1
|
Qin S, Hu Y, Luo H, Chu W, Deng R, Ma J. Metal ions and nanomaterials for targeted bone cancer immunotherapy. Front Immunol 2025; 16:1513834. [PMID: 40165969 PMCID: PMC11955472 DOI: 10.3389/fimmu.2025.1513834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Bone cancer remains a significant challenge in oncology, with limited success in current therapeutic approaches, particularly immunotherapy. Emerging research highlights the potential of integrating metal ions and nanomaterials for targeted immunotherapy in bone cancer. Metal ions, including calcium, magnesium, and zinc, play a significant role in modulating immune responses within the tumor microenvironment, affecting essential pathways necessary for immune activation. Meanwhile, nanomaterials, particularly metallic nanoparticles, offer precise drug delivery and immune system modulation, improving the efficacy of immunotherapeutic agents. This review explores the synergistic effects of metal ion-nanomaterial conjugates, discussing their role in enhancing immune cell activation, particularly T-cells and macrophages, and their potential for controlled drug release. We highlight preclinical advancements in bone cancer treatment using metal ion-responsive nanoparticles, and address current challenges such as biocompatibility and toxicity. Finally, we discuss the future prospects of these technologies in personalized and precision medicine, aiming to revolutionize bone cancer immunotherapy.
Collapse
Affiliation(s)
- Sen Qin
- Department of Orthopedics, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| | - YaoFeng Hu
- Department of Neurological Care Unit, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| | - HuaSong Luo
- Department of Orthopedics, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| | - Wei Chu
- Department of Orthopedics, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| | - RuCui Deng
- Department of Neurological Care Unit, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| | - JinLiang Ma
- Department of Orthopedics, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| |
Collapse
|
2
|
Sevcikova A, Martiniakova M, Omelka R, Stevurkova V, Ciernikova S. The Link Between the Gut Microbiome and Bone Metastasis. Int J Mol Sci 2024; 25:12086. [PMID: 39596154 PMCID: PMC11593804 DOI: 10.3390/ijms252212086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
The gut microbiome is essential for regulating host metabolism, defending against pathogens, and shaping the host's immune system. Mounting evidence highlights that disruption in gut microbial communities significantly impacts cancer development and treatment. Moreover, tumor-associated microbiota, along with its metabolites and toxins, may contribute to cancer progression by promoting epithelial-to-mesenchymal transition, angiogenesis, and metastatic spread to distant organs. Bones, in particular, are common sites for metastasis due to a rich supply of growth and neovascularization factors and extensive blood flow, especially affecting patients with thyroid, prostate, breast, lung, and kidney cancers, where bone metastases severely reduce the quality of life. While the involvement of the gut microbiome in bone metastasis formation is still being explored, proposed mechanisms suggest that intestinal dysbiosis may alter the bone microenvironment via the gut-immune-bone axis, fostering a premetastatic niche and immunosuppressive milieu suitable for cancer cell colonization. Disruption in the delicate balance of bone modeling and remodeling may further create a favorable environment for metastatic growth. This review focuses on the link between beneficial or dysbiotic microbiome composition and bone homeostasis, as well as the role of the microbiome in bone metastasis development. It also provides an overview of clinical trials evaluating the impact of gut microbial community structure on bone parameters across various conditions or health-related issues. Dietary interventions and microbiota modulation via probiotics, prebiotics, and fecal microbiota transplantation help support bone health and might offer promising strategies for addressing bone-related complications in cancer.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.S.); (V.S.)
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.S.); (V.S.)
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.S.); (V.S.)
| |
Collapse
|
3
|
Hao X, Jiang B, Wu J, Xiang D, Xiong Z, Li C, Li Z, He S, Tu C, Li Z. Nanomaterials for bone metastasis. J Control Release 2024; 373:640-651. [PMID: 39084467 DOI: 10.1016/j.jconrel.2024.07.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Bone metastasis, a prevalent occurrence in primary malignant tumors, is often associated with a grim prognosis. The bone microenvironment comprises various coexisting cell types, working together in a coordinated manner. This dynamic microenvironment plays a pivotal role in the initiation and progression of bone metastases. While cancer therapies have made advancements, the available options for addressing bone metastases remain insufficient. The advent of nanotechnology has ushered in a new era for managing and preventing bone metastases because of the physicochemical and adaptable advantages of nanoplatforms. In this review, we make an introduction of the underlying mechanisms and the current clinical therapies of bone metastases, highlighting the advances of intelligent nanosystems that can stimulate vascular regeneration, promote bone regeneration, eliminate tumor cells, minimize bone damage, and expedite bone healing. The innovation surrounding bone-targeting nanoplatforms presents a fresh approach to the theranostics of bone metastases.
Collapse
Affiliation(s)
- Xinyan Hao
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410011, China; Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Buchan Jiang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zijian Xiong
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhaoqi Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Changsha Medical University, Changsha 410219, China.
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Shenzhen Research Institute of Central South University, Guangdong 518063, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
4
|
Liu Y, Chen H, Chen T, Qiu G, Han Y. The emerging role of osteoclasts in the treatment of bone metastases: rationale and recent clinical evidence. Front Oncol 2024; 14:1445025. [PMID: 39148909 PMCID: PMC11324560 DOI: 10.3389/fonc.2024.1445025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
The occurrence of bone metastasis is a grave medical concern that substantially impacts the quality of life in patients with cancer. The precise mechanisms underlying bone metastasis remain unclear despite extensive research efforts, and efficacious therapeutic interventions are currently lacking. The ability of osteoclasts to degrade the bone matrix makes them a crucial factor in the development of bone metastasis. Osteoclasts are implicated in several aspects of bone metastasis, encompassing the formation of premetastatic microenvironment, suppression of the immune system, and reactivation of quiescent tumor cells. Contemporary clinical interventions targeting osteoclasts have proven effective in mitigating bone-related symptoms in patients with cancer. This review comprehensively analyzes the mechanistic involvement of osteoclasts in bone metastasis, delineates potential therapeutic targets associated with osteoclasts, and explores clinical evidence regarding interventions targeting osteoclasts.
Collapse
Affiliation(s)
- Youjun Liu
- Department of Spinal Surgery, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Huanshi Chen
- Department of Spinal Surgery, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Tong Chen
- Department of Spinal Surgery, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Guowen Qiu
- Department of Spinal Surgery, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Yu Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Dawalibi A, Alosaimi AA, Mohammad KS. Balancing the Scales: The Dual Role of Interleukins in Bone Metastatic Microenvironments. Int J Mol Sci 2024; 25:8163. [PMID: 39125732 PMCID: PMC11311339 DOI: 10.3390/ijms25158163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Bone metastases, a common and debilitating consequence of advanced cancers, involve a complex interplay between malignant cells and the bone microenvironment. Central to this interaction are interleukins (ILs), a group of cytokines with critical roles in immune modulation and inflammation. This review explores the dualistic nature of pro-inflammatory and anti-inflammatory interleukins in bone metastases, emphasizing their molecular mechanisms, pathological impacts, and therapeutic potential. Pro-inflammatory interleukins, such as IL-1, IL-6, and IL-8, have been identified as key drivers in promoting osteoclastogenesis, tumor proliferation, and angiogenesis. These cytokines create a favorable environment for cancer cell survival and bone degradation, contributing to the progression of metastatic lesions. Conversely, anti-inflammatory interleukins, including IL-4, IL-10, and IL-13, exhibit protective roles by modulating immune responses and inhibiting osteoclast activity. Understanding these opposing effects is crucial for developing targeted therapies aimed at disrupting the pathological processes in bone metastases. Key signaling pathways, including NF-κB, JAK/STAT, and MAPK, mediate the actions of these interleukins, influencing tumor cell survival, immune cell recruitment, and bone remodeling. Targeting these pathways presents promising therapeutic avenues. Current treatment strategies, such as the use of denosumab, tocilizumab, and emerging agents like bimekizumab and ANV419, highlight the potential of interleukin-targeted therapies in mitigating bone metastases. However, challenges such as therapeutic resistance, side effects, and long-term efficacy remain significant hurdles. This review also addresses the potential of interleukins as diagnostic and prognostic biomarkers, offering insights into patient stratification and personalized treatment approaches. Interleukins have multifaceted roles that depend on the context, including the environment, cell types, and cellular interactions. Despite substantial progress, gaps in research persist, particularly regarding the precise mechanisms by which interleukins influence the bone metastatic niche and their broader clinical implications. While not exhaustive, this overview underscores the critical roles of interleukins in bone metastases and highlights the need for continued research to fully elucidate their complex interactions and therapeutic potential. Addressing these gaps will be essential for advancing our understanding and treatment of bone metastases in cancer patients.
Collapse
Affiliation(s)
- Ahmad Dawalibi
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Amal Ahmed Alosaimi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
6
|
Nepal MR, Shah S, Kang KT. Dual roles of myeloid-derived suppressor cells in various diseases: a review. Arch Pharm Res 2024; 47:597-616. [PMID: 39008186 DOI: 10.1007/s12272-024-01504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that originate from bone marrow stem cells. In pathological conditions, such as autoimmune disorders, allergies, infections, and cancer, normal myelopoiesis is altered to facilitate the formation of MDSCs. MDSCs were first shown to promote cancer initiation and progression by immunosuppression with the assistance of various chemokines and cytokines. Recently, various studies have demonstrated that MDSCs play two distinct roles depending on the physiological and pathological conditions. MDSCs have protective roles in autoimmune disorders (such as uveoretinitis, multiple sclerosis, rheumatoid arthritis, ankylosing spondylitis, type 1 diabetes, autoimmune hepatitis, inflammatory bowel disease, alopecia areata, and systemic lupus erythematosus), allergies, and organ transplantation. However, they play negative roles in infections and various cancers. Several immunosuppressive functions and mechanisms of MDSCs have been determined in different disease conditions. This review comprehensively discusses the associations between MDSCs and various pathological conditions and briefly describes therapeutic approaches.
Collapse
Affiliation(s)
- Mahesh Raj Nepal
- College of Pharmacy, Duksung Women's University, Seoul, South Korea
- Duksung Innovative Drug Center, Duksung Women's University, Seoul, South Korea
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Sajita Shah
- College of Pharmacy, Duksung Women's University, Seoul, South Korea
- Duksung Innovative Drug Center, Duksung Women's University, Seoul, South Korea
- The Comprehensive Cancer Center, Department of Radiation Oncology, Ohio State University, Columbus, OH, USA
| | - Kyu-Tae Kang
- College of Pharmacy, Duksung Women's University, Seoul, South Korea.
- Duksung Innovative Drug Center, Duksung Women's University, Seoul, South Korea.
| |
Collapse
|
7
|
Li Z, Xia Q, He Y, Li L, Yin P. MDSCs in bone metastasis: Mechanisms and therapeutic potential. Cancer Lett 2024; 592:216906. [PMID: 38649108 DOI: 10.1016/j.canlet.2024.216906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Bone metastasis (BM) is a frequent complication associated with advanced cancer that significantly increases patient mortality. Myeloid-derived suppressor cells (MDSCs) play a pivotal role in BM progression by promoting angiogenesis, inhibiting immune responses, and inducing osteoclastogenesis. MDSCs induce immunosuppression through diverse mechanisms, including the generation of reactive oxygen species, nitric oxide, and immunosuppressive cytokines. Within the bone metastasis niche (BMN), MDSCs engage in intricate interactions with tumor, stromal, and bone cells, thereby establishing a complex regulatory network. The biological activities and functions of MDSCs are regulated by the microenvironment within BMN. Conversely, MDSCs actively contribute to microenvironmental regulation, thereby promoting BM development. A comprehensive understanding of the indispensable role played by MDSCs in BM is imperative for the development of novel therapeutic strategies. This review highlights the involvement of MDSCs in BM development, their regulatory mechanisms, and their potential as viable therapeutic targets.
Collapse
Affiliation(s)
- Zhi Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Department of General Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Qi Xia
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yujie He
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
8
|
Hong J, Luo F, Du X, Xian F, Li X. The immune cells in modulating osteoclast formation and bone metabolism. Int Immunopharmacol 2024; 133:112151. [PMID: 38685175 DOI: 10.1016/j.intimp.2024.112151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Osteoclasts are pivotal in regulating bone metabolism, with immune cells significantly influencing both physiological and pathological processes by modulating osteoclast functions. This is particularly evident in conditions of inflammatory bone resorption, such as rheumatoid arthritis and periodontitis. This review summarizes and comprehensively analyzes the research progress on the regulation of osteoclast formation by immune cells, aiming to unveil the underlying mechanisms and pathways through which diseases, such as rheumatoid arthritis and periodontitis, impact bone metabolism.
Collapse
Affiliation(s)
- Jiale Hong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fang Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xingyue Du
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fa Xian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
9
|
Arakil N, Akhund SA, Elaasser B, Mohammad KS. Intersecting Paths: Unraveling the Complex Journey of Cancer to Bone Metastasis. Biomedicines 2024; 12:1075. [PMID: 38791037 PMCID: PMC11117796 DOI: 10.3390/biomedicines12051075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The phenomenon of bone metastases presents a significant challenge within the context of advanced cancer treatments, particularly pertaining to breast, prostate, and lung cancers. These metastatic occurrences stem from the dissemination of cancerous cells into the bone, thereby interrupting the equilibrium between osteoblasts and osteoclasts. Such disruption results in skeletal complications, adversely affecting patient morbidity and quality of life. This review discusses the intricate interplay between cancer cells and the bone microenvironment, positing the bone not merely as a passive recipient of metastatic cells but as an active contributor to cancer progression through its distinctive biochemical and cellular makeup. A thorough examination of bone structure and the dynamics of bone remodeling is undertaken, elucidating how metastatic cancer cells exploit these processes. This review explores the genetic and molecular pathways that underpin the onset and development of bone metastases. Particular emphasis is placed on the roles of cytokines and growth factors in facilitating osteoclastogenesis and influencing osteoblast activity. Additionally, this paper offers a meticulous critique of current diagnostic methodologies, ranging from conventional radiography to advanced molecular imaging techniques, and discusses the implications of a nuanced understanding of bone metastasis biology for therapeutic intervention. This includes the development of targeted therapies and strategies for managing bone pain and other skeletal-related events. Moreover, this review underscores the imperative of ongoing research efforts aimed at identifying novel therapeutic targets and refining management approaches for bone metastases. It advocates for a multidisciplinary strategy that integrates advancements in medical oncology and radiology with insights derived from molecular biology and genetics, to enhance prognostic outcomes and the quality of life for patients afflicted by this debilitating condition. In summary, bone metastases constitute a complex issue that demands a comprehensive and informed approach to treatment. This article contributes to the ongoing discourse by consolidating existing knowledge and identifying avenues for future investigation, with the overarching objective of ameliorating patient care in the domain of oncology.
Collapse
Affiliation(s)
| | | | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 1153, Saudi Arabia; (N.A.); (S.A.A.); (B.E.)
| |
Collapse
|
10
|
MiRNAs and snoRNAs in Bone Metastasis: Functional Roles and Clinical Potential. Cancers (Basel) 2022; 15:cancers15010242. [PMID: 36612237 PMCID: PMC9818347 DOI: 10.3390/cancers15010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Bone is a frequent site of metastasis. Bone metastasis is associated with a short-term prognosis in cancer patients, and current treatments aim to slow its growth, but are rarely curative. Thus, revealing molecular mechanisms that explain why metastatic cells are attracted to the bone micro-environment, and how they successfully settle in the bone marrow-taking advantage over bone resident cells-and grow into macro-metastasis, is essential to propose new therapeutic approaches. MicroRNAs and snoRNAs are two classes of small non-coding RNAs that post-transcriptionally regulate gene expression. Recently, microRNAs and snoRNAs have been pointed out as important players in bone metastasis by (i) preparing the pre-metastatic niche, directly and indirectly affecting the activities of osteoclasts and osteoblasts, (ii) promoting metastatic properties within cancer cells, and (iii) acting as mediators within cells to support cancer cell growth in bone. This review aims to highlight the importance of microRNAs and snoRNAs in metastasis, specifically in bone, and how their roles can be linked together. We then discuss how microRNAs and snoRNAs are secreted by cancer cells and be found as extracellular vesicle cargo. Finally, we provide evidence of how microRNAs and snoRNAs can be potential therapeutic targets, at least in pre-clinical settings, and how their detection in liquid biopsies can be a useful diagnostic and/or prognostic biomarker to predict the risk of relapse in cancer patients.
Collapse
|