1
|
Valenzano M, Peduto A, Comba A, Menzaghi C, Trischitta V. The combination of next generation sequencing and technological devices allows a precision medicine approach in congenital hyperinsulinism: the case of a pregnant mother and the child she gave birth. Acta Diabetol 2025; 62:135-138. [PMID: 39441403 DOI: 10.1007/s00592-024-02395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Affiliation(s)
- Marina Valenzano
- Division of Diabetology, Department of Internal Medicine, Local Health Authority Torino 4, Corso Galileo Ferraris 3, 10034, Chivasso, TO, Italy.
| | - Antonella Peduto
- Paediatrics Unit, Santa Croce and Carle Hospital, Cuneo, CN, Italy
| | - Anna Comba
- Clinical Nutrition and Eating Disorders, Michele and Pietro Ferrero Hospital, Verduno, CN, Italy
| | - Claudia Menzaghi
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, FG, Italy
| |
Collapse
|
2
|
Worth C, Auckburally S, Worthington S, Ahmad S, O’Shea E, Senniappan S, Shaikh G, Dastamani A, Ferrara-Cook C, Betz S, Salomon-Estebanez M, Banerjee I. Continuous Glucose Monitoring-Derived Glycemic Phenotyping of Childhood Hypoglycemia due to Hyperinsulinism: A Year-long Prospective Nationwide Observational Study. J Diabetes Sci Technol 2024:19322968241255842. [PMID: 39564699 PMCID: PMC11577547 DOI: 10.1177/19322968241255842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
BACKGROUND The glycemic characterization of congenital hyperinsulinism (HI), a rare disease causing severe hypoglycemia in childhood, is incomplete. Continuous glucose monitoring (CGM) offers deep glycemic phenotyping to understand disease burden and individualize patient care. Typically, CGM has been restricted to severe HI only, with performance being described in short-term, retrospective studies. We have described CGM-derived phenotyping in a prospective, unselected national cohort providing comprehensive baseline information for future therapeutic trials. METHODS Glycemic frequency and trends, point accuracy, and patient experiences were drawn from a prospective, nationwide, observational study of unselected patients with persistent HI using the Dexcom G6 CGM device for 12 months as an additional monitoring tool alongside standard of care self- monitoring blood glucose (SMBG). FINDINGS Among 45 patients with HI, mean age was six years and 53% carried a genetic diagnosis. Data confirmed higher risk of early morning (03:00-07:00 h) hypoglycemia throughout the study period and demonstrated no longitudinal reduction in hypoglycemia with CGM use. Device accuracy was suboptimal; 17 500 glucose levels paired with SMBG demonstrated mean absolute relative difference (MARD) 25% and hypoglycemia detection of 40%. Patient/parent dissatisfaction with CGM was high; 50% of patients discontinued use, citing inaccuracy and pain. However, qualitative feedback was also positive and families reported improved understanding of glycemic patterns to inform changes in behavior to reduce hypoglycemia. INTERPRETATION This comprehensive study provides unbiased insights into glycemic frequency and long-term trends among patients with HI; such data are likely to influence and inform clinical priorities and future therapeutic trials.
Collapse
Affiliation(s)
- Chris Worth
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
- Department of Computer Science, University of Manchester, Manchester, UK
| | - Sameera Auckburally
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
- Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Sarah Worthington
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
| | - Sumera Ahmad
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
| | - Elaine O’Shea
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
| | - Senthil Senniappan
- Department of Paediatric Endocrinology, Alder Hey Children’s Hospital, Liverpool, UK
| | - Guftar Shaikh
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, UK
| | - Antonia Dastamani
- Department of Paediatric Endocrinology, Great Ormond Street Hospital, London, UK
| | | | | | - Maria Salomon-Estebanez
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Morales-Dopico L, MacLeish SA. Expanding the horizon of continuous glucose monitoring into the future of pediatric medicine. Pediatr Res 2024; 96:1464-1474. [PMID: 39306610 PMCID: PMC11624137 DOI: 10.1038/s41390-024-03573-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/01/2024] [Accepted: 09/05/2024] [Indexed: 12/08/2024]
Abstract
Glucose monitoring has rapidly evolved with the development of minimally invasive continuous glucose monitoring (CGM) using interstitial fluid. It is recommended as standard of care in the ambulatory setting, nearly replacing capillary glucose testing in those with access to CGM. The newest CGM devices continue to be smaller and more accurate, and integration with automated insulin delivery systems has further revolutionized the management of diabetes, leading to successful improvements in care and quality of life. Many studies confirm accuracy and application of CGM in various adult inpatient settings. Studies in adult patients increased during the COVID 19 Pandemic, but despite reassuring results, inpatient CGM use is not yet approved by the FDA. There is a lack of studies in inpatient pediatric settings, although data from the NICU and PICU have started to emerge. Given the exponential increase in the use of CGM, it is imperative that hospitals develop protocols for CGM use, with a need for ongoing implementation research. In this review we describe how CGM systems work, discuss benefits and barriers, summarize research in inpatient pediatric CGM use, explore gaps in research design along with emerging recommendations for inpatient use, and discuss overall CGM utility beyond outpatient diabetes management. IMPACT: Current CGM systems allow for uninterrupted monitoring of interstitial glucose excursions, and have triggered multiple innovations including automated insulin delivery. CGM technology has become part of standard of care for outpatient diabetes management, endorsed by many international medical societies, now with significant uptake, replacing capillary glucose testing for daily management in patients with access to CGM technology. Although CGM is not approved by the FDA for inpatient hospital use, studies in adult settings support its use in hospitals. More studies are needed for pediatrics. Implementation research is paramount to expand the role of CGM in the inpatient setting and beyond.
Collapse
Affiliation(s)
- Lourdes Morales-Dopico
- Pediatric Endocrinology Fellow, CWRU School of Medicine, University Hospitals Cleveland Medical Center, Rainbow Babies and Children's Hospital, Cleveland, OH, USA.
| | - Sarah A MacLeish
- Associate Professor of Pediatrics, Pediatric Endocrinology, CWRU School of Medicine, University Hospitals Cleveland Medical Center, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| |
Collapse
|
4
|
Gugelmo G, Maines E, Boscari F, Lenzini L, Fadini GP, Burlina A, Avogaro A, Vitturi N. Continuous glucose monitoring in patients with inherited metabolic disorders at risk for Hypoglycemia and Nutritional implications. Rev Endocr Metab Disord 2024; 25:897-910. [PMID: 39352577 PMCID: PMC11470883 DOI: 10.1007/s11154-024-09903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 10/13/2024]
Abstract
Managing Inherited Metabolic Disorders (IMDs) at risk for hypoglycemia, such as Glycogen Storage Diseases (GSDs), Hereditary Fructose Metabolism Disorders (HFMDs) and Congenital Hyperinsulinism (CH), poses challenges in dietary treatments and blood glucose monitoring. The effectiveness of Continuous Glucose Monitoring (CGM) remains a subject of ongoing debate, with IMD guidelines maintaining caution. Therefore, a systematic evaluation is needed to understand the potential benefits of CGM during dietary interventions. A systematic literature review was conducted in PubMed according to the PICOS model and PRISMA recommendations on studies published from January 01, 2003, up to October 15, 2023 (PROSPERO CRD42024497744). The risk of bias was assessed using NIH Quality Assessment Tools. Twenty-four studies in GSDs (n = 13), CH (n = 10), and HFMDs (n = 1) were analyzed. In GSDs, Real-time CGM (Rt-CGM) was associated with metabolic benefits during nutritional interventions, proving to be an accurate system for hypoglycemia detection although with some concerns about reliability. Rt-CGM in CH, primarily involving children, also showed potential benefits for glycemic control and metabolic stability with acceptable accuracy, although its use during dietary changes was limited. Few experiences on Flash Glucose Monitoring (FGM) were reported, with some concerns about reliability. Overall, the studies analyzed presented different designs, and their quality was predominantly fair or poor. Heterogeneity and limited consensus on reliability and glycemic targets underscore the need for prospective studies and future recommendations for the use of CGM in optimizing nutritional status and providing personalized dietary education in individuals with IMDs prone to hypoglycemia.
Collapse
Affiliation(s)
- Giorgia Gugelmo
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, Padova, 35128, Italy
| | - Evelina Maines
- Division of Pediatrics, Santa Chiara General Hospital, APSS, Trento, 38122, Italy
| | - Federico Boscari
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, Padova, 35128, Italy
| | - Livia Lenzini
- Department of Medicine, Padova University Hospital, Padova, 35128, Italy
| | - Gian Paolo Fadini
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, Padova, 35128, Italy
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, Department of Women's and Children's Health, Padova University Hospital, Padova, 35128, Italy
| | - Angelo Avogaro
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, Padova, 35128, Italy
| | - Nicola Vitturi
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, Padova, 35128, Italy.
| |
Collapse
|
5
|
Lord K, De León DD. Approach to the Neonate With Hypoglycemia. J Clin Endocrinol Metab 2024; 109:e1787-e1795. [PMID: 38629854 PMCID: PMC11319000 DOI: 10.1210/clinem/dgae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 08/15/2024]
Abstract
After birth, healthy neonates undergo a period of altered glucose metabolism, known as "transitional hypoglycemia." During the first 0 to 4 hours of life, the mean plasma glucose concentration decreases to 57 mg/dL, then by 72 to 96 hours of life increases to 82 mg/dL, well within the normal adult range. Recent data suggest that transitional hypoglycemia is due to persistence of the fetal beta cell's lower threshold for insulin release, resulting in a transient hyperinsulinemic state. While hypoglycemia is an expected part of the transition to postnatal life, it makes the identification of infants with persistent hypoglycemia disorders challenging. Given the risk of neurologic injury from hypoglycemia, identifying these infants is critical. Hyperinsulinism is the most common cause of persistent hypoglycemia in neonates and infants and carries a high risk of neurocognitive dysfunction given the severity of the hypoglycemia and the inability to generate ketones, a critical alternative cerebral fuel. Screening neonates at risk for persistent hypoglycemia disorders and completing evaluations prior to hospital discharge is essential to prevent delayed diagnoses and neurologic damage.
Collapse
Affiliation(s)
- Katherine Lord
- The Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diva D De León
- The Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Worth C, Worthington S, Auckburally S, O’Shea E, Ahmad S, Fullwood C, Salomon-Estebanez M, Banerjee I. First Accuracy and User-Experience Evaluation of New Continuous Glucose Monitoring System for Hypoglycemia Due to Hyperinsulinism. J Diabetes Sci Technol 2024:19322968241245923. [PMID: 38616550 PMCID: PMC11572253 DOI: 10.1177/19322968241245923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Patients with congenital hyperinsulinism (HI) require constant glucose monitoring to detect and treat recurrent and severe hypoglycemia. Historically, this has been achieved with intermittent self-monitoring blood glucose (SMBG), but patients are increasingly using continuous glucose monitoring (CGM). Given the rapidity of CGM device development, and increasing calls for CGM use from HI families, it is vital that new devices are evaluated early. METHODS We provided two months of supplies for the new Dexcom G7 CGM device to 10 patients with HI who had recently finished using the Dexcom G6. Self-monitoring blood glucose was performed concurrently with paired readings providing accuracy calculations. Patients and families completed questionnaires about device use at the end of the two-month study period. RESULTS Compared to the G6, the G7 showed a significant reduction in mean absolute relative difference (25%-18%, P < .001) and in the over-read error (Bland Altman +1.96 SD; 3.54 mmol/L to 2.95 mmol/L). This resulted in an improvement in hypoglycemia detection from 42% to 62% (P < .001). Families reported an overall preference for the G7 but highlighted concerns about high sensor failure rates. DISCUSSION The reduction in mean absolute relative difference and over-read error and the improvement in hypoglycemia detection implies that the G7 is a safer and more useful device in the management of hypoglycemia for patients with HI. Accuracy, while improved from previous devices, remains suboptimal with 40% of hypoglycemia episodes not detected.
Collapse
Affiliation(s)
- Chris Worth
- Department Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
| | - Sarah Worthington
- Department Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
| | - Sameera Auckburally
- Department Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
- Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Elaine O’Shea
- Department Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
| | - Sumera Ahmad
- Department Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
| | - Catherine Fullwood
- Research and Innovation, Manchester University National Health Service Foundation Trust, Manchester, UK
- Centre for Biostatistics, Division of Population Health, Health Services Research & Primary Care, School of Health Sciences, University of Manchester, Manchester, UK
| | | | - Indraneel Banerjee
- Department Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Tian T, Aaron RE, Kohn MA, Klonoff DC. The Need for a Modern Error Grid for Clinical Accuracy of Blood Glucose Monitors and Continuous Glucose Monitors. J Diabetes Sci Technol 2024; 18:3-9. [PMID: 38124309 PMCID: PMC10899826 DOI: 10.1177/19322968231214281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Affiliation(s)
- Tiffany Tian
- Diabetes Technology Society, Burlingame, CA, USA
| | | | - Michael A. Kohn
- University of California, San Francisco, San Francisco, CA, USA
| | - David C. Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
| |
Collapse
|
8
|
Gariepy M, Yoosefi N, Silva C, Chanoine JP, Abdulhussein FS. The use of CGM to identify hypoglycemia and glycemic patterns in congenital hyperinsulinism. J Pediatr Endocrinol Metab 2023; 36:1133-1139. [PMID: 37988593 DOI: 10.1515/jpem-2023-0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVES Unrecognized hypoglycemia, especially in the neonatal population, is a significant cause of morbidity and poor neurologic outcomes. Children with congenital hyperinsulinism (HI) are at risk of hypoglycemia and point of care testing (POCT) is the standard of care. Studies have shown that continuous glucose monitoring (CGM) improves glycemic control and reduces the frequency of hypoglycemia among children with type 1 diabetes. There is limited experience with the use of CGM in children with HI. To assess the glycemic pattern of children with HI on stable therapy and evaluate the frequency of undetected hypoglycemia using Dexcom G6® CGM. METHODS A cross-sectional, observational pilot study was done in 10 children, ages 3 months to 17 years. Each child had a clinical or genetic diagnosis of HI on stable medical therapy. Participants were asked to continue their usual POCT blood glucose monitoring, as well as wear a blinded Dexcom G6® CGM during a 20-day study period with the potential of unblinding if there was severe hypoglycemia detected during the study trial. RESULTS During the study period, 26 hypoglycemic events were noted by CGM in 60 % of the participants with 45 % occurring between 0600 and 0800. CONCLUSIONS CGM can help detect hypoglycemia and blood glucose trends during a time when there is usually no POCT, which can guide medical management. 30 % of our population had a dose adjustment in their medications. This study was limited by population size.
Collapse
Affiliation(s)
- Martin Gariepy
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Niyoosha Yoosefi
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Carolina Silva
- Endocrinology and Diabetes Unit, British Columbia Children's Hospital, Vancouver, Canada
| | - Jean-Pierre Chanoine
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Endocrinology and Diabetes Unit, British Columbia Children's Hospital, Vancouver, Canada
| | - Fatema S Abdulhussein
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Endocrinology and Diabetes Unit, British Columbia Children's Hospital, Vancouver, Canada
| |
Collapse
|
9
|
Shaikh MG, Lucas-Herald AK, Dastamani A, Salomon Estebanez M, Senniappan S, Abid N, Ahmad S, Alexander S, Avatapalle B, Awan N, Blair H, Boyle R, Chesover A, Cochrane B, Craigie R, Cunjamalay A, Dearman S, De Coppi P, Erlandson-Parry K, Flanagan SE, Gilbert C, Gilligan N, Hall C, Houghton J, Kapoor R, McDevitt H, Mohamed Z, Morgan K, Nicholson J, Nikiforovski A, O'Shea E, Shah P, Wilson K, Worth C, Worthington S, Banerjee I. Standardised practices in the networked management of congenital hyperinsulinism: a UK national collaborative consensus. Front Endocrinol (Lausanne) 2023; 14:1231043. [PMID: 38027197 PMCID: PMC10646160 DOI: 10.3389/fendo.2023.1231043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/04/2023] [Indexed: 12/01/2023] Open
Abstract
Congenital hyperinsulinism (CHI) is a condition characterised by severe and recurrent hypoglycaemia in infants and young children caused by inappropriate insulin over-secretion. CHI is of heterogeneous aetiology with a significant genetic component and is often unresponsive to standard medical therapy options. The treatment of CHI can be multifaceted and complex, requiring multidisciplinary input. It is important to manage hypoglycaemia in CHI promptly as the risk of long-term neurodisability arising from neuroglycopaenia is high. The UK CHI consensus on the practice and management of CHI was developed to optimise and harmonise clinical management of patients in centres specialising in CHI as well as in non-specialist centres engaged in collaborative, networked models of care. Using current best practice and a consensus approach, it provides guidance and practical advice in the domains of diagnosis, clinical assessment and treatment to mitigate hypoglycaemia risk and improve long term outcomes for health and well-being.
Collapse
Affiliation(s)
- M. Guftar Shaikh
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Angela K. Lucas-Herald
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Antonia Dastamani
- Department of Paediatric Endocrinology and Diabetes, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Maria Salomon Estebanez
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Senthil Senniappan
- Department of Paediatric Endocrinology, Alder Hey Children’s Hospital, Liverpool, United Kingdom
| | - Noina Abid
- Department of Paediatric Endocrinology, Royal Belfast Hospital for Sick Children, Belfast, United Kingdom
| | - Sumera Ahmad
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Sophie Alexander
- Department of Paediatric Endocrinology and Diabetes, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Bindu Avatapalle
- Department of Paediatric Endocrinology and Diabetes, University Hospital of Wales, Cardiff, United Kingdom
| | - Neelam Awan
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Hester Blair
- Department of Dietetics, The Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Roisin Boyle
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Alexander Chesover
- Department of Paediatric Endocrinology and Diabetes, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Barbara Cochrane
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Ross Craigie
- Department of Paediatric Surgery, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Annaruby Cunjamalay
- Department of Paediatric Endocrinology and Diabetes, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Sarah Dearman
- The Children’s Hyperinsulinism Charity, Accrington, United Kingdom
| | - Paolo De Coppi
- SNAPS, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- NIHR BRC UCL Institute of Child Health, London, United Kingdom
| | - Karen Erlandson-Parry
- Department of Paediatric Endocrinology, Alder Hey Children’s Hospital, Liverpool, United Kingdom
| | - Sarah E. Flanagan
- Department of Clinical and Biomedical Science, University of Exeter, Exeter, United Kingdom
| | - Clare Gilbert
- Department of Paediatric Endocrinology and Diabetes, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Niamh Gilligan
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Caroline Hall
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Jayne Houghton
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Ritika Kapoor
- Department of Paediatric Endocrinology, Faculty of Medicine and Life Sciences, King’s College London, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Helen McDevitt
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Zainab Mohamed
- Department of Paediatric Endocrinology, Birmingham Children's Hospital, Birmingham, United Kingdom
| | - Kate Morgan
- Department of Paediatric Endocrinology and Diabetes, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Jacqueline Nicholson
- Paediatric Psychosocial Service, Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Ana Nikiforovski
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Elaine O'Shea
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Pratik Shah
- Department of Paediatric Endocrinology, Barts Health NHS Trust, Royal London Children’s Hospital, London, United Kingdom
| | - Kirsty Wilson
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Chris Worth
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Sarah Worthington
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| |
Collapse
|
10
|
Sivasubramanian M, Avari P, Gilbert C, Doodson L, Morgan K, Oliver N, Shah P. Accuracy and impact on quality of life of real-time continuous glucose monitoring in children with hyperinsulinaemic hypoglycaemia. Front Endocrinol (Lausanne) 2023; 14:1265076. [PMID: 37822600 PMCID: PMC10562688 DOI: 10.3389/fendo.2023.1265076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 10/13/2023] Open
Abstract
Objective Continuous glucose monitoring (CGM) is the standard of care for glucose monitoring in children with diabetes, however there are limited data reporting their use in hyperinsulinaemic hypoglycaemia (HH). Here, we evaluate CGM accuracy and its impact on quality of life in children with HH. Methods Real-time CGM (Dexcom G5 and G6) was used in children with HH aged 0-16years. Data from self-monitoring capillary blood glucose (CBG) and CGM were collected over a period of up to 28days and analysed. Quality of life was assessed by the PedsQL4.0 general module and PedsQL2.0 family impact module, completed by children and their parents/carers before and after CGM insertion. Analysis of accuracy metrics included mean absolute relative difference (MARD) and proportion of CGM values within 15, 20, and 30% or 15, 20, and 30 mg/dL of reference glucose values >100 mg/dL or ≤100 mg/dL, respectively (% 15/15, % 20/20, % 30/30). Clinical reliability was assessed with Clarke error grid (CEG) analyses. Results Prospective longitudinal study with data analysed from 40 children. The overall MARD between reference glucose and paired CGM values (n=4,928) was 13.0% (Dexcom G5 12.8%, Dexcom G6 13.1%). The proportion of readings meeting %15/15 and %20/20 were 77.3% and 86.4%, respectively, with CEG analysis demonstrating 97.4% of all values in zones A and B. Within the hypoglycaemia range (<70 mg/dL), the median ARD was 11.4% with a sensitivity and specificity of 64.2% and 91.3%, respectively. Overall PedsQL child report at baseline and endpoint were 57.6 (50.5 - 75.8) and 87.0 (82.9 - 91.2), and for parents were 60.3 (44.8 - 66.0) and 85.3 (83.7 - 91.3), respectively (both p<0.001). Conclusion Use of CGM for children with HH is feasible, with clinically acceptable accuracy, particularly in the hypoglycaemic range. Quality of life measures demonstrate significant improvement after CGM use. These data are important to explore use of CGM in disease indications, including neonatal and paediatric diabetes, cystic fibrosis and glycogen storage disorders.
Collapse
Affiliation(s)
- Madhini Sivasubramanian
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- University College London, Institute of Child Health, London, United Kingdom
- Faculty of Health and Wellbeing, University of Sunderland in London, London, United Kingdom
| | - Parizad Avari
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Clare Gilbert
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Louise Doodson
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Kate Morgan
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Nick Oliver
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Pratik Shah
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- University College London, Institute of Child Health, London, United Kingdom
- Department of Paediatric Endocrinology, The Royal London Children’s Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
11
|
Sim SY, Ahn MB. Continuous Glucose Monitoring: A Possible Aid for Detecting Hypoglycemic Events during Insulin Tolerance Tests. SENSORS (BASEL, SWITZERLAND) 2023; 23:6892. [PMID: 37571675 PMCID: PMC10422333 DOI: 10.3390/s23156892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
The combined pituitary function test evaluates the anterior pituitary gland, while the insulin tolerance test evaluates growth hormone deficiencies. However, successful stimulation requires achieving an appropriate level of hypoglycemia. Close medical supervision for glucose monitoring is required during hypoglycemia induction and the test is often very tedious. In addition, a capillary blood sugar test (BST) and serum glucose levels may differ greatly. An alternative approach may be utilizing a continuous glucose-monitoring (CGM) system. We provide three cases in which CGM was successfully used alongside a standard BST and serum glucose levels during the combined pituitary function test to better detect and induce hypoglycemia. Three participants who were diagnosed with multiple pituitary hormone deficiencies during childhood were re-evaluated in adulthood; a Dexcom G6 CGM was used. The CGM sensor glucose and BST levels were simultaneously assessed for glycemic changes and when adequate hypoglycemia was reached during the combined pituitary function test. The CGM sensor glucose, BST, and serum glucose levels showed similar glucose trends in all three patients. A Bland-Altman analysis revealed that the CGM underestimated the BST values by approximately 9.68 mg/dL, and a Wilcoxon signed-rank test showed that the CGM and BST measurements significantly differed during the stimulation test (p = 0.003). Nevertheless, in all three cases, the CGM sensor mimicked the glycemic variability changes in the BST reading and assisted in monitoring appropriate hypoglycemia nadir. Thus, CGM can be used as a safe aid for clinicians to use during insulin tolerance tests where critical hypoglycemia is induced.
Collapse
Affiliation(s)
| | - Moon Bae Ahn
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
12
|
Cummings C, Jiang A, Sheehan A, Ferraz-Bannitz R, Puleio A, Simonson DC, Dreyfuss JM, Patti ME. Continuous glucose monitoring in patients with post-bariatric hypoglycaemia reduces hypoglycaemia and glycaemic variability. Diabetes Obes Metab 2023; 25:2191-2202. [PMID: 37046360 PMCID: PMC10807851 DOI: 10.1111/dom.15096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
AIM To determine whether continuous glucose monitoring (CGM) can reduce hypoglycaemia in patients with post-bariatric hypoglycaemia (PBH). MATERIALS AND METHODS In an open-label, nonrandomized, pre-post design with sequential assignment, CGM data were collected in 22 individuals with PBH in two sequential phases: (i) masked (no access to sensor glucose or alarms); and (ii) unmasked (access to sensor glucose and alarms for low or rapidly declining sensor glucose). Twelve participants wore the Dexcom G4 device for a total of 28 days, while 10 wore the Dexcom G6 device for a total of 20 days. RESULTS Participants with PBH spent a lower percentage of time in hypoglycaemia over 24 hours with unmasked versus masked CGM (<3.3 mM/L, or <60 mg/dL: median [median absolute deviation {MAD}] 0.7 [0.8]% vs. 1.4 [1.7]%, P = 0.03; <3.9 mM/L, or <70 mg/dL: median [MAD] 2.9 [2.5]% vs. 4.7 [4.8]%; P = 0.04), with similar trends overnight. Sensor glucose data from the unmasked phase showed a greater percentage of time spent between 3.9 and 10 mM/L (70-180 mg/dL) (median [MAD] 94.8 [3.9]% vs. 90.8 [5.2]%; P = 0.004) and lower glycaemic variability over 24 hours (median [MAD] mean amplitude of glycaemic excursion 4.1 [0.98] vs. 4.4 [0.99] mM/L; P = 0.04). During the day, participants also spent a greater percentage of time in normoglycaemia with unmasked CGM (median [MAD] 94.2 [4.8]% vs. 90.9 [6.2]%; P = 0.005), largely due to a reduction in hyperglycaemia (>10 mM/L, or 180 mg/dL: median [MAD] 1.9 [2.2]% vs. 3.9 [3.6]%; P = 0.02). CONCLUSIONS Real-time CGM data and alarms are associated with reductions in low sensor glucose, elevated sensor glucose, and glycaemic variability. This suggests CGM allows patients to detect hyperglycaemic peaks and imminent hypoglycaemia, allowing dietary modification and self-treatment to reduce hypoglycaemia. The use of CGM devices may improve safety in PBH, particularly for patients with hypoglycaemia unawareness.
Collapse
Affiliation(s)
- Cameron Cummings
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Alex Jiang
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Amanda Sheehan
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Rafael Ferraz-Bannitz
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Alexa Puleio
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Donald C. Simonson
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jonathan M. Dreyfuss
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Mary Elizabeth Patti
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Worth C, Hoskyns L, Salomon-Estebanez M, Nutter PW, Harper S, Derks TG, Beardsall K, Banerjee I. Continuous glucose monitoring for children with hypoglycaemia: Evidence in 2023. Front Endocrinol (Lausanne) 2023; 14:1116864. [PMID: 36755920 PMCID: PMC9900115 DOI: 10.3389/fendo.2023.1116864] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
In 2023, childhood hypoglycaemia remains a major public health problem and significant risk factor for consequent adverse neurodevelopment. Irrespective of the underlying cause, key elements of clinical management include the detection, prediction and prevention of episodes of hypoglycaemia. These tasks are increasingly served by Continuous Glucose Monitoring (CGM) devices that measure subcutaneous glucose at near-continuous frequency. While the use of CGM in type 1 diabetes is well established, the evidence for widespread use in rare hypoglycaemia disorders is less than convincing. However, in the few years since our last review there have been multiple developments and increased user feedback, requiring a review of clinical application. Despite advances in device technology, point accuracy of CGM remains low for children with non-diabetes hypoglycaemia. Simple provision of CGM devices has not replicated the efficacy seen in those with diabetes and is yet to show benefit. Machine learning techniques for hypoglycaemia prevention have so far failed to demonstrate sufficient prediction accuracy for real world use even in those with diabetes. Furthermore, access to CGM globally is restricted by costs kept high by the commercially-driven speed of technical innovation. Nonetheless, the ability of CGM to digitally phenotype disease groups has led to a better understanding of natural history of disease, facilitated diagnoses and informed changes in clinical management. Large CGM datasets have prompted re-evaluation of hypoglycaemia incidence and facilitated improved trial design. Importantly, an individualised approach and focus on the behavioural determinants of hypoglycaemia has led to real world reduction in hypoglycaemia. In this state of the art review, we critically analyse the updated evidence for use of CGM in non-diabetic childhood hypoglycaemia disorders since 2020 and provide suggestions for qualified use.
Collapse
Affiliation(s)
- Chris Worth
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, United Kingdom
- Department of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Lucy Hoskyns
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Maria Salomon-Estebanez
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Paul W. Nutter
- Department of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Simon Harper
- Department of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Terry G.J Derks
- Section of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, Groningen, Netherlands
| | - Kathy Beardsall
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|