1
|
Kumari D, Kumar M, Upadhyay AD, Malhotra N, Mahey R, Dadhwal V, Sehgal T, Mishra R, Dada R. Unveiling Therapeutic Potential of Yoga Mitigating Oxidative Stress and Mitochondrial Dysfunction in PCOS: A Randomized Controlled Trial. Int J Yoga 2025; 18:45-57. [PMID: 40365366 PMCID: PMC12068466 DOI: 10.4103/ijoy.ijoy_212_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 05/15/2025] Open
Abstract
Background Hormonal imbalance, mitochondrial dysfunctions, and oxidative stress (OS) have been implicated in the pathogenesis of polycystic ovarian syndrome (PCOS) and its associated clinical features. A sedentary lifestyle, exposure to air pollutants, prenatal exposure to endocrine-disrupting chemicals, processed and nutritionally depleted food, rich in trans fats, salts, and sugars, and high BMI specifically in visceral adiposity induce OS. OS damages the mitochondrial DNA, lipids, and proteins that impair mitochondrial function. Sequentially, dysfunctional mitochondria produce more reactive oxygen species that aggravate the OS. Mitochondria is pivotal for ovarian cell functioning for instance steroidogenesis, ovarian follicle development, and energy metabolism. Dysfunctional mitochondria can alter the ovarian follicle functioning leading to ovulatory dysfunction and infertility in PCOS. Aims and Objectives This study is designed to investigate the effect of 12-week yoga practice on endocrine parameters, OS, and mitochondrial health, comparing outcomes in yoga and non-yoga groups. Material and Methods A total of 75 participants, 32 PCOS females who completed yoga intervention in the yoga group and 29 in the nonyoga group. Hormonal levels were assessed through an immunoassay, while mitochondrial health markers, such as mtDNA copy number (mtDNA CN), reactive oxygen species, and lipid peroxidation were measured through quantitative polymerase chain reaction (qPCR), chemiluminescence, and ELISA respectively. Gene expression related to mitochondrial integrity, respiratory chain, and inflammation was analyzed via reverse transcription qPCR. Additionally, depression severity was also assessed using beck depression inventory II. Result The Yoga group showed a significant increase in mtDNA-CN and upregulation of transcripts responsible for maintaining mitochondrial integrity and the mitochondrial respiratory chain. In addition, the post-yoga group shows a reduction in, lipid peroxidation, inflammatory, OS markers, and an improvement in telomere length. Conclusion Yoga positively affects hormonal balance, mitochondrial health, OS, and inflammation in women with PCOS. It also alleviates depression symptoms, highlighting yoga as an effective adjunct therapy for managing PCOS. Regular yoga practice could prevent, delay, and help in managing PCOS symptoms.
Collapse
Affiliation(s)
- Deepika Kumari
- Department of Anatomy, Laboratory for Molecular Reproduction and Genetics, AIIMS, New Delhi, India
| | - Manoj Kumar
- Department of Anatomy, Laboratory for Molecular Reproduction and Genetics, AIIMS, New Delhi, India
| | | | - Neena Malhotra
- Department of Laboratory Medicine, AIIMS, New Delhi, India
| | - Reeta Mahey
- Department of Laboratory Medicine, AIIMS, New Delhi, India
| | | | - Tushar Sehgal
- Department of Obstetrics and Gynaecology, AIIMS, New Delhi, India
| | - Richa Mishra
- Department of Anatomy, Laboratory for Molecular Reproduction and Genetics, AIIMS, New Delhi, India
| | - Rima Dada
- Department of Anatomy, Laboratory for Molecular Reproduction and Genetics, AIIMS, New Delhi, India
| |
Collapse
|
2
|
Yan H, Wang L, Zhang G, Li N, Zhao Y, Liu J, Jiang M, Du X, Zeng Q, Xiong D, He L, Zhou Z, Luo M, Liu W. Oxidative stress and energy metabolism abnormalities in polycystic ovary syndrome: from mechanisms to therapeutic strategies. Reprod Biol Endocrinol 2024; 22:159. [PMID: 39722030 DOI: 10.1186/s12958-024-01337-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Polycystic ovary syndrome (PCOS), as a common endocrine and metabolic disorder, is often regarded as a primary cause of anovulatory infertility in women. The pathogenesis of PCOS is complex and influenced by multiple factors. Emerging evidence highlights that energy metabolism dysfunction and oxidative stress in granulosa cells (GCs) are pivotal contributors to aberrant follicular development and impaired fertility in PCOS patients. Mitochondrial dysfunction, increased oxidative stress, and disrupted glucose metabolism are frequently observed in individuals with PCOS, collectively leading to compromised oocyte quality. This review delves into the mechanisms linking oxidative stress and energy metabolism abnormalities in PCOS, analyzing their adverse effects on reproductive function. Furthermore, potential therapeutic strategies to mitigate oxidative stress and metabolic disturbances are proposed, providing a theoretical basis for advancing clinical management of PCOS.
Collapse
Affiliation(s)
- Heqiu Yan
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610000, China
| | - Li Wang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Guohui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Ningjing Li
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Yuhong Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610000, China
| | - Jun Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Min Jiang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Xinrong Du
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Qin Zeng
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Dongsheng Xiong
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Libing He
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Zhuoting Zhou
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Mengjun Luo
- Department of Clinical Laboratory, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, No. 1617 Ri Yue Street, Chengdu, Sichuan, 611731, China.
| | - Weixin Liu
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China.
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610000, China.
| |
Collapse
|
3
|
Mansoori M, Solhjoo S, Palmerini MG, Nematollahi-Mahani SN, Ezzatabadipour M. Granulosa cell insight: unraveling the potential of menstrual blood-derived stem cells and their exosomes on mitochondrial mechanisms in polycystic ovary syndrome (PCOS). J Ovarian Res 2024; 17:167. [PMID: 39153978 PMCID: PMC11330151 DOI: 10.1186/s13048-024-01484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) presents a significant challenge in women's reproductive health, characterized by disrupted folliculogenesis and ovulatory dysfunction. Central to PCOS pathogenesis are granulosa cells, whose dysfunction contributes to aberrant steroid hormone production and oxidative stress. Mitochondrial dysfunction emerges as a key player, influencing cellular energetics, oxidative stress, and steroidogenesis. This study investigates the therapeutic potential of menstrual blood-derived stem cells (MenSCs) and their exosomes in mitigating mitochondrial dysfunction and oxidative stress in PCOS granulosa cells. METHODS Using a rat model of PCOS induced by letrozole, granulosa cells were harvested and cultured. MenSCs and their exosomes were employed to assess their effects on mitochondrial biogenesis, oxidative stress, and estrogen production in PCOS granulosa cells. RESULTS Results showed diminished mitochondrial biogenesis and increased oxidative stress in PCOS granulosa cells, alongside reduced estrogen production. Treatment with MenSCs and their exosomes demonstrated significant improvements in mitochondrial biogenesis, oxidative stress levels, and estrogen production in PCOS granulosa cells. Further analysis showed MenSCs' superior efficacy over exosomes, attributed to their sustained secretion of bioactive factors. Mechanistically, MenSCs and exosomes activated pathways related to mitochondrial biogenesis and antioxidative defense, highlighting their therapeutic potential for PCOS. CONCLUSIONS This study offers insights into granulosa cells mitochondria's role in PCOS pathogenesis and proposes MenSCs and exosomes as a potential strategy for mitigating mitochondrial dysfunction and oxidative stress in PCOS. Further research is needed to understand underlying mechanisms and validate clinical efficacy, presenting promising avenues for addressing PCOS complexity.
Collapse
Affiliation(s)
- Mahna Mansoori
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Solhjoo
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Massood Ezzatabadipour
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Kobayashi H, Shigetomi H, Matsubara S, Yoshimoto C, Imanaka S. Role of the mitophagy-apoptosis axis in the pathogenesis of polycystic ovarian syndrome. J Obstet Gynaecol Res 2024; 50:775-792. [PMID: 38417972 DOI: 10.1111/jog.15916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
AIM Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by menstrual irregularities, androgen excess, and polycystic ovarian morphology, but its pathogenesis remains largely unknown. This review focuses on how androgen excess influences the molecular basis of energy metabolism, mitochondrial function, and mitophagy in granulosa cells and oocytes, summarizes our current understanding of the pathogenesis of PCOS, and discuss perspectives on future research directions. METHODS A search of PubMed and Google Scholar databases were used to identify relevant studies for this narrative literature review. RESULTS Female offspring born of pregnant animals exposed to androgens recapitulates the PCOS phenotype. Abnormal mitochondrial morphology, altered expression of genes related to glycolysis, mitochondrial biogenesis, fission/fusion dynamics, and mitophagy have been identified in PCOS patients and androgenic animal models. Androgen excess causes uncoupling of the electron transport chain and depletion of the cellular adenosine 5'-triphosphate pool, indicating further impairment of mitochondrial function. A shift toward mitochondrial fission restores mitochondrial quality control mechanisms. However, prolonged mitochondrial fission disrupts autophagy/mitophagy induction due to loss of compensatory reserve for mitochondrial biogenesis. Disruption of compensatory mechanisms that mediate the quality control switch from mitophagy to apoptosis may cause a disease phenotype. Furthermore, genetic predisposition, altered expression of genes related to glycolysis and oxidative phosphorylation, or a combination of these factors may also contribute to the development of PCOS. CONCLUSION In conclusion, fetuses exposed to a hyperandrogenemic intrauterine environment may cause the PCOS phenotype possibly through disruption of the compensatory regulation of the mitophagy-apoptosis axis.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, Nara, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Medicine, Kei Oushin Clinic, Nishinomiya, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, Nara, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
5
|
Shafiei G, Saheli M, Ganjalikhan-Hakemi S, Haghpanah T, Nematollahi-Mahani SN. Administration of adipose-derived mesenchymal stem cell conditioned medium improves ovarian function in polycystic ovary syndrome rats: involvement of epigenetic modifiers system. J Ovarian Res 2023; 16:238. [PMID: 38102694 PMCID: PMC10722730 DOI: 10.1186/s13048-023-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a widespread heterogeneous disease that is in association with genetic, epigenetic, endocrine and environmental factors. Adipose-derived mesenchymal stem cell (ASC) and ASC-conditioned medium (ASC-CM) have shown promising abilities in tissue regeneration. In the present study, we aimed to investigate the effects of ASC and ASC-CM on epigenetic regulators, steroidal function and folliculogenesis in the letrozole-induced PCOS rats. RESULTS Based on the measurement of the oral glucose tolerance test and physical parameters including body weight, estrus cycle pattern as well as ovary dimensions, PCOS-induced rats in sham and control (CTRL) groups showed signs of reproductive dysfunctions such as lack of regular estrus cyclicity, metabolic disorders such as increased ovary dimension, body weight and blood glucose level alteration which were improved especially by ASC-CM administration.
Collapse
Affiliation(s)
- Golnaz Shafiei
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mona Saheli
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sepideh Ganjalikhan-Hakemi
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Haghpanah
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Seyed Noureddin Nematollahi-Mahani
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
6
|
Zhang Y, Zhou H, Ding C. The ameliorative effect of CangFu Daotan Decoction on polycystic ovary syndrome of rodent model is associated with m6A methylation and Wnt/β-catenin pathway. Gynecol Endocrinol 2023; 39:2181637. [PMID: 36822223 DOI: 10.1080/09513590.2023.2181637] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Objective: This study investigates the effects of CangFu Daotan Decoction (CDD) on m6A methylation and Wnt/β-catenin pathway in rats with polycystic ovary syndrome (PCOS).Methods: The PCOS rat model was established by letrozole gavage. The rats were fed high-fat chow, and their body weight and blood glucose were recorded. The expressions of follicle-stimulating hormone(FSH), luteinizing hormone(LH), and testosterone(T) were quantified by ELISA. Chemical components in CDD were analyzed using UPLC-Q/TOF-MS. Based on network pharmacology methods, related targets of CDD on PCOS were screened. An enrichment analysis according to Tokyo Encyclopedia of Genes and Genomes (KEGG) was conducted to predict the potential signaling pathway of CDD in PCOS. The expressions of Wnt-1, β-Catenin, GSK-3β, C-MYC, Beclin1, LC3II, Bax, and PCNA were detected by western blotting. The expressions of Mettl3, Mettl14, Fto, Alkbh5, Ythdf1, and Ythdf2 were monitored by RT-PCR. The expressions of Mettl3, Fto, and Ythdf1 were detected by western blotting.Results: Letrozole and a high-fat diet induced ovarian dysfunction in rats, which was attenuated by CDD. CDD decreased blood glucose, LH, and T concentrations and increased FSH expression in PCOS. After removing duplicates, a total of 71 compounds were identified by UHPLC-Q/TOF-MS, among which terpenoids and flavonoids account for the main proportion. The clustering analysis showed that the active site of CDD might be in the Wnt/β-catenin pathway. CDD decreased the expressions of Wnt-1, β-Catenin, GSK-3β, C-MYC, Beclin1, LC3II, and Bax and increased PCNA expression in the ovarian tissue of PCOS rats. CDD decreased the m6A gene expressions of Mettl3, Mettl14, Fto, Alkbh5, Ythdf1, and Ythdf2 in peripheral blood and ovarian tissue of PCOS rats. CDD reduced the m6A proteins expressions of Mettl3, Fto, and Ythdf1 in the ovarian tissue of PCOS rats.Conclusion: CDD can regulate m6A modification and inhibit the Wnt/β-catenin signaling pathway in PCOS rats, thereby reducing body weight, lowering blood glucose levels, improving sex hormone disorders, and decreasing autophagy and apoptosis in ovarian tissue to promote the recovery of ovarian morphology.
Collapse
Affiliation(s)
- Yuwei Zhang
- Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Haili Zhou
- Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Caifei Ding
- Department of Reproductive Medicine, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Yin L, Qi S, Zhu Z. Advances in mitochondria-centered mechanism behind the roles of androgens and androgen receptor in the regulation of glucose and lipid metabolism. Front Endocrinol (Lausanne) 2023; 14:1267170. [PMID: 37900128 PMCID: PMC10613047 DOI: 10.3389/fendo.2023.1267170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
An increasing number of studies have reported that androgens and androgen receptors (AR) play important roles in the regulation of glucose and lipid metabolism. Impaired glucose and lipid metabolism and the development of obesity-related diseases have been found in either hypogonadal men or male rodents with androgen deficiency. Exogenous androgens supplementation can effectively improve these disorders, but the mechanism by which androgens regulate glucose and lipid metabolism has not been fully elucidated. Mitochondria, as powerhouses within cells, are key organelles influencing glucose and lipid metabolism. Evidence from both pre-clinical and clinical studies has reported that the regulation of glucose and lipid metabolism by androgens/AR is strongly associated with the impact on the content and function of mitochondria, but few studies have systematically reported the regulatory effect and the molecular mechanism. In this paper, we review the effect of androgens/AR on mitochondrial content, morphology, quality control system, and function, with emphases on molecular mechanisms. Additionally, we discuss the sex-dimorphic effect of androgens on mitochondria. This paper provides a theoretical basis for shedding light on the influence and mechanism of androgens on glucose and lipid metabolism and highlights the mitochondria-based explanation for the sex-dimorphic effect of androgens on glucose and lipid metabolism.
Collapse
Affiliation(s)
- Lijun Yin
- School of Sport, Shenzhen University, Shenzhen, China
| | - Shuo Qi
- School of Sport Health, Shandong Sport University, Jinan, China
| | - Zhiqiang Zhu
- School of Sport, Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
Tsai YR, Liao YN, Kang HY. Current Advances in Cellular Approaches for Pathophysiology and Treatment of Polycystic Ovary Syndrome. Cells 2023; 12:2189. [PMID: 37681921 PMCID: PMC10487183 DOI: 10.3390/cells12172189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent gynecological and endocrine disorder that results in irregular menstruation, incomplete follicular development, disrupted ovulation, and reduced fertility rates among affected women of reproductive age. While these symptoms can be managed through appropriate medication and lifestyle interventions, both etiology and treatment options remain limited. Here we provide a comprehensive overview of the latest advancements in cellular approaches utilized for investigating the pathophysiology of PCOS through in vitro cell models, to avoid the confounding systemic effects such as in vitro fertilization (IVF) therapy. The primary objective is to enhance the understanding of abnormalities in PCOS-associated folliculogenesis, particularly focusing on the aberrant roles of granulosa cells and other relevant cell types. Furthermore, this article encompasses analyses of the mechanisms and signaling pathways, microRNA expression and target genes altered in PCOS, and explores the pharmacological approaches considered as potential treatments. By summarizing the aforementioned key findings, this article not only allows us to appreciate the value of using in vitro cell models, but also provides guidance for selecting suitable research models to facilitate the identification of potential treatments and understand the pathophysiology of PCOS at the cellular level.
Collapse
Affiliation(s)
- Yi-Ru Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- An-Ten Obstetrics and Gynecology Clinic, Kaohsiung City 802, Taiwan
| | - Yen-Nung Liao
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Center for Hormone and Reproductive Medicine Research, Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan
| |
Collapse
|
9
|
Siemers KM, Klein AK, Baack ML. Mitochondrial Dysfunction in PCOS: Insights into Reproductive Organ Pathophysiology. Int J Mol Sci 2023; 24:13123. [PMID: 37685928 PMCID: PMC10488260 DOI: 10.3390/ijms241713123] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex, but relatively common endocrine disorder associated with chronic anovulation, hyperandrogenism, and micro-polycystic ovaries. In addition to reduced fertility, people with PCOS have a higher risk of obesity, insulin resistance, and metabolic disease, all comorbidities that are associated with mitochondrial dysfunction. This review summarizes human and animal data that report mitochondrial dysfunction and metabolic dysregulation in PCOS to better understand how mitochondria impact reproductive organ pathophysiology. This in-depth review considers all the elements regulating mitochondrial quantity and quality, from mitochondrial biogenesis under the transcriptional regulation of both the nuclear and mitochondrial genome to the ultrastructural and functional complexes that regulate cellular metabolism and reactive oxygen species production, as well as the dynamics that regulate subcellular interactions that are key to mitochondrial quality control. When any of these mitochondrial functions are disrupted, the energetic equilibrium within the cell changes, cell processes can fail, and cell death can occur. If this process is ongoing, it affects tissue and organ function, causing disease. The objective of this review is to consolidate and classify a broad number of PCOS studies to understand how various mitochondrial processes impact reproductive organs, including the ovary (oocytes and granulosa cells), uterus, placenta, and circulation, causing reproductive pathophysiology. A secondary objective is to uncover the potential role of mitochondria in the transgenerational transmission of PCOS and metabolic disorders.
Collapse
Affiliation(s)
- Kyle M. Siemers
- Physician Scientist (MD/Ph.D.) Program, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA;
| | - Abigail K. Klein
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Lee Medical Building, 414 E. Clark St., Sioux Falls, SD 57069, USA;
| | - Michelle L. Baack
- Department of Pediatrics, Division of Neonatology, Sanford School of Medicine, University of South Dakota, 1400 W. 22nd St., Sioux Falls, SD 57105, USA
- Environmental Influences on Health and Disease Group, Sanford Research, 2301 E. 60th St., Sioux Falls, SD 57104, USA
| |
Collapse
|
10
|
Li Y, Cai L, Guo N, Liu C, Wang M, Zhu L, Li F, Jin L, Sui C. Oviductal extracellular vesicles from women with endometriosis impair embryo development. Front Endocrinol (Lausanne) 2023; 14:1171778. [PMID: 37409222 PMCID: PMC10319124 DOI: 10.3389/fendo.2023.1171778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/23/2023] [Indexed: 07/07/2023] Open
Abstract
Objective To investigate the influence of oviductal extracellular vesicles from patients with endometriosis on early embryo development. Design In vitro experimental study. Setting University-affiliated hospital. Patients Women with and without endometriosis who underwent hysterectomy (n = 27 in total). Interventions None. Main outcome measures Oviductal extracellular vesicles from patients with endometriosis (oEV-EMT) or without endometriosis (oEV-ctrl) were isolated and co-cultured with two-cell murine embryos for 75 hours. Blastocyst rates were recorded. RNA sequencing was used to identify the differentially expressed genes in blastocysts cultured either with oEV-EMT or with oEV-ctrl. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to identify potential biological processes in embryos that oEV-EMT affects. The functions of oEV on early embryo development were determined by reactive oxygen species (ROS) levels, mitochondrial membrane potentials (MMP), total cell numbers, and apoptotic cell proportions. Results Extracellular vesicles were successfully isolated from human Fallopian tubal fluid, and their characterizations were described. The blastocyst rates were significantly decreased in the oEV-EMT group. RNA sequencing revealed that oxidative phosphorylation was down-regulated in blastocysts cultured with oEV-EMT. Analysis of oxidative stress and apoptosis at the blastocysts stage showed that embryos cultured with oEV-EMT had increased ROS levels, decreased MMP, and increased apoptotic index. Total cell numbers were not influenced. Conclusion Oviductal extracellular vesicles from patients with endometriosis negatively influence early embryo development by down-regulating oxidative phosphorylation.
Collapse
Affiliation(s)
- Yuehan Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Cai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Guo
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Liu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Álvarez-Rodríguez M, Roca J, Martínez EA, Rodríguez-Martínez H. Mating modifies the expression of crucial oxidative-reductive transcripts in the pig oviductal sperm reservoir: is the female ensuring sperm survival? Front Endocrinol (Lausanne) 2023; 14:1042176. [PMID: 37351104 PMCID: PMC10282951 DOI: 10.3389/fendo.2023.1042176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/17/2023] [Indexed: 06/24/2023] Open
Abstract
Background Mating induces large changes in the female genital tract, warranting female homeostasis and immune preparation for pregnancy, including the preservation of crucial oxidative status among its pathways. Being highly susceptible to oxidative stress, sperm survival and preserved function depend on the seminal plasma, a protection that is removed during sperm handling but also after mating when spermatozoa enter the oviduct. Therefore, it is pertinent to consider that the female sperm reservoir takes up this protection, providing a suitable environment for sperm viability. These aspects have not been explored despite the increasing strategies in modulating the female status through diet control and nutritional supplementation. Aims To test the hypothesis that mating modifies the expression of crucial oxidative-reductive transcripts across the entire pig female genital tract (cervix to infundibulum) and, particularly in the sperm reservoir at the utero-tubal junction, before ovulation, a period dominated by estrogen stimulation of ovarian as well as of seminal origin. Methods The differential expression of estrogen (ER) and progesterone (PR) receptors and of 59 oxidative-reductive transcripts were studied using a species-specific microarray platform, in specific segments of the peri-ovulatory sow reproductive tract in response to mating. Results Mating induced changes along the entire tract, with a conspicuous downregulation of both ER and PR and an upregulation of superoxide dismutase 1 (SOD1), glutaredoxin (GLRX3), and peroxiredoxin 1 and 3 (PRDX1, PRDX3), among other NADH Dehydrogenase Ubiquinone Flavoproteins, in the distal uterus segment. These changes perhaps helped prevent oxidative stress in the area adjacent to the sperm reservoir at the utero-tubal junction. Concomitantly, there were a downregulation of catalase (CAT) and NADH dehydrogenase (ubiquinone) oxidoreductases 1 beta subcomplex, subunit 1 (NDUFB1) in the utero-tubal junction alongside an overall downregulation of CAT, SOD1, and PRDX3 in the ampullar and infundibulum segments. Conclusions Natural mating is an inducer of changes in the expression of female genes commanding antioxidant enzymes relevant for sperm survival during sperm transport, under predominant estrogen influence through the bloodstream and semen. The findings could contribute to the design of new therapeutics for the female to improve oxidative-reductive balance.
Collapse
Affiliation(s)
- Manuel Álvarez-Rodríguez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Department of Animal Reproduction, Instituto Nacional de Investigación Agraria y Alimentaria (INIA)-CSIC, Madrid, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - Emilio A. Martínez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - Heriberto Rodríguez-Martínez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Li X, He Y, Wu S, Zhang P, Gan M, Chen L, Zhao Y, Niu L, Zhang S, Jiang Y, Guo Z, Wang J, Shen L, Zhu L. Regulation of SIRT1 in Ovarian Function: PCOS Treatment. Curr Issues Mol Biol 2023; 45:2073-2089. [PMID: 36975503 PMCID: PMC10047008 DOI: 10.3390/cimb45030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The sirtuin family, a group of NAD+-dependent class 3 histone deacetylases (HDACs), was extensively studied initially as a group of longevity genes that are activated in caloric restriction and act in concert with nicotinamide adenine dinucleotides to extend the lifespan. Subsequent studies have found that sirtuins are involved in various physiological processes, including cell proliferation, apoptosis, cell cycle progression, and insulin signaling, and they have been extensively studied as cancer genes. In recent years, it has been found that caloric restriction increases ovarian reserves, suggesting that sirtuins may play a regulatory role in reproductive capacity, and interest in the sirtuin family has continued to increase. The purpose of this paper is to summarize the existing studies and analyze the role and mechanism of SIRT1, a member of the sirtuin family, in regulating ovarian function. Research and review on the positive regulation of SIRT1 in ovarian function and its therapeutic effect on PCOS syndrome.
Collapse
Affiliation(s)
- Xinrong Li
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxu He
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Wu
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Peiwen Zhang
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanzhi Jiang
- College of Life Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Zongyi Guo
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
| | - Linyuan Shen
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.S.); (L.Z.)
| | - Li Zhu
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.S.); (L.Z.)
| |
Collapse
|
13
|
Ahmad I, Newell-Fugate AE. Androgen and androgen receptor control of mitochondrial function. Am J Physiol Cell Physiol 2022; 323:C835-C846. [PMID: 35704694 DOI: 10.1152/ajpcell.00205.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of androgens have been extensively studied in a variety of organs and cell types with increasing focus on the sexually dimorphic role androgens play not only with respect to cellular functions but also in metabolism. Although the classical mechanism of androgen action is via ligand-dependent binding with the nuclear transcription factor, androgen receptor (AR), cytosolic AR can also activate second messenger signaling pathways. Given that cytosolic AR can signal in this manner, there has been increased interest in the mechanisms by which androgens may control cellular organelle function. This review highlights the effects that androgens have on mitochondrial structure and function with emphasis on biogenesis, fusion/fission, mitophagy, bioenergetics (oxidative phosphorylation), and reactive oxygen species production. There are a number of publications on the effects of androgens in these general areas of mitochondrial function. However, the precise mechanisms by which androgens cause these effects are not known. Additionally, given that the nucleus and mitochondria work in tandem to control mitochondrial function and the mitochondria has its own DNA, future research efforts should focus on the direct, mechanistic effects of androgens on mitochondrial function.
Collapse
Affiliation(s)
- Irshad Ahmad
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Annie E Newell-Fugate
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|