1
|
Yin D, Li F, Xia L, Wei T, Shan C, Zhang Z, Wei R. GLP-1 receptor agonists show no detrimental effect on sperm quality in mouse models and cell lines. Endocrine 2025:10.1007/s12020-025-04245-4. [PMID: 40347306 DOI: 10.1007/s12020-025-04245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/18/2025] [Indexed: 05/12/2025]
Abstract
PURPOSE Glucagon-like peptide-1 receptor (GLP-1R) agonists exert multiple beneficial effects. However, their effects on reproduction system are controversial. Here, we aimed to investigate their effects on male reproduction and provide safety evidence for future clinical use. METHODS Male diabetic mice and aged mice were treated with liraglutide or vehicle, and sperm concentration and motility were assessed. The expression and location of GLP-1R in testicular tissues and in four testicular cell lines (spermatogonia, spermatocytes, Leydig cells, and Sertoli cells) were detected. Cauda epididymis and testicular cells were treated with liraglutide, semaglutide or vehicle, and sperm motility and cell proliferation were detected to determine the direct effect of GLP-1R agonists. Global Glp1r knockout mice were constructed, and testicular morphology, sperm concentration and motility were detected to confirm the effects of GLP-1R signaling on male reproduction. RESULTS Liraglutide significantly reduced blood glucose levels, but did not improve sperm parameters in diabetic mice. No significant differences were observed between liraglutide and control group in aged mice. GLP-1R was expressed in testicular tissues and all four cell lines, with the highest expression in Leydig cells. Liraglutide or semaglutide had no impacts on sperm count and motility in vitro, and had no effects on cell proliferation in four cell lines. The Glp1r knockout mice exhibited higher blood glucose levels and preserved normal testicular morphology, but their sperm concentration was higher than that in wildtype mice. CONCLUSION GLP-1R agonists have no detrimental effect on sperm concentration and motility in vivo and in vitro, while GLP-1R absence increase the sperm concentration.
Collapse
Affiliation(s)
- Deshan Yin
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Fei Li
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Li Xia
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Chunhua Shan
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Zhe Zhang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
2
|
Denizli I, Monteiro A, Elmer KR, Stevenson TJ. Photoperiod-driven testicular DNA methylation in gonadotropin and sex steroid receptor promoters in Siberian hamsters. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:327-337. [PMID: 39954063 DOI: 10.1007/s00359-025-01733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025]
Abstract
Seasonal cycles in breeding, often orchestrated by annual changes in photoperiod, are common in nature. Here, we studied how change in photoperiod affects DNA methylation in the testes of a highly seasonal breeder: the Siberian hamster (Phodopus sungorus). We hypothesized that DNA methylation in promoter regions associated with key reproductive genes such as follicle-stimulating hormone receptor in the testes is linked to breeding and non-breeding states. Using Oxford Nanopore sequencing, we identified more than 10 million (10,151,742) differentially methylated cytosine-guanine (CpG) sites in the genome between breeding long photoperiod and non-breeding short photoperiod conditions. ShinyGo enrichment analyses identified biological pathways consisting of reproductive system, hormone-mediated signalling and gonad development. We found that short photoperiod induced DNA methylation in the promoter regions for androgen receptor (Ar), estrogen receptors (Esr1, Esr2), kisspeptin1 receptor (kiss1r) and follicle-stimulating hormone receptor (Fshr). Long photoperiods were observed to have higher DNA methylation in promoters for basic helix-loop-helix ARNT-like 1 (Bmal1), progesterone receptor (Pgr) and thyroid-stimulating hormone receptor (Tshr). Our findings provide insights into the epigenetic mechanisms underlying seasonal adaptations in timing reproduction in Siberian hamsters and could be informative for understanding male fertility and reproductive disorders in mammals.
Collapse
Affiliation(s)
- Irem Denizli
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Ana Monteiro
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kathryn R Elmer
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Tyler J Stevenson
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
3
|
Bruter AV, Varlamova EA, Stavskaya NI, Antysheva ZG, Manskikh VN, Tvorogova AV, Korshunova DS, Khamidullina AI, Utkina MV, Bogdanov VP, Baikova IP, Nikiforova AI, Albert EA, Maksimov DO, Li J, Chen M, Schools GP, Feoktistov AV, Shtil AA, Roninson IB, Mogila VA, Silaeva YY, Tatarskiy VV. Knockout of cyclin-dependent kinases 8 and 19 leads to depletion of cyclin C and suppresses spermatogenesis and male fertility in mice. eLife 2025; 13:RP96465. [PMID: 40172945 PMCID: PMC11964450 DOI: 10.7554/elife.96465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
CDK8 and CDK19 paralogs are regulatory kinases associated with the transcriptional Mediator complex. We have generated mice with the systemic inducible Cdk8 knockout on the background of Cdk19 constitutive knockout. Cdk8/19 double knockout (iDKO) males, but not single Cdk8 or Cdk19 KO, had an atrophic reproductive system and were infertile. The iDKO males lacked postmeiotic spermatids and spermatocytes after meiosis I pachytene. Testosterone levels were decreased whereas the amounts of the luteinizing hormone were unchanged. Single-cell RNA sequencing showed marked differences in the expression of steroidogenic genes (such as Cyp17a1, Star, and Fads) in Leydig cells concomitant with alterations in Sertoli cells and spermatocytes, and were likely associated with an impaired synthesis of steroids. Star and Fads were also downregulated in cultured Leydig cells after iDKO. The treatment of primary Leydig cell culture with a CDK8/19 inhibitor did not induce the same changes in gene expression as iDKO, and a prolonged treatment of mice with a CDK8/19 inhibitor did not affect the size of testes. iDKO, in contrast to the single knockouts or treatment with a CDK8/19 kinase inhibitor, led to depletion of cyclin C (CCNC), the binding partner of CDK8/19 that has been implicated in CDK8/19-independent functions. This suggests that the observed phenotype was likely mediated through kinase-independent activities of CDK8/19, such as CCNC stabilization.
Collapse
Affiliation(s)
- Alexandra V Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
- Blokhin National Medical Research Center of OncologyMoscowRussian Federation
| | - Ekaterina A Varlamova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Nina I Stavskaya
- Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Zoia G Antysheva
- Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Vasily N Manskikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscowRussian Federation
| | - Anna V Tvorogova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Diana S Korshunova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Alvina I Khamidullina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
- Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | | | - Viktor P Bogdanov
- Life Sciences Research Center, Moscow Institute of Physics and TechnologyDolgoprudnyRussian Federation
| | - Iuliia P Baikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | | | - Eugene A Albert
- Life Sciences Research Center, Moscow Institute of Physics and TechnologyDolgoprudnyRussian Federation
| | - Denis O Maksimov
- Life Sciences Research Center, Moscow Institute of Physics and TechnologyDolgoprudnyRussian Federation
| | - Jing Li
- Department of Drug Discovery and Biomedical Sciences, University of South CarolinaColumbiaUnited States
| | - Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, University of South CarolinaColumbiaUnited States
- Senex Biotechnology, IncColumbiaUnited States
| | - Gary P Schools
- Department of Drug Discovery and Biomedical Sciences, University of South CarolinaColumbiaUnited States
| | - Alexey V Feoktistov
- The Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Alexander A Shtil
- Blokhin National Medical Research Center of OncologyMoscowRussian Federation
- Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, University of South CarolinaColumbiaUnited States
| | - Vladislav A Mogila
- Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
- Department of Drug Discovery and Biomedical Sciences, University of South CarolinaColumbiaUnited States
| | - Yulia Y Silaeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
- Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Victor V Tatarskiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
- Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| |
Collapse
|
4
|
Maroto M, Torvisco SN, García-Merino C, Fernández-González R, Pericuesta E. Mechanisms of Hormonal, Genetic, and Temperature Regulation of Germ Cell Proliferation, Differentiation, and Death During Spermatogenesis. Biomolecules 2025; 15:500. [PMID: 40305231 PMCID: PMC12025078 DOI: 10.3390/biom15040500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
Spermatogenesis is a complex and highly regulated process involving the proliferation, differentiation, and apoptosis of germ cells. This process is controlled by various hormonal, genetic, and environmental factors, including temperature. In hormonal regulation, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) are essential for correct spermatogenesis development from the early stages and spermatogonia proliferation to germ cell maturation. Other hormones, like inhibin and activin, finely participate tuning the process of spermatogenesis. Genetic regulation involves various transcription factors, such as SOX9, SRY, and DMRT1, which are crucial for the development and maintenance of the testis and germ cells. MicroRNAs (miRNAs) play a significant role by regulating gene expression post-transcriptionally. Epigenetic modifications, including DNA methylation, histone modifications, and chromatin remodelling, are also vital. Temperature regulation is another critical aspect, with the testicular temperature maintained around 2-4 °C below body temperature, essential for efficient spermatogenesis. Heat shock proteins (HSPs) protect germ cells from heat-induced damage by acting as molecular chaperones, ensuring proper protein folding and preventing the aggregation of misfolded proteins during thermal stress. Elevated testicular temperature can impair spermatogenesis, increasing germ cell apoptosis and inducing oxidative stress, DNA damage, and the disruption of the blood-testis barrier, leading to germ cell death and impaired differentiation. The cellular mechanisms of germ cell proliferation, differentiation, and death include the mitotic divisions of spermatogonia to maintain the germ cell pool and produce spermatocytes. Spermatocytes undergo meiosis to produce haploid spermatids, which then differentiate into mature spermatozoa. Apoptosis, or programmed cell death, ensures the removal of defective germ cells and regulates the germ cell population. Hormonal imbalance, genetic defects, and environmental stress can trigger apoptosis during spermatogenesis. Understanding these mechanisms is crucial for addressing male infertility and developing therapeutic interventions. Advances in molecular biology and genetics continue to uncover the intricate details of how spermatogenesis is regulated at multiple levels, providing new insights and potential targets for treatment.
Collapse
Affiliation(s)
- María Maroto
- National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain; (M.M.); (C.G.-M.)
| | - Sara N. Torvisco
- School of Agriculture and Food Science, University College Dublin, D04 W6F6 Dublin, Ireland;
| | - Cristina García-Merino
- National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain; (M.M.); (C.G.-M.)
| | - Raúl Fernández-González
- National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain; (M.M.); (C.G.-M.)
| | - Eva Pericuesta
- National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain; (M.M.); (C.G.-M.)
| |
Collapse
|
5
|
Yu P, Zhao X, Zhou D, Wang S, Hu Z, Lian K, Zhang N, Duan P. The microRNA-mediated apoptotic signaling axis in male reproduction: a possible and targetable culprit in male infertility. Cell Biol Toxicol 2025; 41:54. [PMID: 40038116 PMCID: PMC11880093 DOI: 10.1007/s10565-025-10006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
Recently, infertility has emerged as a significant and prevalent public health concern warranting considerable attention. Apoptosis, recognized as programmed cell death, constitutes a crucial process essential for the maintenance of normal spermatogenesis. Multiple investigations have illustrated that the dysregulated apoptosis of reproductive cells, encompassing spermatogonial stem cells, Sertoli cells, and Leydig cells, serves as a causative factor in male infertility. MicroRNAs represent a class of small RNA molecules that exert negative regulatory control over gene expression using direct interaction with messenger RNA transcripts. Previous studies have established that aberrant expression of miRNAs induces apoptosis in reproductive tissues, correlating with reproductive dysfunctions and infertility. In this review, we offer a comprehensive overview of miRNAs and their respective target genes implicated in the apoptotic process. As well, miRNAs are involved in multiple apoptotic signaling pathways, namely the PI3K/AKT, NOTCH, Wnt/β-catenin, and mTOR signaling cascades, exerting both negative and positive effects. We additionally elucidate the significant functions played by lncRNAs and circular RNAs as competing endogenous RNAs in the process of apoptosis within reproductive cells. We further illustrate that external factors, including silica nanoparticles, Cyclosporine A, and smoking, induce dysregulation of miRNAs, resulting in apoptosis within reproductive cells and subsequent male reproductive toxicity. Further, we discuss the implication of heat stress, hypoxia, and diabetes in reproductive cell apoptosis induced by miRNA dysregulation in male infertility. Finally, we demonstrate that the modulation of miRNAs via traditional and novel medicine could protect reproductive cells from apoptosis and be implemented as a therapeutic approach in male infertility.
Collapse
Affiliation(s)
- Pengxia Yu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Xue Zhao
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Dan Zhou
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Songtao Wang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Zihuan Hu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Kai Lian
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Nanhui Zhang
- Department of Nephrology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| | - Peng Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| |
Collapse
|
6
|
Esfandyari F, Raeeszadeh M, Amiri AA. Comparative Evaluation of Levamisole and Broccoli in Mitigating Testicular Oxidative Stress and Apoptotic Alterations Caused by Cadmium and Lead Exposure in Rats. Biol Trace Elem Res 2025; 203:1518-1527. [PMID: 38801623 DOI: 10.1007/s12011-024-04241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Considering the significance of heavy metals in infertility and their reduction through natural and synthetic compounds, a comparative study of broccoli and levamisole in cadmium and lead poisoning was conducted. Male Wistar rats (48 in total) were divided into 8 groups. Control, cadmium, lead, levamisole, and broccoli were administered individually to groups 1-5, while groups 6-8 received combinations. Various measurements were taken, including final weight, testicular weight, and the GSI coefficient. Sperm parameters, spermatogenesis cell count, oxidative stress biomarkers, and apoptosis indices were assessed using ELISA kits and methods in testicular tissue. The results indicated that the GSI coefficient was lowest in group 2 and highest in group 4, showing a significant difference (P < 0.001). Sperm concentration peaked in group 1 and broccoli-treated ones, while motility was highest in group 5. Testicular cell counts and Johnson score were highest in groups 1 and 2, and lowest in cadmium-exposed groups. These differences were statistically significant at P < 0.01. Enzyme activities related to oxidative stress varied. Group 2 exhibited the highest catalase (CAT) and superoxide dismutase (SOD) activities, while glutathione peroxidase (GPx) levels peaked in groups 1, 4, and 5. Malondialdehyde (MDA) concentrations were significantly reduced in the group 5 (P < 0.05). Apoptosis indices revealed that broccoli had the highest Bcl-2 levels and lowest Bax/Bcl-2 ratio, indicating its anti-apoptotic effect. Group 4 showed less efficacy compared to broccoli in protecting fertility indices. In conclusion, cadmium and lead significantly impact male fertility, while broccoli extract demonstrates promising efficacy in mitigating damage when compared to levamisole. This underscores its antioxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Fatemeh Esfandyari
- Faculty of Veterinary Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Mahdieh Raeeszadeh
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Ali Akbar Amiri
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
7
|
Pei SW, Liu YK, Wang ZY, Yuan ZH, Li WH, Li FD, Yue XP. Identification of key genes related to unilateral cryptorchidism in sheep by comprehensive transcriptomics and proteomics analyses. BMC Genomics 2025; 26:165. [PMID: 39972276 PMCID: PMC11841234 DOI: 10.1186/s12864-024-11166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/18/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Cryptorchidism is one of the most common reproductive abnormalities in rams, which seriously harms the reproductive capacity of rams and causes significant economic losses to the sheep industry. However, there are few studies elucidating its hereditary predisposition in sheep. RESULTS In the present study, the transcriptome and proteome of the cryptic (CT) and contralateral (CLT) testis from four unilaterally cryptorchid rams, and the normal testis (NT) from four healthy rams were analyzed using RNA-seq and TMT-based proteomics, respectively. A total of 10,357, 10,175, and 132 differentially expressed genes (DEGs) were identified between CT vs. CLT, CT vs. NT, and CLT vs. NT. Venn diagram showed that 9744 DEGs (5499 up-regulated and 4245 down-regulated) shared in CT vs. CLT and CT vs. NT. Functional enrichment analysis revealed that 5499 up-regulated DEGs were mainly involved in regulation of programmed cell death and metabolic process, while 4245 down-regulated DEGs were closely related to reproductive process, such as spermatogenesis, sexual reproduction, reproduction and male gamete generation. Furthermore, 325 overlapped genes (114 up-regulated and 211 down-regulated) between DEGs and DAPs that shared the same regulatory status were identified by combining transcriptomics and proteomics. Ten genes, including AKAP4, AKAP3, FSIP2, HSPA1L, HSPA4L, TUBB, TXNRD2, CDC42, PGK1 and HSPA1A, were identified as candidate key genes related to unilateral cryptorchidism. CONCLUSION Our results revealed that both gene and protein expression in the cryptic testis of unilateral cryptorchid rams is massively altered. Bioinformatics analysis unveiled several candidate genes and signaling pathways potentially involved in unilateral cryptorchidism. These findings provide new insights into the molecular mechanism underlying spermatogenesis failure caused by cryptorchidism.
Collapse
Affiliation(s)
- Sheng-Wei Pei
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yang-Kai Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhong-Yu Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Ze-Hu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Wan-Hong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fa-Di Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiang-Peng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
8
|
Ying Y, Wang L, Wang D, Li N, Song Y, Liu X. Androgen Receptor Expression Governs the Seasonal Inhibition of Testicular Development and Subsequent Recovery in Rattus norvegicus caraco. BIOLOGY 2025; 14:123. [PMID: 40001891 PMCID: PMC11851772 DOI: 10.3390/biology14020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
Commonly in seasonal breeding animals, testicular development is inhibited prior to Sertoli cell maturation when environmental conditions become unfavorable, with recovery occurring once conditions improve. However, the precise molecular mechanisms governing this process remain unclear. We investigated the role of androgen receptor (AR) in the seasonal regulation of testicular development in a wild population of Rattus norvegicus caraco, a subspecies of brown rats in Northeast China residing in high-latitude regions, known for its seasonal reproductive patterns. Our results revealed a significant increase in Ar mRNA expression in wild rats with small testes less than 0.2 g and body weights ranging between 80 and 100 g during the nonbreeding season. Further examinations of Ar expression in the testicular development of R. n. caraco in the laboratory under different day lengths and temperatures that simulating breeding and nonbreeding seasons suggest that the maturation of Sertoli cells depends on the upregulation of Ar expression around a testis weight of 0.07-0.18 g, regardless of age and conditions, synchronously accompanying the initiation of the meiotic phase. When Ar expression was suppressed, testicular development was impeded around the stage of Sertoli cell maturation, resulting in decreased spermatogenesis and hindered growth in testis weight. Our findings elucidate how animals control the seasonal inhibition and subsequent recovery of testicular development by regulating Ar expression in R. n. caraco.
Collapse
Affiliation(s)
| | | | | | | | - Ying Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Y.); (L.W.); (D.W.); (N.L.)
| | - Xiaohui Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Y.); (L.W.); (D.W.); (N.L.)
| |
Collapse
|
9
|
de Oliveira Santos A, Quadreli DH, Fernandes GSA, de Souza Reis LSL, de Andrade Bernal Fagiani M, Marin LCS, Batista VRG, Teixeira GR, de Lima Paz PJ, Castilho C, de Oliveira Vidotto Figueiredo M, Giometti IC. Quercetin Supplementation Reduces Oxidative Stress in the Testes of Wistar Rats Fed a High-Fat Diet. Am J Reprod Immunol 2025; 93:e70048. [PMID: 39835467 DOI: 10.1111/aji.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/01/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
PROBLEM A high-fat diet (HFD) predisposes animals to glucose intolerance, dyslipidemia and testicular oxidative stress, and impairs sperm production in rats. Quercetin is a flavonoid with antioxidant, anti-inflammatory, and lipolytic actions and is a potential supplement to combat the oxidative stress caused by HFD and its harmful effects on reproduction. This study evaluated the effects of quercetin supplementation at doses of 10 and 20 mg/day on reproductive parameters and testicular oxidative stress in Wistar rats fed a diet rich in pork fat and fructose. METHOD OF STUDY The rats received a basal diet or HFD for 2 months, after which the animals fed the HFD received daily supplementation of 0, 10, or 20 mg of quercetin for another 2 months. Oxidative stress, histological alterations, and the expression of oxidative, inflammatory, and apoptotic mediators in the testes were evaluated. RESULTS Animals fed the HFD had a lower dietary intake and body, epididymis, and duct weights, regardless of the presence of quercetin. There were no changes in testicular weight, germinal epithelium diameter, sperm motility and morphology, or expression of testicular inflammatory genes (p > 0.05). There was a reduction in the oxidative stress index and oxidized glutathione in rats that received the HFD and 20 mg of quercetin compared with the HF group without quercetin. No difference was observed in the expression of BAX, BCL2, TNFα, caspase 3, or AR between the groups. CONCLUSION Daily quercetin supplementation dose-dependently reduces testicular oxidative stress in Wistar rats fed a diet rich in pork fat and fructose.
Collapse
Affiliation(s)
- Aline de Oliveira Santos
- Laboratory of Molecular Genetics and Experimentation in Animal Reproduction, University of Western São Paulo (Unoeste), Presidente Prudente, São Paulo, Brazil
| | - Debora Hipolito Quadreli
- Laboratory of Toxicology and Metabolic Disorders of Reproduction, State University of Londrina (UEL), Londrina, Brazil
| | | | | | - Marcela de Andrade Bernal Fagiani
- Laboratory of Molecular Genetics and Experimentation in Animal Reproduction, University of Western São Paulo (Unoeste), Presidente Prudente, São Paulo, Brazil
| | - Lauren Chrys Soato Marin
- Laboratory of Molecular Genetics and Experimentation in Animal Reproduction, University of Western São Paulo (Unoeste), Presidente Prudente, São Paulo, Brazil
| | - Victor Rogério Garcia Batista
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Giovana Rampazzo Teixeira
- Department of Physical Education, São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, São Paulo, Brazil
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Patrik Junior de Lima Paz
- School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Botucatu, São Paulo, Brazil
| | - Caliê Castilho
- Laboratory of Molecular Genetics and Experimentation in Animal Reproduction, University of Western São Paulo (Unoeste), Presidente Prudente, São Paulo, Brazil
| | - Mayara de Oliveira Vidotto Figueiredo
- Laboratory of Molecular Genetics and Experimentation in Animal Reproduction, University of Western São Paulo (Unoeste), Presidente Prudente, São Paulo, Brazil
| | - Ines Cristina Giometti
- Laboratory of Molecular Genetics and Experimentation in Animal Reproduction, University of Western São Paulo (Unoeste), Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
10
|
Zhai W, Tian H, Liang X, Wu Y, Wen J, Liu Z, Zhao X, Tao L, Zou K. Androgen blockage impairs proliferation and function of Sertoli cells via Wee1 and Lfng. Cell Commun Signal 2024; 22:498. [PMID: 39407201 PMCID: PMC11481299 DOI: 10.1186/s12964-024-01875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Androgens are essential hormones for testicular development and the maintenance of male fertility. Environmental factors, stress, aging, and psychological conditions can disrupt androgen production, impacting the androgen signaling pathway and consequently spermatogenesis. Within the testes, testosterone is produced by Leydig cells and acts on Sertoli cells by activating the androgen receptor (AR), which then translocates to the nucleus to function as a transcription factor. Despite clinical correlations between low testosterone levels and diminished sperm quality, the precise mechanism remains unclear. METHODS This study explores the hypothesis that reduced androgen levels impair Sertoli cell function by disrupting AR transcriptional regulation. Using an androgen blockade model with enzalutamide, we investigated the impact of low androgen levels on AR target genes in Sertoli cells through ChIP-seq and RNA-seq assays. RESULTS Our results reveal that androgen blockage increases AR enrichment on the promoter region of Wee1, promoting Wee1 expression, while decreasing binding to the promoter region of Lfng, inhibiting its expression. Increased WEE1 protein inhibits Sertoli cell proliferation, whereas reduced LFNG affects Notch modification, leading to decreased production of glial cell line-derived neurotrophic factor (GDNF), a key growth factor for spermatogonial stem cell self-renewal. CONCLUSIONS These findings provide new insights into the molecular mechanisms by which low androgen levels interfere with Sertoli cell functions, offering novel perspectives for the clinical treatment of male reproductive disorders.
Collapse
Affiliation(s)
- Wenhui Zhai
- Department of Emergency, The 305 Hospital of People's Liberation Army, Beijing, 100017, China
| | - Hairui Tian
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuemei Liang
- General Surgery, The 305 Hospital of People's Liberation Army, Beijing, 100017, China
| | - Yunqiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jian Wen
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhipeng Liu
- General Surgery, The 305 Hospital of People's Liberation Army, Beijing, 100017, China
| | - Xiaodong Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Tao
- Department of Emergency, The 305 Hospital of People's Liberation Army, Beijing, 100017, China.
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Jummah N, Satrialdi S, Artarini AA, Anindyajati A, Mudhakir D. NLC Delivery of EGFP Plasmid to TM4 Cell Nuclei for Targeted Gene Therapy. Adv Pharm Bull 2024; 14:613-622. [PMID: 39494265 PMCID: PMC11530889 DOI: 10.34172/apb.2024.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose This study evaluated whether a nanostructured lipid carrier (NLC) delivery system could safely and accurately deliver nucleic acids to the cell nucleus using the enhanced green fluorescent protein (EGFP)-C1 plasmid model. Methods The NLC was formulated using the emulsification method and equipped for cationic lipid-mediated transfection with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), which interacts electrostatically with nucleic acid. The NLC attributes, including size, polydispersity index, and zeta potential, were assessed by dynamic light scattering (DLS). The morphological structure was analyzed using transmission electron microscopy. Entrapment efficiency was evaluated by a direct method. Cellular uptake mechanisms of pEGFP-C1-NLC and the ability of pEGFP-C1 to penetrate the nucleus of TM4 cells to express EGFP were observed using confocal microscopy. Results pEGFP-C1-NLC exhibited particle sizes in the range 56-88 nm with a particle charge range of -6.0 to+1.3 mV. The polydispersity index<0.5 showed good size uniformity, and entrapment efficiency of pEGFP-C1in the NLC was 92.06±2.295%. The NLC formulation was internalized predominantly via caveolae-mediated endocytosis, as indicated by EGFP expression following successful delivery of pEGFP by the NLC into the cells. Conclusion NLC formulation could deliver genetic material to the nucleus and could be considered a gene therapy candidate for spermatogenesis.
Collapse
Affiliation(s)
- Nurul Jummah
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Science, Universitas Islam Makassar, Makassar 90245, Indonesia
| | - Satrialdi Satrialdi
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia
| | - Aluicia Anita Artarini
- Biotechnology Laboratory, Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia
| | - Anindyajati Anindyajati
- Biotechnology Laboratory, Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia
| | - Diky Mudhakir
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia
| |
Collapse
|
12
|
Tijani AS, Daba TM, Ubong IA, Olufunke O, Ani EJ, Farombi EO. Co-administration of thymol and sulfoxaflor impedes the expression of reproductive toxicity in male rats. Drug Chem Toxicol 2024; 47:618-632. [PMID: 37403475 DOI: 10.1080/01480545.2023.2232564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023]
Abstract
This study investigated the capability of a co-delivery system of thymol (THY) and sulfoxaflor that can serve to minimize the development of epididymal and testicular injury arise from SFX exposures alone. Forty-eight adult male rats were orally treated by gavage for 28 consecutive days. The rats were divided into six groups comprising control, THY alone (30 mg/kg), low SFX alone (79.4 mg/kg), high SFX alone (205 mg/kg) and co-exposure groups. After euthanasia, the rats epididymal and testicular damage and antioxidant status markers, myeloperoxidase (MPO) activity, levels of nitric oxide, total antioxidant capacity (TAC), total oxidative stress (TOS) and lipid peroxidation (LPO) were analyzed. Levels of tumor necrosis factor alpha (TNF-α), interleukin-1 b (IL-1β) and caspase-3 activity were assessed using ELISA kits. The results revealed that SFX exposure caused a significant (p < 0.05) decrease in the body weight, sperm functional parameters, serum testosterone level with widespread histological abnormalities in a dose-dependent manner. Increased relative organ weights, serum levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) were observed in low SFX-treated rats. Similarly, the epididymal and testicular myeloperoxidase activity, malondialdehyde (MDA), reactive oxygen species (RONS), tumor necrosis-α, interleukin-1β levels and caspase-3 activity were significant (p < 0.05) increased and a significant (p < 0.05) reduction in antioxidant enzyme activities and reduced glutathione (GSH) were revealed in SFX-treated rats. However, co-treatment of THY with SFX prevented SFX-induced epididymal and testicular toxicities. Thus, thymol protected against potential epididymis and testes alterations elicited by oxido-inflammatory mediators and up regulated antioxidant status.
Collapse
Affiliation(s)
- Abiola S Tijani
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Tolessa M Daba
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Ime A Ubong
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Onaadepo Olufunke
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Elemi J Ani
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
13
|
Zhang BY, Yang R, Zhu WQ, Zhu CL, Chen LX, Zhao YS, Zhang Y, Wang YQ, Jiang DZ, Tang B, Zhang XM. Schisandrin B alleviates testicular inflammation and Sertoli cell apoptosis via AR-JNK pathway. Sci Rep 2024; 14:18418. [PMID: 39117695 PMCID: PMC11310458 DOI: 10.1038/s41598-024-69389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Bacterial testicular inflammation is one of the important causes of male infertility. Using plant-derived compounds to overcome the side effects of antibiotics is an alternative treatment strategy for many diseases. Schizandrin B (SchB) is a bioactive compound of herbal medicine Schisandra chinensis which has multiple pharmacological effects. However its effect and the mechanism against testicular inflammation are unknown. Here we tackled these questions using models of lipopolysaccharide (LPS)-induced mice and -Sertoli cells (SCs). Histologically, SchB ameliorated the LPS-induced damages of the seminiferous epithelium and blood-testicular barrier, and reduced the production of pro-inflammatory mediators in mouse testes. Furthermore, SchB decreased the levels of pro-inflammatory mediators and inhibited the nuclear factor kB (NF-κB) and MAPK (especially JNK) signaling pathway phosphorylation in LPS-induced mSCs. The bioinformatics analysis based on receptor prediction and the molecular docking was further conducted. We targeted androgen receptor (AR) and illustrated that AR might bind with SchB in its function. Further experiments indicate that the AR expression was upregulated by LPS stimulation, while SchB treatment reversed this phenomenon; similarly, the expression of the JNK-related proteins and apoptotic-related protein were also reversed after AR activator treatment. Together, SchB mitigates LPS-induced inflammation and apoptosis by inhibiting the AR-JNK pathway.
Collapse
Affiliation(s)
- Bo-Yang Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rui Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wen-Qian Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chun-Ling Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lan-Xin Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yan-Sen Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yue-Qi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dao-Zhen Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bo Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue-Ming Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
14
|
Zhankina R, Zhanbyrbekuly U, Askarov M, Zare A, Jafari N, Saipiyeva D, Sherkhanov R, Akhmetov D, Hashemi A, Farjam M, Tanideh N, Aflatoonian B, Mussin NM, Kaliyev AA, Sultangereyev Y, Baneshi H, Shirazi R, Mahdipour M, Bakhshalizadeh S, Rahmanifar F, Tamadon A. Improving Fertility in Non-obstructive Azoospermia: Results from an Autologous Bone Mar-row-Derived Mesenchymal Stromal/Stem Cell Phase I Clinical Trial. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2024; 18:60-70. [PMID: 39033372 PMCID: PMC11263852 DOI: 10.22074/ijfs.2023.2005045.1480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 07/23/2024]
Abstract
BACKGROUND In this phase I clinical trial, our primary objective was to develop an innovative therapeutic approach utilizing autologous bone marrow-derived mesenchymal stromal/stem cells (BM-MSCs) for the treatment of nonobstructive azoospermia (NOA). Additionally, we aimed to assess the feasibility and safety of this approach. MATERIALS AND METHODS We recruited 80 participants in this non-randomized, open-label clinical trial, including patients undergoing NOA treatment using autologous BM-MSCs (n=40) and those receiving hormone therapy as a control group (n=40). Detailed participant characteristics, such as age, baseline hormonal profiles, etiology of NOA, and medical history, were thoroughly documented. Autotransplantation of BM-MSCs into the testicular network was achieved using microsurgical testicular sperm extraction (microTESE). Semen analysis and hormonal assessments were performed both before and six months after treatment. Additionally, we conducted an in-silico analysis to explore potential protein-protein interactions between exosomes secreted from BM-MSCs and receptors present in human seminiferous tubule cells. RESULTS Our results revealed significant improvements following treatment, including increased testosterone and inhibin B levels, elevated sperm concentration, and reduced levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin. Notably, in nine patients (22.5%) previously diagnosed with secondary infertility and exhibiting azoospermia before treatment, the proposed approach yielded successful outcomes, as indicated by hormonal profile changes over six months. Importantly, these improvements were achieved without complications. Additionally, our in-silico analysis identified potential binding interactions between the protein content of BM-MSC-derived exosomes and receptors integral to spermatogenesis. CONCLUSION Autotransplantation of BM-MSCs into the testicular network using microTESE in NOA patients led to the regeneration of seminiferous tubules and the regulation of hormonal profiles governing spermatogenesis. Our findings support the safety and effectiveness of autologous BM-MSCs as a promising treatment modality for NOA, with a particular focus on the achieved outcomes in patients with secondary infertility (registration number: IRCT20190519043634N1).
Collapse
Affiliation(s)
- Rano Zhankina
- Department of Urology and Andrology, Astana Medical University, Astana, Kazakhstan
| | | | | | - Afshin Zare
- Department of R&D Research, PerciaVista R&D Co., Shiraz, Iran
| | - Nazanin Jafari
- Department of R&D Research, PerciaVista R&D Co., Shiraz, Iran
| | - Dana Saipiyeva
- Department of Urology and Andrology, Astana Medical University, Astana, Kazakhstan
| | - Ravil Sherkhanov
- Department of Urology and Andrology, Astana Medical University, Astana, Kazakhstan
| | - Daniyar Akhmetov
- Department of Urology and Andrology, Astana Medical University, Astana, Kazakhstan
| | - Alireza Hashemi
- Department of R&D Research, PerciaVista R&D Co., Shiraz, Iran
| | - Mojtaba Farjam
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Nader Tanideh
- Department of R&D Research, PerciaVista R&D Co., Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behrouz Aflatoonian
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nadiar Maratovich Mussin
- Department of General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Asset Askerovich Kaliyev
- Department of General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Yerlan Sultangereyev
- Department of General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
- Department of Surgery and Transplantation, Aktobe Medical Center, Aktobe, Kazakhstan
| | - Hanieh Baneshi
- Department of R&D Research, PerciaVista R&D Co., Shiraz, Iran
| | - Reza Shirazi
- Department of Anatomy, School of Biomedical Sciences, Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Farhad Rahmanifar
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amin Tamadon
- Department of R&D Research, PerciaVista R&D Co., Shiraz, Iran
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan.
| |
Collapse
|
15
|
Etezadi A, Akhtare A, Asadikalameh Z, Aghaei ZH, Panahinia P, Arman M, Abtahian A, Khorasani FF, Hazari V. Linc00513 sponges miR-7 to modulate TGF-β signaling in azoospermia. Eur J Transl Myol 2024; 34:12516. [PMID: 38952199 PMCID: PMC11487652 DOI: 10.4081/ejtm.2024.12516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Azoospermia, or the complete absence of sperm in the ejaculate, affects about 1% of men worldwide and is a significant fertility challenge. This study investigates Linc00513, a long non-coding RNA, and its potential role in regulating the TGF-β signaling pathway, a key player in spermatogenesis, in the context of azoospermia. We show that Linc00513 expression is significantly lower in testicular tissues from azoospermic patients than in HS1 controls. Linc00513 interacts directly with microRNA-7 (miR-7) via complementary base pairing, acting as a competing endogenous RNA (ceRNA). This interaction effectively inhibits miR-7's inhibitory action on the TGF-β receptor 1 (TGFBR1), a critical component of the TGF-β signaling cascade. Downregulating Linc00513 reduces TGFBR1 repression and increases TGF-β signaling in azoospermic testes. Functional assays with spermatogonial cell lines support these findings. Silencing Linc00513 leads to increased cell proliferation and decreased apoptosis, similar to TGF-β inhibition. Overexpression of miR-7 inhibits the effects of Linc00513 on TGF-β signaling. Our study sheds new light on how Linc00513, miR-7, and the TGF-β signaling pathway interact in azoospermia. Linc00513 regulates TGFBR1 expression and thus influences spermatogonial cell fate by acting as a miR-7 ceRNA. These findings identify a potential therapeutic target for azoospermia treatment, paving the way for future research into restoring fertility in affected individuals.
Collapse
Affiliation(s)
- Atoosa Etezadi
- Department of Gynecology, School of Medicine, Alzahra Hospital, Guilan University of Medical Sciences.
| | | | - Zahra Asadikalameh
- Department of Gynecology and Obstetrics, Yasuj University of Medical Sciences, Yasuj.
| | - Zeinab Hashem Aghaei
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran.
| | - Paria Panahinia
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran.
| | | | - Amene Abtahian
- Nical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University Medical Science, Tehran.
| | - Fereshteh Faghih Khorasani
- General Physician in Medicine Program, General Doctorate Degree of Yazd, Shahid Sadoughi University of Medical Sciences, Yazd.
| | - Vajihe Hazari
- Department of Obstetrics and Gynecology, School of Medicine, Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand.
| |
Collapse
|
16
|
Garza-Brenner E, Sánchez-Dávila F, Mauleón-Tolentino K, Zapata-Campos CC, Luna-Palomera C, Hernandez-Melendez J, Gonzalez-Delgado M, Vázquez-Armijo JF. Systematic review of hormonal strategies to improve fertility in rams. Anim Reprod 2024; 21:e20240007. [PMID: 38903866 PMCID: PMC11189135 DOI: 10.1590/1984-3143-ar2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/16/2024] [Indexed: 06/22/2024] Open
Abstract
Reviewing the current state of knowledge on reproductive performance and productive traits in rams has many advantages. First, the compilation of this information will serve as a literature resource for scientists conducting research around the world and will contribute to the understanding of the data collected and interpreted by researchers on the different hormonal strategies used to improve reproductive performance in rams. Second, it will allow scientists to identify current knowledge gaps and set future research priorities in ram reproduction. Rams play an important role in the global flock economy, but their reproductive analysis has been limited in the use of hormonal technologies to increase the productivity of sheep flocks. In this review, we cite the most important works on six hormones that, in one way or another, modify the hypothalamus-pituitary-gonadal axis, at different doses, in and out of the reproductive season, breeds, application methods, among other factors. The overall aim is to increase the reproductive efficiency of rams in different scenarios and, in some cases, of other species due to the lack of limited information on rams.
Collapse
Affiliation(s)
- Estela Garza-Brenner
- Facultad de Agronomía, Posgrado Conjunto, Universidad Autónoma de Nuevo León, General Escobedo, N.L México
| | - Fernando Sánchez-Dávila
- Facultad de Agronomía, Posgrado Conjunto, Universidad Autónoma de Nuevo León, General Escobedo, N.L México
| | - Keyla Mauleón-Tolentino
- Facultad de Agronomía, Posgrado Conjunto, Universidad Autónoma de Nuevo León, General Escobedo, N.L México
| | - Cecilia Carmela Zapata-Campos
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Tamaulipas, México
| | - Carlos Luna-Palomera
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | | | - Marisol Gonzalez-Delgado
- Centro de Investigación en Producción Agropecuaria, Universidad Autónoma de Nuevo León, Linares, Nuevo León, México
| | | |
Collapse
|
17
|
Li L, Lin W, Wang Z, Huang R, Xia H, Li Z, Deng J, Ye T, Huang Y, Yang Y. Hormone Regulation in Testicular Development and Function. Int J Mol Sci 2024; 25:5805. [PMID: 38891991 PMCID: PMC11172568 DOI: 10.3390/ijms25115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The testes serve as the primary source of androgens and the site of spermatogenesis, with their development and function governed by hormonal actions via endocrine and paracrine pathways. Male fertility hinges on the availability of testosterone, a cornerstone of spermatogenesis, while follicle-stimulating hormone (FSH) signaling is indispensable for the proliferation, differentiation, and proper functioning of Sertoli and germ cells. This review covers the research on how androgens, FSH, and other hormones support processes crucial for male fertility in the testis and reproductive tract. These hormones are regulated by the hypothalamic-pituitary-gonad (HPG) axis, which is either quiescent or activated at different stages of the life course, and the regulation of the axis is crucial for the development and normal function of the male reproductive system. Hormonal imbalances, whether due to genetic predispositions or environmental influences, leading to hypogonadism or hypergonadism, can precipitate reproductive disorders. Investigating the regulatory network and molecular mechanisms involved in testicular development and spermatogenesis is instrumental in developing new therapeutic methods, drugs, and male hormonal contraceptives.
Collapse
Affiliation(s)
- Lu Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Wanqing Lin
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Huan Xia
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Ziyi Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Jingxian Deng
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Tao Ye
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| |
Collapse
|
18
|
Khan MZ, Khan A, Chen W, Chai W, Wang C. Advancements in Genetic Biomarkers and Exogenous Antioxidant Supplementation for Safeguarding Mammalian Cells against Heat-Induced Oxidative Stress and Apoptosis. Antioxidants (Basel) 2024; 13:258. [PMID: 38539792 PMCID: PMC10967571 DOI: 10.3390/antiox13030258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 11/11/2024] Open
Abstract
Heat stress represents a pervasive global concern with far-reaching implications for the reproductive efficiency of both animal and human populations. An extensive body of published research on heat stress effects utilizes controlled experimental environments to expose cells and tissues to heat stress and its disruptive influence on the physiological aspects of reproductive phenotypic traits, encompassing parameters such as sperm quality, sperm motility, viability, and overall competence. Beyond these immediate effects, heat stress has been linked to embryo losses, compromised oocyte development, and even infertility across diverse species. One of the primary mechanisms underlying these adverse reproductive outcomes is the elevation of reactive oxygen species (ROS) levels precipitating oxidative stress and apoptosis within mammalian reproductive cells. Oxidative stress and apoptosis are recognized as pivotal biological factors through which heat stress exerts its disruptive impact on both male and female reproductive cells. In a concerted effort to mitigate the detrimental consequences of heat stress, supplementation with antioxidants, both in natural and synthetic forms, has been explored as a potential intervention strategy. Furthermore, reproductive cells possess inherent self-protective mechanisms that come into play during episodes of heat stress, aiding in their survival. This comprehensive review delves into the multifaceted effects of heat stress on reproductive phenotypic traits and elucidates the intricate molecular mechanisms underpinning oxidative stress and apoptosis in reproductive cells, which compromise their normal function. Additionally, we provide a succinct overview of potential antioxidant interventions and highlight the genetic biomarkers within reproductive cells that possess self-protective capabilities, collectively offering promising avenues for ameliorating the negative impact of heat stress by restraining apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
19
|
Bakhshi P, Ho JQ, Zanganeh S. Sex-specific outcomes in cancer therapy: the central role of hormones. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1320690. [PMID: 38362126 PMCID: PMC10867131 DOI: 10.3389/fmedt.2024.1320690] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Sex hormones play a pivotal role in modulating various physiological processes, with emerging evidence underscoring their influence on cancer progression and treatment outcomes. This review delves into the intricate relationship between sex hormones and cancer, elucidating the underlying biological mechanisms and their clinical implications. We explore the multifaceted roles of estrogen, androgens, and progesterone, highlighting their respective influence on specific cancers such as breast, ovarian, endometrial, and prostate. Special attention is given to estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) tumors, androgen receptor signaling, and the dual role of progesterone in both promoting and inhibiting cancer progression. Clinical observations reveal varied treatment responses contingent upon hormonal levels, with certain therapies like tamoxifen, aromatase inhibitors, and anti-androgens demonstrating notable success. However, disparities in treatment outcomes between males and females in hormone-sensitive cancers necessitate further exploration. Therapeutically, the utilization of hormone replacement therapy (HRT) during cancer treatments presents both potential risks and benefits. The promise of personalized therapies, tailored to an individual's hormonal profile, offers a novel approach to optimizing therapeutic outcomes. Concurrently, the burgeoning exploration of new drugs and interventions targeting hormonal pathways heralds a future of more effective and precise treatments for hormone-sensitive cancers. This review underscores the pressing need for a deeper understanding of sex hormones in cancer therapy and the ensuing implications for future therapeutic innovations.
Collapse
Affiliation(s)
- Parisa Bakhshi
- Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States
| | - Jim Q. Ho
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Steven Zanganeh
- Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States
| |
Collapse
|
20
|
Falvo S, Minucci S, Santillo A, Senese R, Chieffi Baccari G, Venditti M. A short-term high-fat diet alters rat testicular activity and blood-testis barrier integrity through the SIRT1/NRF2/MAPKs signaling pathways. Front Endocrinol (Lausanne) 2023; 14:1274035. [PMID: 38027181 PMCID: PMC10643185 DOI: 10.3389/fendo.2023.1274035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background Overweight/obesity are metabolic disorder resulting from behavioral, environmental, and heritable causes. WHO estimates that 50% of adults and 30% of children and adolescents are overweight or obese, and, in parallel, an ongoing decline in sperm quality and male fertility has been described. Numerous studies demonstrated the intimate association between overweight/obesity and reproductive dysfunction due to a highly intricate network of causes not yet completely understood. This study expands the knowledge on the impact of a short-term high-fat diet (st-HFD) on rat testicular activity, specifically on steroidogenesis and spermatogenesis, focusing on the involved molecular mechanisms related to mitochondrial dynamics, blood-testis barrier (BTB) integrity, and SIRT1/NRF2/MAPKs pathways. Methods Ten adult Male Wistar rats were divided into two groups of five and treated with a standard diet or an HFD for five weeks. At the end of the treatment, rats were anesthetized and sacrificed by decapitation. Blood was collected for serum sex hormone assay; one testis was stored at -80ÅãC for western blot analysis, and the other, was fixed for histological and immunofluorescence analysis. Results Five weeks of HFD results in reduced steroidogenesis, increased apoptosis of spermatogenic cells, and altered spermatogenesis, as highlighted by reduced protein levels ofmeiotic and post-meiotic markers. Further, we evidenced the compromission of the BTB integrity, as revealed by the downregulation of structural proteins (N-Cadherin, ZO-1, occludin, connexin 43, and VANGL2) other than the phosphorylation of regulative kinases (Src and FAK). At the molecular level, the impairment of mitochondrial dynamics (fission, fusion, andbiogenesis), and the dysregulation of the SIRT1/NRF2/MAPKs signaling pathways, were evidenced. Interestingly, no change was observed in the levels of pro-inflammatory markers (TNFα, NF-kB, and IL-6). Conclusions The combined data led us to confirm that overweight is a less severe state than obesity. Furthermore, understanding the molecular mechanisms behind the association between metabolic disorders and male fertility could improve the possibility of identifying novel targets to prevent and treat fertility disorders related to overweight/obesity.
Collapse
Affiliation(s)
- Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania ‘Luigi Vanvitelli’, Napoli, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania ‘Luigi Vanvitelli’, Napoli, Italy
| |
Collapse
|
21
|
Katleba KD, Ghosh PM, Mudryj M. Beyond Prostate Cancer: An Androgen Receptor Splice Variant Expression in Multiple Malignancies, Non-Cancer Pathologies, and Development. Biomedicines 2023; 11:2215. [PMID: 37626712 PMCID: PMC10452427 DOI: 10.3390/biomedicines11082215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple studies have demonstrated the importance of androgen receptor (AR) splice variants (SVs) in the progression of prostate cancer to the castration-resistant phenotype and their utility as a diagnostic. However, studies on AR expression in non-prostatic malignancies uncovered that AR-SVs are expressed in glioblastoma, breast, salivary, bladder, kidney, and liver cancers, where they have diverse roles in tumorigenesis. AR-SVs also have roles in non-cancer pathologies. In granulosa cells from women with polycystic ovarian syndrome, unique AR-SVs lead to an increase in androgen production. In patients with nonobstructive azoospermia, testicular Sertoli cells exhibit differential expression of AR-SVs, which is associated with impaired spermatogenesis. Moreover, AR-SVs have been identified in normal cells, including blood mononuclear cells, neuronal lipid rafts, and the placenta. The detection and characterization of AR-SVs in mammalian and non-mammalian species argue that AR-SV expression is evolutionarily conserved and that AR-SV-dependent signaling is a fundamental regulatory feature in multiple cellular contexts. These discoveries argue that alternative splicing of the AR transcript is a commonly used mechanism that leads to an expansion in the repertoire of signaling molecules needed in certain tissues. Various malignancies appropriate this mechanism of alternative AR splicing to acquire a proliferative and survival advantage.
Collapse
Affiliation(s)
- Kimberley D. Katleba
- Veterans Affairs-Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA; (K.D.K.); (P.M.G.)
- Department of Medical Microbiology and Immunology, 1 Shields Avenue, UC Davis, Davis, CA 95616, USA
| | - Paramita M. Ghosh
- Veterans Affairs-Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA; (K.D.K.); (P.M.G.)
- Department of Urologic Surgery, 4860 Y Street, UC Davis, Sacramento, CA 95718, USA
- Department of Biochemistry and Molecular Medicine, 1 Shields Avenue, UC Davis, Davis, CA 95616, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA; (K.D.K.); (P.M.G.)
- Department of Medical Microbiology and Immunology, 1 Shields Avenue, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
22
|
Akhigbe RE, Afolabi OA, Ajayi AF. L-Arginine abrogates maternal and pre-pubertal codeine exposure-induced impaired spermatogenesis and sperm quality by modulating the levels of mRNA encoding spermatogenic genes. Front Endocrinol (Lausanne) 2023; 14:1180085. [PMID: 37529606 PMCID: PMC10390314 DOI: 10.3389/fendo.2023.1180085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 08/03/2023] Open
Abstract
INTRODUCTION Although, codeine has been demonstrated to lower sperm quality; the effects of maternal and prepubertal codeine exposure on male offspring is yet to be reported. In addition, the effect of arginine on codeine-induced decline in sperm quality has not been explored. This study investigated the impact of maternal and prepubertal codeine exposure on spermatogenesis and sperm quality in F1 male Wistar rats to study the effect that codeine may have during recreational use in humans. Also, the effect of arginine supplementation on codeine-induced alteration in spermatogenesis and sperm quality was evaluated. METHODS Female rats were treated with either 0.5 ml distilled water or codeine orally for eight weeks, and then mated with male rats (female:male, 2:1). The F1 male offsprings of both cohorts were weaned at 3 weeks old and administered distilled water, codeine, arginine, or codeine with arginine orally for eight weeks. RESULTS Prepubertal codeine exposure in rats whose dams (female parents) were exposed to codeine delayed puberty and reduced the weight at puberty. Prepubertal codeine exposure exacerbated maternal codeine exposure-induced reduced total and daily spermatid production, sperm count, sperm motility, and normal sperm form, as well as impaired sperm plasma membrane integrity and increased not intact acrosome and damaged sperm DNA integrity. These perturbations were accompanied by a decrease in mRNA levels encoding spermatogenic genes, testicular testosterone and androgen receptor (AR) concentrations, and upregulation of sperm 8-hydroxydeoxyguanosine (8OHdG). Prepubertal arginine supplementation mitigated codeine-induced alterations. DISCUSSION This study provides novel experimental evidence that maternal and prepubertal codeine exposure reprogramed spermatogenesis and sperm quality of male FI generation by decreasing mRNA levels encoding spermatogenic genes and AR via oxidative stress-mediated signaling, which was abrogated by prepubertal arginine supplementation.
Collapse
Affiliation(s)
- Roland Eghoghosoa Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Oladele A. Afolabi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Ayodeji Folorusho Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
23
|
Rey RA. Steroid receptors in the testis: implications in the physiology of prenatal and postnatal development and translation to clinical application. Histol Histopathol 2023; 38:373-389. [PMID: 36218320 DOI: 10.14670/hh-18-533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The testes are the main source of sex steroids in the male, especially androgens and to a lesser extent estrogens. In target cells, steroid hormones typically signal after binding to intracellular receptors, which act as transcription factors. Androgens and estrogens have ubiquitous functions in peripheral organs, but also have paracrine actions within the gonads where they are far more concentrated. The levels of steroid production by the testes vary throughout fetal and postnatal development: they are high in intrauterine life and in the first months after birth, then they decline and are almost undetectable in childhood and increase again during puberty to attain adult levels. The expression of the androgen and estrogen receptors also depict specific ontogenies in the various testicular cell types. The combination of intratesticular steroid concentration with the pattern of expression of the steroid hormone receptors defines androgen and estrogen action on Sertoli, germ and Leydig cells. Here, we review the ontogeny of expression of the androgen and estrogen receptors in the testis, its impact on testicular physiology during prenatal and postnatal development, as well as its implication on the pathophysiology of different disorders affecting gonadal function throughout life.
Collapse
Affiliation(s)
- Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
24
|
Sengul E, Gelen V, Yildirim S, Cinar İ, Aksu EH. Effects of naringin on oxidative stress, inflammation, some reproductive parameters, and apoptosis in acrylamide-induced testis toxicity in rat. ENVIRONMENTAL TOXICOLOGY 2023; 38:798-808. [PMID: 36598108 DOI: 10.1002/tox.23728] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/07/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Acrylamide (ACR) is used in many fields such as cosmetics, paper, and textile industries. It also occurs at very high temperatures in some foods. Gonadotoxic effects of ACR have been found in experimental animals. Many studies use flavonoids to prevent the reproductive side effects of ACR. Naringin (NA) is a flavonoid and it has been determined by studies that it has no toxic effect on tissues. In our study, we aimed to determine the protective effect of NA against the damage of ACR on testicular tissue and the reproductive system in rats. In our study, 50 Spraque Dawley male rats weighing 220-250 grams were used. Control: Only intragastric saline was administered for 10 days. ACR: Animals received ACR (40 mg/kg, intraperitoneally) for 10 days. NA50+ACR: Animals were given NA for 10 days and each NA was one hour after the administration of ACR. NA100+ACR: Animals received NA for 10 days and one hour after each NA was given ACR. NA100: Animals were given NA for 10 days. At the end of the applications, the rats were euthanized by cervical dislocation under anesthesia. Serum FSH, LH, and Dihydrotestosterone levels were compared between the groups. In addition, oxidative stress, inflammation, expression of some reproductive enzymes, and apoptosis markers were determined in testicular tissues. When these parameters were compared between groups, ACR induced testicular dysfunction and tissue damage in rats. We determined that only the NA application did not cause tissue damage. and the administration of NA along with ACR significantly reduced ACR-induced testis toxicity.
Collapse
Affiliation(s)
- Emin Sengul
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Volkan Gelen
- Department of Physiology, Faculty of Veterinary Medicine, Kasfkas University, Kars, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - İrfan Cinar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Emrah Hicazi Aksu
- Department of Andrology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
25
|
Hugues J. Stratégies de prise en charge des azoospermies non obstructives relevant d’une atteinte testiculaire primitive. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2022. [DOI: 10.1016/j.banm.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Wang Y, Pan Y, Wang M, Afedo SY, Zhao L, Han X, Liu M, Zhao T, Zhang T, Ding T, Wang J, Cui Y, Yu S. Transcriptome sequencing reveals differences between leydig cells and sertoli cells of yak. Front Vet Sci 2022; 9:960250. [PMID: 36090173 PMCID: PMC9449347 DOI: 10.3389/fvets.2022.960250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, we detected the expression of mRNAs, lncRNAs, and miRNAs in primary cultured leydig cells (LCs) and sertoli cells (SCs) of yak by RNA sequencing technology. A total of 84 differently expression mRNAs (DEmRNAs) (LCs vs. SCs: 15 up and 69 down), 172 differently expression lncRNAs (DElncRNAs) (LCs vs. SCs: 36 up and 136 down), and 90 differently expression miRNAs (DEmiRNAs) (LCs vs. SCs: 72 up and 18 down) were obtained between the two types of cells. GO enrichment and KEGG analysis indicated that the differential expression genes (DEGs) were more enriched in the regulation of actin cytoskeleton, Rap1/MAPK signaling pathway, steroid biosynthesis, focal adhesion, and pathways associated with metabolism. Targeted regulation relationship pairs of 3β-HSD and MSTRG.54630.1, CNTLN and MSTRG.19058.1, BRCA2 and MSTRG.28299.4, CA2 and novel-miR-148, and ceRNA network of LAMC3-MSTRG.68870.1- bta-miR-7862/novel-miR-151/novel-miR-148 were constructed by Cytoscape software. In conclusion, the differences between LCs and SCs were mainly reflected in steroid hormone synthesis, cell proliferation and metabolism, and blood-testicular barrier (BTB) dynamic regulation, and 3β-HSD, CNTLN, BRCA2, CA2, and LAMC3 may be the key factors causing these differences, which may be regulated by ncRNAs. This study provides a basic direction for exploring the differential regulation of LCs and SCs by ncRNAs.
Collapse
Affiliation(s)
- Yaying Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Seth Yaw Afedo
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ling Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaohong Han
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Minqing Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tian Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tongxiang Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tianyi Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jinglei Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
- *Correspondence: Sijiu Yu
| |
Collapse
|
27
|
Baltodano-Calle MJ, Onton-Díaz M, Gonzales GF. Androgens, brain and androgen deprivation therapy in paraphilic disorders: A narrative review. Andrologia 2022; 54:e14561. [PMID: 35995581 DOI: 10.1111/and.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/27/2022] Open
Abstract
Sexual delinquency is a global problem where those with paraphilic disorders, such as paedophiles, are more likely to commit and reoffend. Androgen deprivation therapy (ADT) has been suggested as a solution. The objective of this narrative review is to present current information on its risks, benefits and limitations as a treatment for paraphilias. The importance of testosterone in sexual function, the effect of its deficiency by age or by pharmacological treatment (anti-androgens, GnRH agonists and GnRH antagonists) and the effect of testosterone replacement therapy will be reviewed. The relationship between androgens, brain, sexual behaviour and pathophysiology of paraphilic disorders will also be explored. ADT reduces sexual urges, but has adverse effects and, because its reversible nature, it does not ensure less recidivism. Likewise, the research quality of ADT drugs is limited and not enough to support their use. Child sex offenders, and not paraphilic subjects who have not committed assaults, show signs of elevated prenatal exposure to androgens and a higher methylation state of the androgen receptor gene. Sexual behaviour is regulated by subcortical (hypothalamus, brainstem and spinal cord) and cortical structures of the brain, in addition to brain circuits (dopaminergic, serotonergic). Those with paraphilic disorders show abnormalities at these levels that could relate to the risk of sexual offences. In conclusion, androgens represent a significant part of the pathophysiology of paraphilias and therefore, ADT seems promising. Nonetheless, more studies are needed to make definite conclusions about the efficacy of long-term ADT in paraphilic patients.
Collapse
Affiliation(s)
| | - Melisa Onton-Díaz
- Faculty of Medicine, Cayetano Heredia Peruvian University., Lima, Peru
| | - Gustavo F Gonzales
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|