1
|
Yang TT, Liu Y, Shao YT, Li L, Pan DD, Wang T, Jiang ZZ, Li BJ, Qian ST, Yan M, Zhu X, Heng C, Liu JJ, Lu Q, Yin XX. Activation of MST1 protects filtration barrier integrity of diabetic kidney disease in mice through restoring the tight junctions of glomerular endothelial cells. Acta Pharmacol Sin 2025; 46:1345-1360. [PMID: 39643641 PMCID: PMC12032108 DOI: 10.1038/s41401-024-01421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/03/2024] [Indexed: 12/09/2024]
Abstract
As a pathological feature of diabetic kidney disease (DKD), dysregulated glomerular filtration barrier function could lead to the increased levels of proteinuria. The integrity of tight junctions (TJs) of glomerular endothelial cells (GECs) is a guarantee of physiological function of glomerular filtration barrier. Mammalian sterile 20-like kinase (MST1) is a key regulatory protein in the blood-brain barrier (BBB), and it regulates the expression of TJs-related proteins in cerebral vascular endothelial cells. Our previous study showed that MST1 was involved in renal tubulointerstitial fibrosis of DKD. In the present study we investigated the role of MST1 in barrier function of GECs of DKD, and explored its regulatory mechanisms. In kidney tissue section of DKD patients and db/db mice, and high glucose (HG)-cultured mouse glomerular endothelial cells (mGECs), we showed that MST1 was inactivated in the GECs of DKD accompanied by disrupted glomerular endothelial barrier. In db/db mice and HG-cultured mGECs, knockdown of MST1 increased proteinuria levels, and disrupted glomerular endothelial barrier through decreasing TJs-related proteins, whereas MST1 overexpression restored glomerular endothelial barrier through regaining TJs-related proteins. In db/db mice and HG-cultured mGECs, we demonstrated that MST1 inhibition induced TJs's disruption of GECs via activating YAP1/TEAD signaling. Verteporfin (an inhibitor of YAP1-TEAD interaction) and PY-60 (a YAP1 agonist) were used to verify the role of YAP1/TEAD signaling in the regulation effect of MST1 on barrier function of mGECs. In conclusion, MST1 activation recovers glomerular endothelial barrier of DKD by regaining TJs-related proteins via inhibiting YAP1/TEAD signaling. This study highlights the multiple regulation of MST1 activation on kidney injury.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yu-Ting Shao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Lin Li
- Department of Pharmacy, Yuncheng Central Hospital affiliated to Shanxi Medical University, Yuncheng, 044000, China
| | - Dan-Dan Pan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Tao Wang
- Department of Pharmacy, The affiliated hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Zhen-Zhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Bao-Jing Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Si-Tong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Cai Heng
- Department of Pharmacy, JingJiang People's Hospital, Jingjiang, 214500, China
| | - Jun-Jie Liu
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
2
|
Zhao Z, Wu W, Zhang Q, Xing T, Bai Y, Li S, Zhang D, Che H, Guo X. Mechanism and therapeutic potential of hippo signaling pathway in type 2 diabetes and its complications. Biomed Pharmacother 2025; 183:117817. [PMID: 39842269 DOI: 10.1016/j.biopha.2025.117817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/22/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Loss of pancreatic islet cell mass and function is one of the most important factors in the development of type 2 diabetes mellitus, and hyperglycemia-induced lesions in other organs are also associated with apoptosis or hyperproliferation of the corresponding tissue cells. The Hippo signaling pathway is a key signal in the regulation of cell growth, proliferation and apoptosis, which has been shown to play an important role in the regulation of diabetes mellitus and its complications. Excessive activation of the Hippo signaling pathway under high glucose conditions triggered apoptosis and decreased insulin secretion in pancreatic islet cells, while dysregulation of the Hippo signaling pathway in the cells of other organ tissues led to proliferation or apoptosis and promoted tissue fibrosis, which aggravated the progression of diabetes mellitus and its complications. This article reviews the mechanisms of Hippo signaling, its individual and reciprocal regulation in diabetic pancreatic pathology, and its emerging role in the pathophysiology of diabetic complications. Potential therapeutics for diabetes mellitus that have been shown to target the Hippo signaling pathway are also summarized to provide information for the clinical management of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ziqi Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Weijie Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qianyi Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Tiancheng Xing
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yiling Bai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shuoqi Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Dandan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huilian Che
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiaohui Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Wankhade N, Sharma A, Wani MA, Banerjee A, Garg P. Predictive Modeling and Drug Repurposing for Type-II Diabetes. ACS Med Chem Lett 2024; 15:1907-1917. [PMID: 39563823 PMCID: PMC11571088 DOI: 10.1021/acsmedchemlett.4c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 11/21/2024] Open
Abstract
Diabetes mellitus (DM) is a global health concern, and dipeptidyl peptidase-4 (DPP-4) is a key therapeutic target. The study used three machine learning and deep learning models to predict potential DPP-4 inhibitors using a curated data set of 6,750 compounds. The models included support vector machine (SVM), random forest (RF), naive Bayes (NB), and multitask deep neural network (MTDNN). The MTDNN model demonstrated strong predictive performance, achieving 98.62% train accuracy and 98.42% test accuracy for predicting DPP-4 inhibitors and a correlation coefficient of 0.979 for training and 0.977 for the test data set, with low training and test errors while predicting corresponding IC50 values. The MTDNN model predicted potential inhibitors using an external data set of FDA-approved drugs, identifying 100 compounds. Among these, five compounds stood out with promising molecular docking and dynamic profiles, suggesting their potential as repurposed drugs for targeting DPP-4 and offering hope for the future of diabetes treatment.
Collapse
Affiliation(s)
- Nitin Wankhade
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160 062, India
| | - Anju Sharma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160 062, India
| | - Mushtaq Ahmad Wani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160 062, India
| | - Aritra Banerjee
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160 062, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160 062, India
| |
Collapse
|
4
|
Gao BB, Zhang QQ, Dong SQ, Gao F, Liu X, Wei J, Lu Y. Association of MST1 in the First Trimester of Pregnancy with Gestational Diabetes Mellitus and Adverse Pregnancy Outcomes. Diabetes Metab Syndr Obes 2024; 17:19-29. [PMID: 38192496 PMCID: PMC10773263 DOI: 10.2147/dmso.s436178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Aim We investigate the association of mammalian sterile line 20-like kinase 1 (MST1) in the first trimester with the risks of gestational diabetes mellitus (GDM) and adverse pregnancy outcomes. Methods Pregnancies were recruited during their first antenatal care visit between 8 and 12 gestational weeks. These pregnancies underwent an oral glucose tolerance test between 24 and 28 gestational weeks and were followed up until delivery. Serum MST1 levels at 8-12 gestational weeks and 24-28 gestational weeks were measured using an enzyme-linked immunosorbent assay (ELISA) kit. Logistic regression models were used to evaluate the association between MST1 levels in the first trimester and the risks of GDM and adverse pregnancy outcomes. Results This cohort study enrolled a total of 231 pregnancies. GDM was present in 42 (18.18%) women. Compared to the normal glucose tolerance (NGT) group, the GDM group had higher levels of FPG, HOMA-IR, and MST1 both in the first and second trimesters, but had lower HOMA-β levels only in the second trimester. Then participants were classified according to the median MST1 value in the first trimester. Incidences of GDM, composite adverse pregnancy outcomes, preterm birth, and macrosomia increased in women with higher MST1 values. Serum MST1 in the first trimester was correlated with FPG, 1hr PG, 2hr PG, and HOMA-IR, while inversely correlated with HOMA-β in the second trimester. Furthermore, after adjusting for traditional risk factors, women with higher first-trimester MST1 values had greater odds of GDM, composite adverse pregnancy outcomes, preterm birth, and macrosomia (aOR 2.276, P=0.030; aOR 2.690, P=0.003; aOR 3.210, P=0.048; aOR 5.488, P=0.010). Conclusion Elevated levels of MST1 in the first trimester of pregnancies are associated with increased risks of GDM and adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Bai-Bing Gao
- Department of Endocrinology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, People’s Republic of China
- Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - Qing-qing Zhang
- Department of Endocrinology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, People’s Republic of China
| | - Shu-qin Dong
- Department of Endocrinology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, People’s Republic of China
- Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - Fei Gao
- Department of Endocrinology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, People’s Republic of China
- Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - Xia Liu
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, People’s Republic of China
| | - Jing Wei
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, People’s Republic of China
| | - Yu Lu
- Department of Endocrinology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, People’s Republic of China
| |
Collapse
|
5
|
Wang J, Qi Z, Wu Y, Wang A, Liu Q, Zou F, Wang B, Qi S, Cao J, Hu C, Shi C, Liang Q, Wang L, Liu J, Wang W, Liu Q. Discovery of IHMT-MST1-39 as a novel MST1 kinase inhibitor and AMPK activator for the treatment of diabetes mellitus. Signal Transduct Target Ther 2023; 8:143. [PMID: 37015918 PMCID: PMC10073293 DOI: 10.1038/s41392-023-01352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/03/2023] [Accepted: 02/01/2023] [Indexed: 04/06/2023] Open
Abstract
Insulin-producing pancreatic β cell death is the fundamental cause of type 1 diabetes (T1D) and a contributing factor to type 2 diabetes (T2D). Moreover, metabolic disorder is another hallmark of T2D. Mammalian sterile 20-like kinase 1 (MST1) contributes to the progression of diabetes mellitus through apoptosis induction and acceleration of pancreatic β cell dysfunction. AMP-activated protein kinase (AMPK) is an energy sensing kinase and its activation has been suggested as a treatment option for metabolic diseases. Thus, pharmacological inhibition of MST1 and activation of AMPK simultaneously represents a promising approach for diabetes therapy. Here, we discovered a novel selective MST1 kinase inhibitor IHMT-MST1-39, which exhibits anti-apoptosis efficacy and improves the survival of pancreatic β cells under diabetogenic conditions, as well as primary pancreatic islets in an ex vivo disease model. Mechanistically, IHMT-MST1-39 activated AMPK signaling pathway in hepatocytes in vitro, combination of IHMT-MST1-39 and metformin synergistically prevented hyperglycemia and significantly ameliorated glucose tolerance and insulin resistance in diabetic mice. Taken together, IHMT-MST1-39 is a promising anti-diabetic candidate as a single agent or in combination therapy for both T1D and T2D.
Collapse
Affiliation(s)
- Junjie Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Yun Wu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Qingwang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Shuang Qi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Jiangyan Cao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chen Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Chenliang Shi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qianmao Liang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Li Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, P. R. China.
| |
Collapse
|
6
|
Shao Y, Wang Y, Sun L, Zhou S, Xu J, Xing D. MST1: A future novel target for cardiac diseases. Int J Biol Macromol 2023; 239:124296. [PMID: 37011743 DOI: 10.1016/j.ijbiomac.2023.124296] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Major heart diseases pose a serious threat to human health. Finding early diagnostic markers and key therapeutic targets is an urgent scientific problem in this field. Mammalian sterile 20-like kinase 1 (MST1) is a protein kinase, and the occurrence of many heart diseases is related to the continuous activation of the MST1 gene. With the deepening of the research, the potential role of MST1 in promoting the development of heart disease has become more apparent. Therefore, to better understand the role of MST1 in the pathogenesis of heart disease, this work systematically summarizes the role of MST1 in the pathogenesis of heart disease, gives a comprehensive overview of its possible strategies in the diagnosis and treatment of heart disease, and analyzes its potential significance as a marker for the diagnosis and treatment of heart disease.
Collapse
Affiliation(s)
- Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Li Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Sha Zhou
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|