1
|
Zhao S, Hörkkö S, Savolainen MJ, Koivukangas V, Mäkinen VP, Ala-Korpela M, Hukkanen J. Short-Term Metabolic Changes and Their Physiological Mediators in the Roux-en-Y Gastric Bypass Bariatric Surgery. Obes Surg 2024; 34:625-634. [PMID: 38191968 PMCID: PMC10810963 DOI: 10.1007/s11695-023-07042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND The Roux-en-Y gastric bypass (RYGB) is a common bariatric surgery to treat obesity. Its metabolic consequences are favourable and long-term clinical corollaries beneficial. However, detailed assessments of various affected metabolic pathways and their mediating physiological factors are scarce. METHODS We performed a clinical study with 30 RYGB patients in preoperative and 6-month postoperative visits. NMR metabolomics was applied to profiling of systemic metabolism via 80 molecular traits, representing core cardiometabolic pathways. Glucose, glycated haemoglobin (HbA1c), insulin, and apolipoprotein B-48 were measured with standard assays. Logistic regression models of the surgery effect were used for each metabolic measure and assessed individually for multiple mediating physiological factors. RESULTS Changes in insulin concentrations reflected those of BMI with robust decreases due to the surgery. Six months after the surgery, triglycerides, remnant cholesterol, and apolipoprotein B-100 were decreased -24%, -18%, and -14%, respectively. Lactate and glycoprotein acetyls, a systemic inflammation biomarker, decreased -16% and -9%, respectively. The concentrations of branched-chain (BCAA; leucine, isoleucine, and valine) and aromatic (phenylalanine and tyrosine) amino acids decreased after the surgery between -17% for tyrosine and -23% for leucine. Except for the most prominent metabolic changes observed for the BCAAs, all changes were almost completely mediated by weight change and insulin. Glucose and type 2 diabetes had clearly weaker effects on the metabolic changes. CONCLUSIONS The comprehensive metabolic analyses indicate that weight loss and improved insulin sensitivity during the 6 months after the RYGB surgery are the key physiological outcomes mediating the short-term advantageous metabolic effects of RYGB. The clinical study was registered at ClinicalTrials.gov as NCT01330251.
Collapse
Affiliation(s)
- Siyu Zhao
- Systems Epidemiology, Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sohvi Hörkkö
- Medical Microbiology and Immunology, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Markku J Savolainen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
| | - Vesa Koivukangas
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Surgery, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Ville-Petteri Mäkinen
- Systems Epidemiology, Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mika Ala-Korpela
- Systems Epidemiology, Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Biocenter Oulu, University of Oulu, Oulu, Finland.
- NMR Metabolomics Laboratory, School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Janne Hukkanen
- Biocenter Oulu, University of Oulu, Oulu, Finland.
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
2
|
Saprina TV, Bashirova AS, Ivanov VV, Pekov SI, Popov IA, Bashirov SR, Vasilyeva EA, Pavlenko OA, Krinitskii DV, Chen M. Lipidomic markers of obesity and their dynamics after bariatric surgery. BULLETIN OF SIBERIAN MEDICINE 2024; 22:174-187. [DOI: 10.20538/1682-0363-2023-4-174-187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Obesity is considered as a chronic progressive disease, heterogeneous in its etiology and clinical manifestations, and characterized by excess in body fat mass and its deposition in the body. The term “morbid obesity” refers to excessive deposition of adipose tissue with a body mass index (BMI) ≥40 kg / m2 or with a BMI ≥ 35 kg / m2 in the presence of serious complications associated with obesity. Along with obesity, the frequency of type 2 diabetes mellitus and cardiovascular diseases closely associated with it has increased. It results from the progression of metabolic disorders, including insulin resistance, which is inextricably linked with the accumulation of visceral fat and plays a key role in the pathogenesis of obesity-related diseases.The study of lipidomic signatures in obesity and associated conditions is a promising branch of fundamental medicine, which makes it possible to significantly and at a new conceptual level stratify a cohort of obese patients into various phenotypes, including a metabolically healthy and metabolically unhealthy obesity phenotypes. Dynamic changes in the lipidome both in the context of diet, drug treatment, and after various bariatric surgeries are of great interest for developing personalized strategies for the treatment of this disease. Currently available studies and their results suggest that we are only at the very start of studying this promising biomedical field.
Collapse
Affiliation(s)
| | | | | | - S. I. Pekov
- Siberian State Medical University;
Skolkovo Institute of Science and Technology;
Moscow Institute of Physics and Technology
| | - I. A. Popov
- Siberian State Medical University;
Moscow Institute of Physics and Technology
| | | | | | | | | | - M. Chen
- Siberian State Medical University
| |
Collapse
|
3
|
Yin M, Wang Y, Han M, Liang R, Li S, Wang G, Gang X. Mechanisms of bariatric surgery for weight loss and diabetes remission. J Diabetes 2023; 15:736-752. [PMID: 37442561 PMCID: PMC10509523 DOI: 10.1111/1753-0407.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Obesity and type 2 diabetes(T2D) lead to defects in intestinal hormones secretion, abnormalities in the composition of bile acids (BAs), increased systemic and adipose tissue inflammation, defects of branched-chain amino acids (BCAAs) catabolism, and dysbiosis of gut microbiota. Bariatric surgery (BS) has been shown to be highly effective in the treatment of obesity and T2D, which allows us to view BS not simply as weight-loss surgery but as a means of alleviating obesity and its comorbidities, especially T2D. In recent years, accumulating studies have focused on the mechanisms of BS to find out which metabolic parameters are affected by BS through which pathways, such as which hormones and inflammatory processes are altered. The literatures are saturated with the role of intestinal hormones and the gut-brain axis formed by their interaction with neural networks in the remission of obesity and T2D following BS. In addition, BAs, gut microbiota and other factors are also involved in these benefits after BS. The interaction of these factors makes the mechanisms of metabolic improvement induced by BS more complicated. To date, we do not fully understand the exact mechanisms of the metabolic alterations induced by BS and its impact on the disease process of T2D itself. This review summarizes the changes of intestinal hormones, BAs, BCAAs, gut microbiota, signaling proteins, growth differentiation factor 15, exosomes, adipose tissue, brain function, and food preferences after BS, so as to fully understand the actual working mechanisms of BS and provide nonsurgical therapeutic strategies for obesity and T2D.
Collapse
Affiliation(s)
- Mengsha Yin
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Yao Wang
- Department of OrthopedicsThe Second Hospital Jilin UniversityChangchunChina
| | - Mingyue Han
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Ruishuang Liang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Shanshan Li
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Guixia Wang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Xiaokun Gang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
4
|
Goncalves VC, Silva da Fonsêca V, de Paula Faria D, Izidoro MA, Berretta AA, de Almeida ACG, Affonso Fonseca FL, Scorza FA, Scorza CA. Propolis induces cardiac metabolism changes in 6-hydroxydopamine animal model: A dietary intervention as a potential cardioprotective approach in Parkinson’s disease. Front Pharmacol 2022; 13:1013703. [PMID: 36313332 PMCID: PMC9606713 DOI: 10.3389/fphar.2022.1013703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
While there is sustained growth of the older population worldwide, ageing is a consistent risk factor for neurodegenerative diseases, such as Parkinson’s-disease (PD). Considered an emblematic movement disorder, PD comprises a miscellany of non-motor symptoms, for which effective management remains an unfulfilled need in clinical practice. Highlighted are the cardiovascular abnormalities, that cause significant burden in PD patients. Evidence suggests that key biological processes underlying PD pathophysiology can be modulated by diet-derived bioactive compounds, such as green propolis, a natural functional food with biological and pharmacological properties. The effects of propolis on cardiac affection associated to PD have received little coverage. In this study, a metabolomics approach and Positron Emission Tomography (PET) imaging were used to assess the metabolic response to diet supplementation with green propolis on heart outcomes of rats with Parkinsonism induced by 6-hydroxydopamine (6-OHDA rats). Untargeted metabolomics approach revealed four cardiac metabolites (2-hydroxybutyric acid, 3-hydroxybutyric acid, monoacylglycerol and alanine) that were significantly modified between animal groups (6-OHDA, 6-OHDA + Propolis and sham). Propolis-induced changes in the level of these cardiac metabolites suggest beneficial effects of diet intervention. From the metabolites affected, functional analysis identified changes in propanoate metabolism (a key carbohydrate metabolism related metabolic pathway), glucose-alanine cycle, protein and fatty acid biosynthesis, energy metabolism, glutathione metabolism and urea cycle. PET imaging detected higher glucose metabolism in the 17 areas of the left ventricle of all rats treated with propolis, substantially contrasting from those rats that did not consume propolis. Our results bring new insights into cardiac metabolic substrates and pathways involved in the mechanisms of the effects of propolis in experimental PD and provide potential novel targets for research in the quest for future therapeutic strategies.
Collapse
Affiliation(s)
- Valeria C. Goncalves
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- *Correspondence: Valeria C. Goncalves, ; Carla Alessandra Scorza,
| | - Victor Silva da Fonsêca
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Mario Augusto Izidoro
- Laboratório de Espectrometria de Massas—Associação Beneficente de Coleta de Sangue (COLSAN), São Paulo, Brazil
| | | | - Antônio-Carlos G. de Almeida
- Laboratório de Neurociências Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João Del-Rei (UFSJ), Minas Gerais, Brazil
| | - Fernando Luiz Affonso Fonseca
- Laboratório de Análises Clínicas da Faculdade de Medicina Do ABC, Santo André, São Paulo, Brazil
- Departamento de Ciencias Farmaceuticas da Universidade Federal de Sao Paulo (UNIFESP), Diadema, Brazil
| | - Fulvio Alexandre Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Carla Alessandra Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- *Correspondence: Valeria C. Goncalves, ; Carla Alessandra Scorza,
| |
Collapse
|