, Xu W, Li K, Li S, Yang M. Elevated circulating regenerating islet-derived protein 4 levels in patients with metabolic syndrome and related to its key components. Endocrine 2025; 87:578-588. [PMID: 39412609 DOI: 10.1007/s12020-024-04056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/22/2024] [Indexed: 02/11/2025]
Abstract
PURPOSE Regenerating islet-derived protein 4 (REG4) is a secretory protein that belongs to the C-type lectin superfamily. This study aims to explore the diagnostic value of REG4 as a potential biomarker for metabolic syndrome by analyzing the correlation between serum REG4 levels and metabolic syndrome. METHODS Serum REG4 levels were measured using enzyme-linked immunosorbent assay (ELISA). Bioinformatics analysis was conducted to investigate REG4-related genes and metabolic signaling pathways. RESULTS Serum REG4 levels were significantly elevated in MetS patients compared to healthy controls (439.7 vs. 422.6 ng/L, p < 0.01). In addition, circulating REG4 levels showed a positive correlation with AUGg, HbA1c, VAI, BMI, WHR, TG, TC, LDL-C, while being inversely correlated with HDL-C in the study population. Serum REG4 levels were positively correlated with MetS score. Multiple linear regression analysis identified HOMA-IR and LDL-C as independent factors affecting serum REG4 concentration. Interventional studies have shown that OGTT can significantly increase serum REG4 levels in healthy individuals, but significantly reduce REG4 levels in MetS patients. Bioinformatics analysis suggested that REG4 is linked to several metabolism-related genes and is enriched in various metabolism-related signaling pathways. CONCLUSION REG4 may serve as a valuable biomarker and potential treatment target for insulin resistance (IR) and MetS. CLINICAL TRIAL REGISTRATION NUMBER ChiCTR2000032878.
Collapse
Affiliation(s)
- Tianjiao Shen
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yu Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yerui Lai
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongmin Zhang
- Department of Endocrinology, People's Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Dongfang Liu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Cong Wang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Li
- Key Laboratory of Diagnostic Medicine (Ministry of Education) and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Weiwei Xu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Ke Li
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shengbing Li
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Mengliu Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Ding Y, Deng A, Yu H, Zhang H, Qi T, He J, He C, Jie H, Wang Z, Wu L. Integrative multi-omics analysis of Crohn's disease and metabolic syndrome: Unveiling the underlying molecular mechanisms of comorbidity. Comput Biol Med 2025; 184:109365. [PMID: 39541897 DOI: 10.1016/j.compbiomed.2024.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVES The focus of this study is on identifying a potential association between Crohn's disease (CD), a chronic inflammatory bowel condition, and metabolic syndrome (Mets), characterized by a cluster of metabolic abnormalities, including high blood pressure, abnormal lipid levels, and overweight. While the link between CD and MetS has been suggested in the medical community, the underlying molecular mechanisms remain largely unexplored. METHODS Using microarray data from the Gene Expression Omnibus (GEO) database, we conducted a differential gene expression analysis and applied Weighted Gene Co-expression Network Analysis (WGCNA) to identify genes shared between CD and MetS. To further elucidate the functions of these shared genes, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and constructed protein-protein interaction (PPI) networks. For key gene screening, we used Random Forest and Least Absolute Shrinkage and Selection Operator (LASSO) regression and constructed a diagnostic prediction model with the Extreme Gradient Boosting (XGBoost) algorithm. Additionally, CIBERSORT and Gene Set Variation Analysis (GSVA) were employed to examine the relationships between these genes and immune cell infiltration, as well as metabolic pathways. Mendelian randomization and colocalization analyses were also conducted to explore causal links between genes and disease. Lastly, single-cell RNA sequencing (scRNA-seq) was used to validate the functionality of these key genes. RESULTS Through the use of the limma R package and WGCNA, we identified 1767 co-expressed genes common to both CD and MetS, which are notably enriched in pathways related to immune responses and metabolic regulation. After thorough analysis, 34 key genes were highlighted, demonstrating their potential utility in prognostic models. These genes were closely linked to tissue immune responses and metabolic functions. Subsequent scRNA-seq analysis confirmed the strong diagnostic potential of PIM2 and PBX2, with especially prominent expression in T and B cells. CONCLUSION This study identifies shared regulatory genes between CD and MetS, advancing the development of precise diagnostic tools. In particular, PIM2 and PBX2 were found to be positively associated with hypoxia and hemoglobin metabolism pathways, suggesting their involvement in the modulation of cellular processes. These findings improve our understanding of the molecular mechanisms underlying the comorbidity of CD and MetS, offering novel targets for integrated therapeutic interventions.
Collapse
Affiliation(s)
- Yunfa Ding
- Jinsha Zhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Anxia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Hao Yu
- Department of Thyroid Surgery, Zhu Jiang Hospital of Southern Medical University, Guangzhou, China
| | - Hongbing Zhang
- Department of Basic Medical Research, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Tengfei Qi
- Jinsha Zhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jipei He
- Department of Basic Medical Research, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Chenjun He
- Jinsha Zhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hou Jie
- Jinsha Zhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zihao Wang
- Key Laboratory of the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Liangpin Wu
- Jinsha Zhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Xu J, Yang W, Xie X, Gu C, Zhao L, Liu F, Zhang N, Bai Y, Liu D, Liu H, Jin X, Meng Y. Identification of 10 differentially expressed genes involved in the tumorigenesis of cervical cancer via next-generation sequencing. PeerJ 2024; 12:e18157. [PMID: 39372720 PMCID: PMC11453159 DOI: 10.7717/peerj.18157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Background The incidence and mortality of cervical cancer remain high in female malignant tumors worldwide. There is still a lack of diagnostic and prognostic markers for cervical carcinoma. This study aimed to screen differentially expressed genes (DEGs) between normal and cervical cancer tissues to identify candidate genes for further research. Methods Uterine cervical specimens were resected from our clinical patients after radical hysterectomy. Three patients' transcriptomic datasets were built by the next generation sequencing (NGS) results. DEGs were selected through the edgeR and DESeq2 packages in the R environment. Functional enrichment analysis, including GO/DisGeNET/KEGG/Reactome enrichment analysis, was performed. Normal and cervical cancer tissue data from the public databases TCGA and GTEx were collected to compare the expression levels of 10 selected DEGs in tumor and normal tissues. ROC curve and survival analysis were performed to compare the diagnostic and prognostic values of each gene. The expression levels of candidate genes were verified in 15 paired clinical specimens via quantitative real-time polymerase chain reaction. Results There were 875 up-regulated and 1,482 down-regulated genes in cervical cancer samples compared with the paired adjacent normal cervical tissues according to the NGS analysis. The top 10 DEGs included APOD, MASP1, ACKR1, C1QTNF7, SFRP4, HSPB6, GSTM5, IGFBP6, F10 and DCN. GO, DisGeNET and Reactome analyses revealed that the DEGs were related to extracellular matrix and angiogenesis which might influence tumorigenesis. KEGG enrichment showed that PI3K-Akt signaling pathway might be involved in cervical cancer tumorigenesis and progression. The expression levels of selected genes were decreased in tumors in both the public database and our experimental clinical specimens. All the candidate genes showed excellent diagnostic value, and the AUC values exceeded 0.90. Additionally, APOD, ACKR1 and SFRP4 expression levels could help predict the prognosis of patients with cervical cancer. Conclusions In this study, we selected the top 10 DEGs which were down-regulated in cervical cancer tissues. All of them had dramatically diagnostic value. APOD, ACKR1 and SFRP4 were associated with the survivals of cervical cancer. C1QTNF7, HSPB6, GSTM5, IGFBP6 and F10 were first reported to be candidate genes of cervical carcinoma.
Collapse
Affiliation(s)
- Jia Xu
- School of Medicine, Nankai University, Tianjin, China
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wen Yang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiufeng Xie
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chenglei Gu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Luyang Zhao
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Feng Liu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Nina Zhang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuge Bai
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hainan Liu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiangshu Jin
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuanguang Meng
- School of Medicine, Nankai University, Tianjin, China
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Zhang W, Chen W, Lei J, Li J, Yang M, Li L. The Expression of MAFB Gene in Circulating Monocytes Is Related to Chronic Inflammatory Status in T2DM Patients. Inflammation 2024; 47:1837-1852. [PMID: 38602607 DOI: 10.1007/s10753-024-02012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Immune cell-mediated chronic inflammation is one of the causes of type 2 diabetes mellitus (T2DM). Therefore, identifying inflammatory markers in circulating immune cells is highly important for predicting insulin resistance (IR) and the occurrence of T2DM. In this study, we discovered that differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMCs) from T2DM patients were associated with innate immunity and chronic inflammatory responses through bulk transcriptome sequencing (bulk RNA-seq). Gene integration analysis revealed that nine DEGs were upregulated, and receiver operating characteristic (ROC) curve analysis revealed that V-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB), a candidate biomarker, has a certain predictive value for T2DM. In population-based cohort studies, we found that MAFB expression was significantly upregulated in the PBMCs of T2DM patients and was significantly correlated with homeostasis model assessment of IR (HOMA-IR), tumor necrosis factor-α (TNF-α), adiponectin (Adipoq), etc. We further evaluated the sensitivity and specificity of MAFB and other clinical parameters for predicting and diagnosing T2DM and found that MAFB expression in PBMCs had a positive effect on the prediction and diagnosis of T2DM. Finally, single-cell RNA sequencing (scRNA-seq) analysis revealed that the increase in MAFB expression was mainly in nonclassical monocytes. Our results suggest that increased MAFB expression in circulating monocytes may mediate chronic inflammatory status in patients with T2DM. Therefore, MAFB gene expression in circulating monocytes has certain clinical significance for predicting and assisting in the diagnosis of T2DM.
Collapse
Affiliation(s)
- Wanliang Zhang
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenyun Chen
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jingwei Lei
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jie Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Mengliu Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Xue S, Ling J, Tian M, Li K, Li S, Liu D, Li L, Yang M, Yang G. Combined serum CTRP7 and CTRP15 levels as a novel biomarker for insulin resistance and type 2 diabetes mellitus. Heliyon 2024; 10:e30029. [PMID: 38726186 PMCID: PMC11078869 DOI: 10.1016/j.heliyon.2024.e30029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Aims This study aimed to examine the alterations in the serum CTRP7 and CTRP15 concentrations in patients newly diagnosed with type 2 diabetes mellitus (T2DM) and to assess the diagnostic potential of the log10 (CTRP7+CTRP15) for insulin resistance (IR) and T2DM. Methods Serum CTRP7, CTRP15, and adiponectin levels were measured using an enzyme-linked immunosorbent assay (ELISA). Bioinformatics analysis was conducted to investigate CTRP7 and CTRP15-related genes and metabolic signaling pathways. Results Log10 (CTRP7+CTRP15) levels were notably elevated in the impaired glucose tolerance (IGT) and T2DM cohorts compared with those in the normal control (NGT) cohort. Log10(CTRP7+CTRP15) exhibited positive correlations with HOMA-IR, area under the glucose curve (AUCg), HbA1c%, triglyceride (TG), visceral adiposity index (VAI), body mass index (BMI), and free fatty acid (FFA), levels but negative correlations with adiponectin. Multivariate stepwise regression analysis revealed that HOMA-IR, BMI, HbA1c and FFA levels were independent factors affecting the log10 (CTRP7+CTRP15). Logistic regression analysis revealed that log10 (CTRP7+CTRP15) was independently associated with T2DM and significantly associated with increased risk. Receiver operating characteristic (ROC) curve analysis indicated that the predictive value of log10 (CTRP7+CTRP15) for T2DM and IR was superior to that of CTRP7 or CTRP15 alone. Intervention studies demonstrated that insulin, FFAs and acute exercise contribute to the elevation of serum CTRP7 levels, while hyperglycemia inhibited CTRP7 secretion. Short-term changes in blood glucose, insulin, FFA and acute exercise had minimal effects on serum CTRP15 levels. Bioinformatics analysis revealed that CTRP7 and CTRP15 interact with multiple metabolism-related genes and are enriched in glucose and lipid metabolism-related pathways. Conclusion Log10 (CTRP7+CTRP15) may serve as a valuable diagnostic marker for the management of metabolic-related diseases, particularly T2DM and IR.
Collapse
Affiliation(s)
- Shiyao Xue
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jiaxiu Ling
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mingyuan Tian
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ke Li
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shengbing Li
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dongfang Liu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Li
- Key Laboratory of Diagnostic Medicine (Ministry of Education) and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, China
| | - Mengliu Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Guo S, Mao X, Liu J. Multi-faceted roles of C1q/TNF-related proteins family in atherosclerosis. Front Immunol 2023; 14:1253433. [PMID: 37901246 PMCID: PMC10611500 DOI: 10.3389/fimmu.2023.1253433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Purpose of review C1q/TNF-related proteins (CTRPs) are involved in the modulation of the development and prognosis of atherosclerosis (AS). Here, we summarizes the pathophysiological roles of individual members of the CTRP superfamily in the development of AS. Currently, there is no specific efficacious treatment for AS-related diseases, therefore it is urgent to develop novel therapeutic strategies aiming to target key molecules involved in AS. Recent findings Recently, mounting studies verified the critical roles of the CTRP family, including CTRP1-7, CTRP9 and CTRP11-15, in the development and progression of AS by influencing inflammatory response, modulating glucose and lipid metabolism, regulating endothelial functions and the proliferation of vascular smooth muscle cells (VSMCs). Conclusions CTRP family regulate different pathophysiology stages of AS. CTRP3, CTRP9, CTRP12, CTRP13 and CTRP15 play a clear protective role in AS, while CTRP5 and CTRP7 play a pro-atherosclerotic role in AS. The remarkable progress in our understanding of CTRPs' role in AS will provide an attractive therapeutic target for AS.
Collapse
Affiliation(s)
- Shuren Guo
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohuan Mao
- Department of Clinical Laboratory, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun Liu
- College of Life Science and Technology, Xinjiang University, Xinjiang, China
| |
Collapse
|
7
|
Zhou X, Wang Y, Chen W, Zhang H, He Y, Dai H, Hu W, Li K, Zhang L, Chen C, Yang G, Li L. Circulating HHIP Levels in Women with Insulin Resistance and PCOS: Effects of Physical Activity, Cold Stimulation and Anti-Diabetic Drug Therapy. J Clin Med 2023; 12:888. [DOI: https:/doi.org/10.3390/jcm12030888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2024] Open
Abstract
Serum human hedgehog-interacting protein (HHIP) concentration is associated with diabetes. However, the relationship between HHIP and polycystic ovary syndrome (PCOS) or abnormal sex hormones remains unknown. This study was an observational cross-sectional study, with additional short-term intervention studies and follow-up studies. Bioinformatics analysis was performed to explore the association of PCOS with metabolic-related genes and signaling pathways. OGTT and EHC were performed on all participants. Lipid infusion, cold exposure, and 45-min treadmill test were performed on all healthy women. A total of 137 women with PCOS were treated with metformin, GLP-1RA, or TZDs for 24 weeks. Serum HHIP levels were higher in insulin resistance (IR) and PCOS women. Circulating HHIP levels were significantly correlated with adiponectin (Adipoq) levels, obesity, IR, and metabolic indicators. A correlation presented between HHIP and DHEA-S, FAI, SHBG, and FSH. Serum HHIP levels were significantly elevated by oral glucose challenge in healthy women, but not affected by EHC. Lipid infusion decreased serum HHIP levels, while cold exposure increased HHIP levels in healthy women. GLP-1RA and TZD treatment reduced serum HHIP levels in PCOS women, while metformin treatment did not affect HHIP levels. HHIP may be a useful biomarker and novel drug target for PCOS and IR individuals.
Collapse
Affiliation(s)
- Xin Zhou
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400042, China
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Yanping Wang
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400042, China
| | - Wenyun Chen
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400042, China
| | - Hongmin Zhang
- Department of Endocrinology, The First People’s Hospital of Chongqing Liang Jiang New Area, Chongqing 401121, China
| | - Yirui He
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Han Dai
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Wenjing Hu
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400042, China
| | - Ke Li
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Lili Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Chen Chen
- Endocrinology and Metabolism, SBMS, The University of Queensland, Brisbane 4072, Australia
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Ling Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400042, China
| |
Collapse
|
8
|
Circulating HHIP Levels in Women with Insulin Resistance and PCOS: Effects of Physical Activity, Cold Stimulation and Anti-Diabetic Drug Therapy. J Clin Med 2023; 12:jcm12030888. [PMID: 36769536 PMCID: PMC9918013 DOI: 10.3390/jcm12030888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Serum human hedgehog-interacting protein (HHIP) concentration is associated with diabetes. However, the relationship between HHIP and polycystic ovary syndrome (PCOS) or abnormal sex hormones remains unknown. This study was an observational cross-sectional study, with additional short-term intervention studies and follow-up studies. Bioinformatics analysis was performed to explore the association of PCOS with metabolic-related genes and signaling pathways. OGTT and EHC were performed on all participants. Lipid infusion, cold exposure, and 45-min treadmill test were performed on all healthy women. A total of 137 women with PCOS were treated with metformin, GLP-1RA, or TZDs for 24 weeks. Serum HHIP levels were higher in insulin resistance (IR) and PCOS women. Circulating HHIP levels were significantly correlated with adiponectin (Adipoq) levels, obesity, IR, and metabolic indicators. A correlation presented between HHIP and DHEA-S, FAI, SHBG, and FSH. Serum HHIP levels were significantly elevated by oral glucose challenge in healthy women, but not affected by EHC. Lipid infusion decreased serum HHIP levels, while cold exposure increased HHIP levels in healthy women. GLP-1RA and TZD treatment reduced serum HHIP levels in PCOS women, while metformin treatment did not affect HHIP levels. HHIP may be a useful biomarker and novel drug target for PCOS and IR individuals.
Collapse
|
9
|
Bi J, Duan Y, Wang M, He C, Li X, Zhang X, Tao Y, Du Y, Liu H. Deletion of large-conductance calcium-activated potassium channels promotes vascular remodelling through the CTRP7-mediated PI3K/Akt signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1-11. [PMID: 36514218 PMCID: PMC10157624 DOI: 10.3724/abbs.2022179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The large-conductance calcium-activated potassium (BK) channel is a critical regulator and potential therapeutic target of vascular tone and architecture, and abnormal expression or dysfunction of this channel is linked to many vascular diseases. Vascular remodelling is the early pathological basis of severe vascular diseases. Delaying the progression of vascular remodelling can reduce cardiovascular events, but the pathogenesis remains unclear. To clarify the role of BK channels in vascular remodelling, we use rats with BK channel α subunit knockout (BK α ‒/‒). The results show that BK α ‒/‒ rats have smaller inner and outer diameters, thickened aortic walls, increased fibrosis, and disordered elastic fibers of the aortas compared with WT rats. When the expression and function of BK α are inhibited in human umbilical arterial smooth muscle cells (HUASMCs), the expressions of matrix metalloproteinase 2 (MMP2), MMP9, and interleukin-6 are enhanced, while the expressions of smooth muscle cell contractile phenotype proteins are reduced. RNA sequencing, bioinformatics analysis and qPCR verification show that C1q/tumor necrosis factor-related protein 7 ( CTRP7) is the downstream target gene. Furthermore, except for that of MMPs, a similar pattern of IL-6, smooth muscle cell contractile phenotype proteins expression trend is observed after CTRP7 knockdown. Moreover, knockdown of both BK α and CTRP7 in HUASMCs activates PI3K/Akt signaling. Additionally, CTRP7 is expressed in vascular smooth muscle cells (VSMCs), and BK α deficiency activates the PI3K/Akt pathway by reducing CTRP7 level. Therefore, we first show that BK channel deficiency leads to vascular remodelling. The BK channel and CTRP7 may serve as potential targets for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jing Bi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Yanru Duan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Meili Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Chunyu He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Xiaoyue Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Xi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Yan Tao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Yunhui Du
- Beijing Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| |
Collapse
|
10
|
Wang Y, Huang Z, Xiao Y, Wan W, Yang X. The shared biomarkers and pathways of systemic lupus erythematosus and metabolic syndrome analyzed by bioinformatics combining machine learning algorithm and single-cell sequencing analysis. Front Immunol 2022; 13:1015882. [PMID: 36341378 PMCID: PMC9627509 DOI: 10.3389/fimmu.2022.1015882] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is one of the most prevalent systemic autoimmune diseases, and metabolic syndrome (MetS) is the most common metabolic disorder that contains hypertension, dyslipidemia, and obesity. Despite clinical evidence suggested potential associations between SLE and MetS, the underlying pathogenesis is yet unclear. Methods The microarray data sets of SLE and MetS were obtained from the Gene Expression Omnibus (GEO) database. To identify the shared genes between SLE and MetS, the Differentially Expressed Genes (DEGs) analysis and the weighted gene co-expression network analysis (WGCNA) were conducted. Then, the GO and KEGG analyses were performed, and the protein-protein interaction (PPI) network was constructed. Next, Random Forest and LASSO algorithms were used to screen shared hub genes, and a diagnostic model was built using the machine learning technique XG-Boost. Subsequently, CIBERSORT and GSVA were used to estimate the correlation between shared hub genes and immune infiltration as well as metabolic pathways. Finally, the significant hub genes were verified using single-cell RNA sequencing (scRNA-seq) data. Results Using limma and WGCNA, we identified 153 shared feature genes, which were enriched in immune- and metabolic-related pathways. Further, 20 shared hub genes were screened and successfully used to build a prognostic model. Those shared hub genes were associated with immunological and metabolic processes in peripheral blood. The scRNA-seq results verified that TNFSF13B and OAS1, possessing the highest diagnostic efficacy, were mainly expressed by monocytes. Additionally, they showed positive correlations with the pathways for the metabolism of xenobiotics and cholesterol, both of which were proven to be active in this comorbidity, and shown to be concentrated in monocytes. Conclusion This study identified shared hub genes and constructed an effective diagnostic model in SLE and MetS. TNFSF13B and OAS1 had a positive correlation with cholesterol and xenobiotic metabolism. Both of these two biomarkers and metabolic pathways were potentially linked to monocytes, which provides novel insights into the pathogenesis and combined therapy of SLE comorbidity with MetS.
Collapse
Affiliation(s)
- Yingyu Wang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Zhongzhou Huang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Yu Xiao
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Weiguo Wan
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- *Correspondence: Weiguo Wan, ; Xue Yang,
| | - Xue Yang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- *Correspondence: Weiguo Wan, ; Xue Yang,
| |
Collapse
|
11
|
Xiang T, Zhang S, Li Q, Li L, Liu H, Chen C, Yang G, Yang M. GPHB5 Is a Biomarker in Women With Metabolic Syndrome: Results From Cross-Sectional and Intervention Studies. Front Endocrinol (Lausanne) 2022; 13:893142. [PMID: 35757403 PMCID: PMC9218212 DOI: 10.3389/fendo.2022.893142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Animal studies have found that GPHB5 has a similar effect on system metabolism as TSH. However, the relationship between GPHB5 and metabolic diseases remains unknown. This study investigates the relationship between GPHB5 and MetS in young women. METHODS Bioinformatics analysis was undertaken to explore the relationship between GPHB5 and metabolic-related genes and signaling pathways. EHC and OGTT were performed on all individuals. Lipid-infusion, physical activity, and cold-exposure tests were performed on healthy individuals. Serum GPHB5 concentrations were measured by an ELISA kit. RESULTS PPI network showed that 11 genes interacted with GPHB5, in which POMC and KISS1R were involved in glucose and lipid metabolism. GO analysis showed 56 pathways for BP and 16 pathways for MF, in which OPRM1 and MCR families were related to energy metabolism. KEGG analysis found that GPHB5 is associated with lipolysis and neuroactive ligand-receptor interaction pathways. The levels of circulating GPHB5 were significantly increased, while serum adiponectin levels were lower in MetS women compared with healthy women. Obese/overweight individuals had lower adiponectin levels and higher GPHB5 levels. Circulating GPHB5 levels were positively correlated with BMI, WHR, blood pressure, FBG, 2 h-BG, HbA1c, FIns, 2h-Ins, LDL-C, FFA, HOMA-IR, and AUCg, etc. but negatively correlated with HDL-C, adiponectin, and M-values. Serum GPHB5 levels did not change significantly during the OGTT, EHC, and lipid infusion. Physical activity and cold-exposure tests did not lead to changes in GPHB5 levels. GLP-1RA treatment resulted in a significant decrease in serum GPHB5 levels. CONCLUSIONS GPHB5 may be a biomarker for MetS.
Collapse
Affiliation(s)
- Ting Xiang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Siliang Zhang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qinge Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ling Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hua Liu
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Chen Chen
- Endocrinology, School of Biomedical Science (SBMS), Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- *Correspondence: Gangyi Yang, ; Mengliu Yang,
| | - Mengliu Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- *Correspondence: Gangyi Yang, ; Mengliu Yang,
| |
Collapse
|
12
|
Wang Y, Xiang T, Xia X, Zhang H, Geng S, Yang G, Qiu S, He Y, Liu R, Li L, Liu H, Li K, Zhang L, Liang Z, He J. Elevated circulating GPHB5 levels in women with insulin resistance and polycystic ovary syndrome: A cross-sectional study and multiple intervention studies. Front Endocrinol (Lausanne) 2022; 13:1010714. [PMID: 36568071 PMCID: PMC9772026 DOI: 10.3389/fendo.2022.1010714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE GPHB5 has been found to be associated with glucose and lipid metabolism in animal studies. However, the association of GPHB5 with IR and metabolic disorders remains unknown, and there is a lack of research in humans. Our aim in this study was to investigate the relationship between circulating GPHB5 and metabolic disorders in humans. METHODS Bioinformatics analysis was performed to understand the relationship between GPHB5 and metabolic disorders. GPHB5 mRNA expression in mice and rats was determined using RT-qPCR. Circulating GPHB5 concentrations were measured with an ELISA kit. EHC and OGTT were performed in humans. RESULTS Bioinformatics analysis shows that GPHB5 is associated with metabolic disorders and PCOS. GPHB5 mRNA expression levels in the metabolic-related tissues of HFD-fed mice, db/db and ob/ob mice, and PCOS rats were significantly higher than those of WT mice or rats. In human studies, we find that circulating GPHB5 levels were significantly higher in women with IR and PCOS. GPHB5 levels were positively correlated with age, BMI, WHR, BP, FBG, 2 h-BG, FIns, 2 h-Ins, TC, LDL-C, HbA1c, and FFA, but negatively correlated with adiponectin. Furthermore, GPHB5 was positively correlated with DHEAS and FAI, while negatively correlated with SHBG, FSH, SHBG and FSH. The increased GPHB5 concentration was related to IR and PCOS. After the treatment of metformin, GLP-1RA (Lira), and TZDs, circulating GPHB5 levels were decreased. CONCLUSIONS Our results reveal that circulating GPHB5 could be a biomarker and potential therapeutic target for IR and PCOS in women.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Endocrinology, Chongqing Red Cross Hospital (People’s Hospital of Jiangbei District), Chongqing, China
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ting Xiang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xuyun Xia
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongmin Zhang
- Department of Endocrinology, The First People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Shan Geng
- Department of Endocrinology, The People’s Hospital of Dazu, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sheng Qiu
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yirui He
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Rui Liu
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hua Liu
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi, MS, United States
| | - Ke Li
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lili Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zerong Liang
- Department of Endocrinology, Chongqing Red Cross Hospital (People’s Hospital of Jiangbei District), Chongqing, China
- *Correspondence: Zerong Liang, ; Jianguo He,
| | - Jianguo He
- Department of Endocrinology, Chongqing Red Cross Hospital (People’s Hospital of Jiangbei District), Chongqing, China
- *Correspondence: Zerong Liang, ; Jianguo He,
| |
Collapse
|