1
|
Lim W. LGR4 (GPR48): The Emerging Inter-Bridge in Osteoimmunology. Biomedicines 2025; 13:607. [PMID: 40149584 PMCID: PMC11940432 DOI: 10.3390/biomedicines13030607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4), a member of the G-protein-coupled receptor (GPCR) family, has been implicated in various regulatory functions across multiple differentiation stages and numerous target sites in bone diseases. Therefore, LGR4 is a potential regulator of nuclear factor-κB ligand (RANKL) during osteoclast differentiation. However, a comprehensive investigation of its functions and applications in bone immunology is lacking. This review discusses the molecular characteristics, signaling pathways, and role of LGR4 in osteoimmunology, with a particular focus on its interactions with RANKL during osteoclast differentiation, while identifying gaps that warrant further research.
Collapse
Affiliation(s)
- Wonbong Lim
- Department of Orthopaedic Surgery, Chosun University, Gwangju 61453, Republic of Korea; ; Tel.: +82-62-230-6193; Fax: +82-62-226-3379
- Laboratory of Orthopaedic Research, Chosun University, Gwangju 61453, Republic of Korea
- Regional Leading Research Center, Chonnam National University, Yeosu 59626, Republic of Korea
- Department of Premedical Program, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
2
|
Fang Q, Ye L, Han L, Yao S, Cheng Q, Wei X, Zhang Y, Huang J, Ning G, Wang J, Zhang Y, Zhang Z. LGR4 is a key regulator of hepatic gluconeogenesis. Free Radic Biol Med 2025; 229:183-194. [PMID: 39826817 DOI: 10.1016/j.freeradbiomed.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
AIMS/HYPOTHESIS Emerging evidence underscored the significance of leucine-rich repeat-containing G protein-coupled receptor (LGR) 4 in endocrine and metabolic disorders. Despite this, its role in LGR4 in hepatic glucose metabolism remains poorly understood. In this study we set out to test whether LGR4 regulates glucose production in liver through a specific signaling pathway. METHODS Hepatic glucose production and gluconeogenic gene expressions were detected after silence of LGR4 in three obese mice models. Then, whole-body LGR4-deficient (LGR4 KO) mice, liver-specific LGR4 knockout (LGR4LKO) mice, and liver-specific LGR4 overexpression (LGR4LOV) mice were generated, in which we analyzed the effects of LGR4 on hepatic glucose metabolism upon HFD feeding, among which live imaging and quantitative analysis of hepatic phosphoenolpyruvate carboxykinase (PEPCK)-luciferase activity were conducted. RESULTS LGR4 expression was significantly upregulated in the liver of three obese mouse models, and presented dynamic expression patterns in response to nutritional fluxes. We utilized global and liver-specific LGR4 knockouts (LGR4LKO), along with adenoviral-mediated LGR4 knockdown in mice, to show improved glucose tolerance and decreased hepatic gluconeogenesis. Specifically, the expression of rate-limiting gluconeogenic enzymes, PEPCK was significantly downregulated. Conversely, mouse model with adenovirus-mediated LGR4 overexpression (LGR4LOV) exhibited elevated gluconeogenesis and PEPCK expression and reversed the suppression observed in LGR4 knockout models. Notably, neither RANKL nor PKA signaling pathways, which were reported to take part in LGR4's function, were involved in the process of LGR4 regulating PEPCK. Instead, TopFlash reporter system and inhibitors application suggested that LGR4's influence on hepatic gluconeogenesis operates through the canonical Wnt/β-catenin/TCF7L2 signaling pathway. CONCLUSIONS/INTERPRETATION Overall, these findings underscore a novel mechanism by which LGR4 regulates hepatic gluconeogenesis, presenting a potential therapeutic target for diabetes management.
Collapse
Affiliation(s)
- Qianhua Fang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linmin Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luyu Han
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuangshuang Yao
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyun Cheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Wei
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juelin Huang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yifei Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhiguo Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Dwivedi A, Thippana M, Khammampalli S, Cholleti SN, Vindal V. Unraveling the gender-specific molecular landscape of lung squamous cell carcinoma progression. J Biomol Struct Dyn 2025:1-14. [PMID: 39895519 DOI: 10.1080/07391102.2025.2460069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/14/2024] [Indexed: 02/04/2025]
Abstract
Lung squamous cell carcinoma (LUSC) is a type of non-small cell lung cancer that is the most common and deadly type of lung cancer, originating from the cells lining the bronchi. The progression of LUSC is influenced by various factors, such as genetic, viral, environmental and hormonal factors, immune system response, and smoking history. Despite extensive studies aimed at improving patient survival, the role of gender-specific molecular variants in LUSC progression remains unclear. Using a systems biology approach, combining differential gene expression, network analysis, and machine learning, aberrant mRNA and ncRNAs implicated in LUSC have been identified to improve patient survival, stratify patients and develop novel prognostic strategies. Furthermore, a systematic analysis of the prognostic implications and functional annotations of the molecular variants results in the filtering of key protein-coding genes and non-coding RNAs that are involved in tumor progression. We found several common molecular variants in both genders, including 4 mRNA, 4 miRNAs, and 27 lncRNAs. Among the shared lncRNAs, 5 were novel for both genders. These were found to have a poor prognostic performance in patients with lung cancer. The key players are involved in DNA replication, nucleotide excision repair, complement and coagulation cascades, and estrogen signaling pathways. In this study, we report lncRNAs (PVT1, FAM13A-AS1, LINC00461, NAV2-AS5, PRICKLE2-AS1, and VCAN-AS1) that may function as oncogenes or tumor suppressors by regulating the expression of coding genes, such as RAB24, HECW2, LGR4, and FKBP5. These lncRNAs and coding genes may play important roles in LUSC development and progression.
Collapse
Affiliation(s)
- Ayushi Dwivedi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Mallikarjuna Thippana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Srija Khammampalli
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Sai Nikhith Cholleti
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Vaibhav Vindal
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| |
Collapse
|
4
|
Filipowska J, Cisneros Z, Varghese SS, Leon-Rivera N, Wang P, Kang R, Lu G, Yuan YC, Shih HP, Bhattacharya S, Dhawan S, Garcia-Ocaña A, Kondegowda NG, Vasavada RC. LGR4 is essential for maintaining β-cell homeostasis through suppression of RANK. Mol Metab 2025; 92:102097. [PMID: 39788290 PMCID: PMC11788739 DOI: 10.1016/j.molmet.2025.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025] Open
Abstract
OBJECTIVE Loss of functional β-cell mass is a major cause of diabetes. Thus, identifying regulators of β-cell health is crucial for treating this disease. The Leucine-rich repeat-containing G-protein-coupled receptor (GPCR) 4 (LGR4) is expressed in β-cells and is the fourth most abundant GPCR in human islets. Although LGR4 has regenerative, anti-inflammatory, and anti-apoptotic effects in other tissues, its functional significance in β-cells remains unknown. We have previously identified Receptor Activator of Nuclear Factor Kappa B (NFκB) (RANK) as a negative regulator of β-cell health. In this study, we assessed the regulation of Lgr4 in islets, and the role of LGR4 and LGR4/RANK stoichiometry in β-cell health under basal and stress-induced conditions, in vitro and in vivo. METHODS We evaluated Lgr4 expression in mouse and human islets in response to acute (proinflammatory cytokines), or chronic (high fat fed mice, db/db mice, and aging) stress. To determine the role of LGR4 we employed in vitro Lgr4 loss and gain of function in primary rodent and human β-cells and examined its mechanism of action in the rodent INS1 cell line. Using Lgr4fl/fl and Lgr4fl/fl/Rankfl/fl × Ins1-Cre mice we generated β-cell-specific conditional knockout (cko) mice to test the role of LGR4 and its interaction with RANK in vivo under basal and stress-induced conditions. RESULTS Lgr4 expression in rodent and human islets was reduced by multiple stressors. In vitro, Lgr4 knockdown decreased proliferation and survival in rodent β-cells, while overexpression protected against cytokine-induced cell death in rodent and human β-cells. Mechanistically, LGR4 protects β-cells by suppressing RANK- Tumor necrosis factor receptor associated factor 6 (TRAF6) interaction and subsequent activation of NFκB. Lgr4cko mice exhibit normal glucose homeostasis but increased β-cell death in both sexes and decreased β-cell proliferation and maturation only in females. Male Lgr4cko mice under stress displayed reduced β-cell proliferation and a further increase in β-cell death. The impaired β-cell phenotype in Lgr4cko mice was rescued in Lgr4/Rank double ko (dko) mice. Upon aging, both male and female Lgr4cko mice displayed impaired β-cell homeostasis, however, only female mice became glucose intolerant with decreased plasma insulin. CONCLUSIONS These data demonstrate a novel role for LGR4 as a positive regulator of β-cell health under basal and stress-induced conditions, through suppressing the negative effects of RANK.
Collapse
Affiliation(s)
- Joanna Filipowska
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Zelda Cisneros
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Sneha S Varghese
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Nancy Leon-Rivera
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Peng Wang
- Diabetes, Obesity and Metabolism Institute, and Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Randy Kang
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA 91010, USA
| | - Geming Lu
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Computational Quantitative Medicine, City of Hope, Duarte, CA 91010, USA
| | - Hung-Ping Shih
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Supriyo Bhattacharya
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular Imaging and Therapy, City of Hope, Duarte, CA 91010, USA
| | - Sangeeta Dhawan
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Adolfo Garcia-Ocaña
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA 91010, USA
| | - Nagesha Guthalu Kondegowda
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Rupangi C Vasavada
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
5
|
Xue M, Yang R, Li G, Ni Z, Chao Y, Shen K, Ren H, Du B, Qin J, Sun Z. LGR4 Deficiency Aggravates Skin Inflammation and Epidermal Hyperplasia in Imiquimod-Induced Psoriasis. Immunology 2025; 174:213-225. [PMID: 39563507 DOI: 10.1111/imm.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterised by inflammatory cell infiltration, keratinocyte hyperproliferation and increased neovascularization. Despite extensive research, the precise mechanisms underlying psoriasis pathology and treatment strategies remain unclear because of a complex aetiology and disease progression. Hence, in this study, we aimed to identify potential therapeutic targets for psoriasis and explore their effects on disease progression. We observed that G protein-coupled receptor LGR4 attenuates psoriasis progression. Bioinformatics analysis of publicly available clinical data revealed lower LGR4 expression in the skin lesions of patients with psoriasis than in their non-lesioned skin. Both in vitro (HaCaT cell) and in vivo (mouse) models confirmed this phenomenon. The Lgr4-knockout mouse model further confirmed that LGR4 plays a positive role in psoriasis progression. Specifically, Lgr4 knockout promoted the secretion of inflammatory factors, accumulation of local immunocyte infiltration in skin lesions, and keratinocyte proliferation. In conclusion, we demonstrated that LGR4 is critical to limiting psoriasis progression, suggesting that it is a viable target for the clinical management of this skin condition.
Collapse
Affiliation(s)
- Mengfei Xue
- Shanghai Fengxian District Central Hospital, School of Medicine, Anhui University of Science and Technology, Shanghai, China
| | - Ruijie Yang
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Guihong Li
- Shanghai Fengxian District Central Hospital, School of Medicine, Anhui University of Science and Technology, Shanghai, China
| | - Zhizhan Ni
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuqing Chao
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Kairui Shen
- Shanghai Fengxian District Central Hospital, School of Medicine, Anhui University of Science and Technology, Shanghai, China
| | - Hua Ren
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bing Du
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Juliang Qin
- Shanghai Fengxian District Central Hospital, School of Medicine, Anhui University of Science and Technology, Shanghai, China
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhenliang Sun
- Shanghai Fengxian District Central Hospital, School of Medicine, Anhui University of Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Chang YH, Wu KC, Wang KH, Ding DC. Role of Leucine-Rich Repeat-Containing G-Protein-Coupled Receptors 4-6 (LGR4-6) in the Ovary and Other Female Reproductive Organs: A Literature Review. Cell Transplant 2025; 34:9636897241303441. [PMID: 39874091 PMCID: PMC11776010 DOI: 10.1177/09636897241303441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025] Open
Abstract
Leucine-rich repeat-containing G-protein-coupled receptors regulate stem cell activity and tissue homeostasis within female reproductive organs, primarily through their interaction with the Wnt/β-catenin signaling pathway. LGR4-6 are increasingly recognized for their roles in organ development, regeneration, and cancer. This review aims to provide a comprehensive overview of the roles of LGR4-6 in female reproductive organs, highlighting their significance in normal physiology and disease states, specifically in the context of ovarian cancer. LGR4 is essential for the proper development of the female reproductive system; its deficiency leads to significant reproductive abnormalities, including delayed menarche and follicle development issues. LGR5 is a well-established marker of stem cells in the ovary and fallopian tubes. It has been implicated in the pathogenesis of high-grade serous ovarian cancer. LGR6, while less studied, shares functional similarities with LGR5 and can maintain stemness. It contributes to chemoresistance in ovarian cancer. LGR6 is a marker for fallopian tube stem cells and is involved in stem cell maintenance and differentiation. LGR4-6 regulate the pathophysiology of female reproductive tissues. LGR4-6 are promising therapeutic targets for treating reproductive cancers and other related disorders. Molecular mechanisms underlying the functions of LGR4-6 should be studied.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
| | - Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
| | - Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
- Institute of Medical Sciences, Tzu Chi University, Hualien
| |
Collapse
|
7
|
Gervas P, Molokov A, Babyshkina N, Zherebnova A, Choynzonov E, Cherdyntseva N. The frequency of known germline LGR4 missense variant in the ethnic groups of West Siberia. Mol Biol Rep 2024; 52:42. [PMID: 39644398 DOI: 10.1007/s11033-024-10133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Hereditary breast cancer is an autosomal dominant disease caused by variants in genes such as BRCA1/2, RAD51, ATM, BRIP1, and others. In a previous study using whole exome sequencing, we identified a germline variant of the LGR4 gene (rs34804482, NM_018490.5(LGR4):c.2531 A > G (p.Asp844Gly)) in a young Tuvan breast cancer patient (belonging to the Turkic-speaking tribes of Central Asia). The aim of this study was to determine the frequency of the variant of the LGR4 gene NM_018490.5(LGR4):c.2531 A > G (p.Asp844Gly) in ethnic groups of West Siberia using the PCR-RT method. METHODS The study involved 735 breast cancer patients from ethnic groups in Siberia, median age at diagnosis of 43 ± 15.6 years. The control group consisted of 727 healthy women from Siberia, median age of 43.05 ± 13.5 years. RESULTS The frequency of this variant (rs34804482) was 0.015 in Russian, 0.022 in Buryat, and 0.069 in Tuvan breast cancer patients. In Tuvan women with breast cancer, the frequency of the LGR4 gene variant was significantly higher than in Russian BC patients (0.069 versus 0.015, X2 = 8.153, p = 0.005). The frequency of the LGR4 gene variant (rs34804482) in healthy Tuvan women was significantly higher than in healthy Russian women (0.066 versus 0.016, X2 = 6.368, p = 0.012). The variant frequency in healthy Russians was close to that in Europeans (0.016 versus 0.0219). CONCLUSIONS We found no statistically significant differences in the rs34804482 frequency between breast cancer patients and healthy individuals in the ethnic groups studied. The highest frequency of this missense germline variant was observed among Tuvans.
Collapse
Affiliation(s)
- Polina Gervas
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia.
- National Tomsk State University, Tomsk, Russia.
| | - Aleksey Molokov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nataliya Babyshkina
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | | | - Evgeny Choynzonov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
- National Tomsk State University, Tomsk, Russia
| | - Nadezda Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
- National Tomsk State University, Tomsk, Russia
| |
Collapse
|
8
|
Zhao M, Zheng Z, Liu J, Xu Y, Zhang J, Peng S, Qin JJ, Wan J, Wang M. LGR6 protects against myocardial ischemia-reperfusion injury via suppressing necroptosis. Redox Biol 2024; 78:103400. [PMID: 39471639 PMCID: PMC11550357 DOI: 10.1016/j.redox.2024.103400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024] Open
Abstract
Regulated necrosis (necroptosis) and apoptosis are important biological features of ischemia-reperfusion (I/R) injury. However, the molecular mechanisms underlying myocardial necroptosis remain elusive. Leucine rich repeat containing G protein-coupled receptor 6 (LGR6) has been reported to play important roles in various cardiovascular disease. In this study, we aimed to determine whether LGR6 suppresses I/R-induced myocardial necroptosis and the underlying molecular mechanisms. We generated LGR6 knockout mice and used ligation of left anterior descending coronary artery to produce an in vivo I/R model. The effects of LGR6 and its downstream molecules were subsequently identified using RNA sequencing and CHIP assays. We observed significantly downregulated LGR6 expression in hearts post myocardial I/R and cardiomyocytes post hypoxia and reoxygenation (HR). LGR6 deficiency promoted and LGR6 overexpression inhibited necroptosis and acute myocardial injury after I/R. Mechanistically, in vivo and in vitro experiments suggest that LGR6 regulates the expression of STAT2 and ZBP1 by activating the Wnt signaling pathway, thereby inhibiting cardiomyocyte necroptosis after HR. Inhibiting STAT2 and ZBP1 effectively alleviated the aggravating effect of LGR6 deficiency on myocardial necroptosis after I/R. Furthermore, activating LGR6 with RSPO3 also effectively protected mice from acute myocardial I/R injury. Our findings reveal that RSPO3-LGR6 axis downregulates the expression of STAT2 and ZBP1 through the Wnt signaling pathway, thereby inhibiting I/R-induced myocardial injury and necroptosis. Targeting the RSPO3-LGR6 axis may be a potential therapeutic strategy to treat myocardial I/R injury.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Juan-Juan Qin
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
9
|
Kubrak O, Jørgensen AF, Koyama T, Lassen M, Nagy S, Hald J, Mazzoni G, Madsen D, Hansen JB, Larsen MR, Texada MJ, Hansen JL, Halberg KV, Rewitz K. LGR signaling mediates muscle-adipose tissue crosstalk and protects against diet-induced insulin resistance. Nat Commun 2024; 15:6126. [PMID: 39033139 PMCID: PMC11271308 DOI: 10.1038/s41467-024-50468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
Obesity impairs tissue insulin sensitivity and signaling, promoting type-2 diabetes. Although improving insulin signaling is key to reversing diabetes, the multi-organ mechanisms regulating this process are poorly defined. Here, we screen the secretome and receptome in Drosophila to identify the hormonal crosstalk affecting diet-induced insulin resistance and obesity. We discover a complex interplay between muscle, neuronal, and adipose tissues, mediated by Bone Morphogenetic Protein (BMP) signaling and the hormone Bursicon, that enhances insulin signaling and sugar tolerance. Muscle-derived BMP signaling, induced by sugar, governs neuronal Bursicon signaling. Bursicon, through its receptor Rickets, a Leucine-rich-repeat-containing G-protein coupled receptor (LGR), improves insulin secretion and insulin sensitivity in adipose tissue, mitigating hyperglycemia. In mouse adipocytes, loss of the Rickets ortholog LGR4 blunts insulin responses, showing an essential role of LGR4 in adipocyte insulin sensitivity. Our findings reveal a muscle-neuronal-fat-tissue axis driving metabolic adaptation to high-sugar conditions, identifying LGR4 as a critical mediator in this regulatory network.
Collapse
Affiliation(s)
- Olga Kubrak
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Anne F Jørgensen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Mette Lassen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Jacob Hald
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | | | - Dennis Madsen
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | | | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark.
| |
Collapse
|
10
|
Filipowska J, Cisneros Z, Leon-Rivera N, Wang P, Kang R, Lu G, Yuan YC, Bhattacharya S, Dhawan S, Garcia-Ocaña A, Kondegowda NG, Vasavada RC. LGR4 is essential for maintaining β-cell homeostasis through suppression of RANK. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593645. [PMID: 38798561 PMCID: PMC11118322 DOI: 10.1101/2024.05.10.593645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Pancreatic β-cell stress contributes to diabetes progression. This study demonstrates that Leucine-rich repeat-containing G-protein-coupled-receptor-4 (LGR4) is critical for maintaining β-cell health and is modulated by stressors. In vitro , Lgr4 knockdown decreases proliferation and survival in rodent β-cells, while overexpression protects against cytokine-induced cell death in rodent and human β-cells. Mechanistically, LGR4 suppresses Receptor Activator of Nuclear Factor Kappa B (NFκB) (RANK) and its subsequent activation of NFκB to protect β-cells. β-cell-specific Lgr4 -conditional knockout (cko) mice exhibit normal glucose homeostasis but increased β-cell death in both sexes and decreased proliferation only in females. Male Lgr4 cko mice under stress display reduced β-cell proliferation and a further increase in β-cell death. Upon aging, both male and female Lgr4 cko mice display impaired β-cell homeostasis, however, only female mice are glucose intolerant with decreased plasma insulin. We show that LGR4 is required for maintaining β-cell health under basal and stress-induced conditions, through suppression of RANK. Teaser LGR4 receptor is critical for maintaining β-cell health under basal and stressed conditions, through suppression of RANK.
Collapse
|
11
|
Zhang J, Jiang J, Liu H, Wang S, Ke K, Liu S, Jiang Y, Liu L, Gao X, He B, Su Y. BMP9 induces osteogenic differentiation through up-regulating LGR4 via the mTORC1/Stat3 pathway in mesenchymal stem cells. Genes Dis 2024; 11:101075. [PMID: 38292169 PMCID: PMC10825279 DOI: 10.1016/j.gendis.2023.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 02/01/2024] Open
Abstract
Bone defects and non-union are prevalent in clinical orthopedy, and the outcomes of current treatments are often suboptimal. Bone tissue engineering offers a promising approach to treating these conditions effectively. Bone morphogenetic protein 9 (BMP9) can commit mesenchymal stem cells to osteogenic lineage, and a knowledge of the underlying mechanisms may help advance the field of bone tissue engineering. Leucine-rich repeats containing G protein-coupled receptor 4 (LGR4), a member of G protein-coupled receptors, is essential for modulating bone development. This study is aimed at investigating the impact of LGR4 on BMP9-induced osteogenesis in mesenchymal stem cells as well as the underlying mechanisms. Bone marrow stromal cells from BMP9-knockout mice exhibited diminished LGR4 expression, and exogenous LGR4 clearly restored the impaired osteogenic potency of the bone marrow stromal cells. Furthermore, LGR4 expression was increased by BMP9 in C3H10T1/2 cells. LGR4 augmented the benefits of BMP9-induced osteogenic markers and bone formation, whereas LGR4 inhibition restricted these effects. Meanwhile, the BMP9-induced lipogenic markers were increased by LGR4 inhibition. The protein levels of Raptor and p-Stat3 were elevated by BMP9. Raptor knockdown or p-Stat3 suppression attenuated the osteoblastic markers and LGR4 expression brought on by BMP9. LGR4 significantly reversed the blocking effect of Raptor knockdown or p-Stat3 suppression on the BMP9-induced osteoblastic markers. Raptor interacts with p-Stat3, and p-Stat3 activates the LGR4 promoter activity. In conclusion, LGR4 boosts BMP9 osteoblastic potency in mesenchymal stem cells, and BMP9 may up-regulate LGR4 via the mTORC1/Stat3 signal activation.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Jinhai Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Hang Liu
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Orthopedics, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shiyu Wang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Kaixin Ke
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Siyuan Liu
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Orthopedics, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Lu Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Xiang Gao
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Orthopedics, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Baicheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Yuxi Su
- Orthopedics Department, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Jiangxi Hospital Affiliated Children’s Hospital of Chongqing Medical University, Jiangxi 330000, China
- National Clinical Research Center for Child Health and Disorders, China
| |
Collapse
|
12
|
Su Y, Yu G, Li D, Lu Y, Ren C, Xu Y, Yang Y, Zhang K, Ma T, Li Z. Identification of mitophagy-related biomarkers in human osteoporosis based on a machine learning model. Front Physiol 2024; 14:1289976. [PMID: 38260098 PMCID: PMC10800828 DOI: 10.3389/fphys.2023.1289976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Osteoporosis (OP) is a chronic bone metabolic disease and a serious global public health problem. Several studies have shown that mitophagy plays an important role in bone metabolism disorders; however, its role in osteoporosis remains unclear. Methods: The Gene Expression Omnibus (GEO) database was used to download GSE56815, a dataset containing low and high BMD, and differentially expressed genes (DEGs) were analyzed. Mitochondrial autophagy-related genes (MRG) were downloaded from the existing literature, and highly correlated MRG were screened by bioinformatics methods. The results from both were taken as differentially expressed (DE)-MRG, and Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed. Protein-protein interaction network (PPI) analysis, support vector machine recursive feature elimination (SVM-RFE), and Boruta method were used to identify DE-MRG. A receiver operating characteristic curve (ROC) was drawn, a nomogram model was constructed to determine its diagnostic value, and a variety of bioinformatics methods were used to verify the relationship between these related genes and OP, including GO and KEGG analysis, IP pathway analysis, and single-sample Gene Set Enrichment Analysis (ssGSEA). In addition, a hub gene-related network was constructed and potential drugs for the treatment of OP were predicted. Finally, the specific genes were verified by real-time quantitative polymerase chain reaction (RT-qPCR). Results: In total, 548 DEGs were identified in the GSE56815 dataset. The weighted gene co-expression network analysis(WGCNA) identified 2291 key module genes, and 91 DE-MRG were obtained by combining the two. The PPI network revealed that the target gene for AKT1 interacted with most proteins. Three MRG (NELFB, SFSWAP, and MAP3K3) were identified as hub genes, with areas under the curve (AUC) 0.75, 0.71, and 0.70, respectively. The nomogram model has high diagnostic value. GO and KEGG analysis showed that ribosome pathway and cellular ribosome pathway may be the pathways regulating the progression of OP. IPA showed that MAP3K3 was associated with six pathways, including GNRH Signaling. The ssGSEA indicated that NELFB was highly correlated with iDCs (cor = -0.390, p < 0.001). The regulatory network showed a complex relationship between miRNA, transcription factor(TF) and hub genes. In addition, 4 drugs such as vinclozolin were predicted to be potential therapeutic drugs for OP. In RT-qPCR verification, the hub gene NELFB was consistent with the results of bioinformatics analysis. Conclusion: Mitophagy plays an important role in the development of osteoporosis. The identification of three mitophagy-related genes may contribute to the early diagnosis, mechanism research and treatment of OP.
Collapse
Affiliation(s)
- Yu Su
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Gangying Yu
- Department of International Ward (Orthopedic), Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongchen Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yao Lu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Cheng Ren
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yibo Xu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yanling Yang
- Basic Medical College of Yan’an University, Yan’an, China
| | - Kun Zhang
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Teng Ma
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhong Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
13
|
Liu D, Bae YE, Zhu J, Zhang Z, Sun Y, Deng Y, Wu C, Wu L. Splicing transcriptome-wide association study to identify splicing events for pancreatic cancer risk. Carcinogenesis 2023; 44:741-747. [PMID: 37769343 DOI: 10.1093/carcin/bgad069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
A large proportion of the heritability of pancreatic cancer risk remains elusive, and the contribution of specific mRNA splicing events to pancreatic cancer susceptibility has not been systematically evaluated. In this study, we performed a large splicing transcriptome-wide association study (spTWAS) using three modeling strategies (Enet, LASSO and MCP) to develop alternative splicing genetic prediction models for identifying novel susceptibility loci and splicing introns for pancreatic cancer risk by assessing 8275 pancreatic cancer cases and 6723 controls of European ancestry. Data from 305 subjects of whom the majority are of European descent in the Genotype-Tissue Expression Project (GTEx) were used and both cis-acting and promoter-enhancer interaction regions were considered to build these models. We identified nine splicing events of seven genes (ABO, UQCRC1, STARD3, ETAA1, CELA3B, LGR4 and SFT2D1) that showed an association of genetically predicted expression with pancreatic cancer risk at a false discovery rate ≤0.05. Of these genes, UQCRC1 and LGR4 have not yet been reported to be associated with pancreatic cancer risk. Fine-mapping analyses supported likely causal associations corresponding to six splicing events of three genes (P4HTM, ABO and PGAP3). Our study identified novel genes and splicing events associated with pancreatic cancer risk, which can improve our understanding of the etiology of this deadly malignancy.
Collapse
Affiliation(s)
- Duo Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, P.R. China
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Ye Eun Bae
- Department of Statistics, Florida State University, Tallahassee, FL 32304, USA
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Zichen Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32304, USA
| | - Yanfa Sun
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
- College of Life Science, Longyan University, Longyan, Fujian 364012, P.R. China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, Fujian 364012, P.R. China
- Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, Fujian 364012, P.R. China
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
14
|
Watanabe K, Horie M, Hayatsu M, Mikami Y, Sato N. Spatiotemporal expression patterns of R-spondins and their receptors, Lgrs, in the developing mouse telencephalon. Gene Expr Patterns 2023; 49:119333. [PMID: 37651925 DOI: 10.1016/j.gep.2023.119333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/14/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Development of the mammalian telencephalon, which is the most complex region of the central nervous system, is precisely orchestrated by many signaling molecules. Wnt signaling derived from the cortical hem, a signaling center, is crucial for telencephalic development including cortical patterning and the induction of hippocampal development. Secreted protein R-spondin (Rspo) 1-4 and their receptors, leucine-rich repeat-containing G-protein-coupled receptor (Lgr) 4-6, act as activators of Wnt signaling. Although Rspo expression in the hem during the early stages of cortical development has been reported, comparative expression analysis of Rspos and Lgr4-6 has not been performed. In this study, we examined the detailed spatiotemporal expression patterns of Rspo1-4 and Lgr4-6 in the embryonic and postnatal telencephalon to elucidate their functions. In the embryonic day (E) 10.5-14.5 telencephalon, Rspo1-3 were prominently expressed in the cortical hem. Among their receptors, Lgr4 was observed in the ventral telencephalon, and Lgr6 was highly expressed throughout the telencephalon at the same stages. This suggests that Rspo1-3 and Lgr4 initially regulate telencephalic development in restricted regions, whereas Lgr6 functions broadly. From the late embryonic stage, the expression areas of Rspo1-3 and Lgr4-6 dramatically expanded; their expression was found in the neocortex and limbic system, such as the hippocampus, amygdala, and striatum. Increased Rspo and Lgr expression from the late embryonic stages suggests broad roles of Rspo signaling in telencephalic development. Furthermore, the Lgr+ regions were located far from the Rspo+ regions, especially in the E10.5-14.5 ventral telencephalon, suggesting that Lgrs act via a Rspo-independent pathway.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Division of Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | - Masao Horie
- Department of Nursing, Niigata College of Nursing, Jōetsu, Japan
| | - Manabu Hayatsu
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoshikazu Mikami
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Noboru Sato
- Division of Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
15
|
Plotkin LI, Sanz N, Brun LR. Messages from the Mineral: How Bone Cells Communicate with Other Tissues. Calcif Tissue Int 2023; 113:39-47. [PMID: 37171619 PMCID: PMC10330496 DOI: 10.1007/s00223-023-01091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Bone is a highly dynamic tissue, and the constant actions of bone-forming and bone-resorbing cells are responsible for attaining peak bone mass, maintaining bone mass in the adults, and the subsequent bone loss with aging and menopause, as well as skeletal complications of diseases and drug side-effects. It is now accepted that the generation and activity of bone-forming osteoblasts and bone-resorbing osteoclasts is modulated by osteocytes, osteoblast-derived cells embedded in the bone matrix. The interaction among bone cells occurs through direct contact and via secreted molecules. In addition to the regulation of bone cell function, molecules released by these cells are also able to reach the circulation and have effects in other tissues and organs in healthy individuals. Moreover, bone cell products have also been associated with the establishment or progression of diseases, including cancer and muscle weakness. In this review, we will discuss the role of bone as an endocrine organ, and the effect of selected, osteoblast-, osteocyte-, and osteoclast-secreted molecules on other tissues.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Roudebush Veterans Administration Medical Center; and Indiana Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA.
| | - Natasha Sanz
- Bone Biology Laboratory. School of Medicine, Rosario National University, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario Santa Fe, Argentina
| | - Lucas R Brun
- Bone Biology Laboratory. School of Medicine, Rosario National University, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario Santa Fe, Argentina
| |
Collapse
|
16
|
Aguilar A, Gifre L, Ureña-Torres P, Carrillo-López N, Rodriguez-García M, Massó E, da Silva I, López-Báez V, Sánchez-Bayá M, Prior-Español Á, Urrutia M, Paul J, Bustos MC, Vila A, Garnica-León I, Navarro-González JF, Mateo L, Bover J. Pathophysiology of bone disease in chronic kidney disease: from basics to renal osteodystrophy and osteoporosis. Front Physiol 2023; 14:1177829. [PMID: 37342799 PMCID: PMC10277623 DOI: 10.3389/fphys.2023.1177829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Chronic kidney disease (CKD) is a highly prevalent disease that has become a public health problem. Progression of CKD is associated with serious complications, including the systemic CKD-mineral and bone disorder (CKD-MBD). Laboratory, bone and vascular abnormalities define this condition, and all have been independently related to cardiovascular disease and high mortality rates. The "old" cross-talk between kidney and bone (classically known as "renal osteodystrophies") has been recently expanded to the cardiovascular system, emphasizing the importance of the bone component of CKD-MBD. Moreover, a recently recognized higher susceptibility of patients with CKD to falls and bone fractures led to important paradigm changes in the new CKD-MBD guidelines. Evaluation of bone mineral density and the diagnosis of "osteoporosis" emerges in nephrology as a new possibility "if results will impact clinical decisions". Obviously, it is still reasonable to perform a bone biopsy if knowledge of the type of renal osteodystrophy will be clinically useful (low versus high turnover-bone disease). However, it is now considered that the inability to perform a bone biopsy may not justify withholding antiresorptive therapies to patients with high risk of fracture. This view adds to the effects of parathyroid hormone in CKD patients and the classical treatment of secondary hyperparathyroidism. The availability of new antiosteoporotic treatments bring the opportunity to come back to the basics, and the knowledge of new pathophysiological pathways [OPG/RANKL (LGR4); Wnt-ß-catenin pathway], also affected in CKD, offers great opportunities to further unravel the complex physiopathology of CKD-MBD and to improve outcomes.
Collapse
Affiliation(s)
- Armando Aguilar
- Autonomous University of Chiapas, Tuxtla Gutiérrez, Mexico
- Department of Nephrology, Mexican Social Security, IMSS General Hospital of Zone No 2, Tuxtla Gutiérrez, Mexico
| | - Laia Gifre
- Department of Rheumatology, Hospital Germans Trias i Pujol, Badalona (Barcelona), Catalonia, Spain
| | - Pablo Ureña-Torres
- AURA Saint Ouen, Department of Nephrology and Dialysis and Department of Renal Physiology, Necker Hospital, University of Paris Descartes, Paris, France
| | - Natalia Carrillo-López
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Minerva Rodriguez-García
- Nephrology Clinical Management Unit, Central University Hospital of Asturias (HUCA), Oviedo, Asturias, Spain
| | - Elisabeth Massó
- Department of Nephrology, University Hospital Germans Trias i Pujol (HGiTP), Badalona (Barcelona), Catalonia, Spain
- REMAR-IGTP Group, Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Iara da Silva
- Department of Nephrology, University Hospital Germans Trias i Pujol (HGiTP), Badalona (Barcelona), Catalonia, Spain
- REMAR-IGTP Group, Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Víctor López-Báez
- Department of Nephrology, University Hospital Germans Trias i Pujol (HGiTP), Badalona (Barcelona), Catalonia, Spain
- REMAR-IGTP Group, Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Maya Sánchez-Bayá
- Department of Nephrology, University Hospital Germans Trias i Pujol (HGiTP), Badalona (Barcelona), Catalonia, Spain
- REMAR-IGTP Group, Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Águeda Prior-Español
- Department of Rheumatology, Hospital Germans Trias i Pujol, Badalona (Barcelona), Catalonia, Spain
| | - Marina Urrutia
- Department of Nephrology, University Hospital Germans Trias i Pujol (HGiTP), Badalona (Barcelona), Catalonia, Spain
- REMAR-IGTP Group, Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Javier Paul
- Department of Nephrology, University Hospital Germans Trias i Pujol (HGiTP), Badalona (Barcelona), Catalonia, Spain
- REMAR-IGTP Group, Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Misael C. Bustos
- Department of Nephrology, Pontificia Catholic University of Chile, Santiago, Chile
| | - Anna Vila
- Department of Nephrology, University Hospital Germans Trias i Pujol (HGiTP), Badalona (Barcelona), Catalonia, Spain
- REMAR-IGTP Group, Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Isa Garnica-León
- Department of Nephrology, Mexican Social Security, IMSS General Hospital of Zone No 2, Tuxtla Gutiérrez, Mexico
| | - Juan F. Navarro-González
- Research Unit and Nephrology Service, University Hospital of Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Islas Canarias, Spain
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Islas Canarias, Spain
| | - Lourdes Mateo
- Department of Rheumatology, Hospital Germans Trias i Pujol, Badalona (Barcelona), Catalonia, Spain
| | - Jordi Bover
- Department of Nephrology, University Hospital Germans Trias i Pujol (HGiTP), Badalona (Barcelona), Catalonia, Spain
- REMAR-IGTP Group, Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| |
Collapse
|
17
|
Yang Loureiro Z, Joyce S, DeSouza T, Solivan-Rivera J, Desai A, Skritakis P, Yang Q, Ziegler R, Zhong D, Nguyen TT, MacDougald OA, Corvera S. Wnt signaling preserves progenitor cell multipotency during adipose tissue development. Nat Metab 2023; 5:1014-1028. [PMID: 37337125 PMCID: PMC10290956 DOI: 10.1038/s42255-023-00813-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 04/25/2023] [Indexed: 06/21/2023]
Abstract
Mesenchymal stem/progenitor cells are essential for tissue development and repair throughout life, but how they are maintained under chronic differentiation pressure is not known. Using single-cell transcriptomics of human progenitor cells we find that adipose differentiation stimuli elicit two cellular trajectories: one toward mature adipocytes and another toward a pool of non-differentiated cells that maintain progenitor characteristics. These cells are induced by transient Wnt pathway activation and express numerous extracellular matrix genes and are therefore named structural Wnt-regulated adipose tissue cells. We find that the genetic signature of structural Wnt-regulated adipose tissue cells is present in adult human adipose tissue and adipose tissue developed from human progenitor cells in mice. Our results suggest a mechanism whereby adipose differentiation occurs concurrently with the maintenance of a mesenchymal progenitor cell pool, ensuring tissue development, repair and appropriate metabolic control over the lifetime.
Collapse
Affiliation(s)
- Zinger Yang Loureiro
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shannon Joyce
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Tiffany DeSouza
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Javier Solivan-Rivera
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Anand Desai
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Pantos Skritakis
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Qin Yang
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rachel Ziegler
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Denise Zhong
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Tammy T Nguyen
- Division of Vascular Surgery, Department of Surgery, UMass Memorial Medical Center, Worcester, MA, USA
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
18
|
He Y, Wu N. Alternative Polyadenylation Results in mRNA Transcript Instability in Gestational Diabetes Mellitus. Diabetes Metab Syndr Obes 2023; 16:619-628. [PMID: 36915397 PMCID: PMC10008025 DOI: 10.2147/dmso.s400283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
OBJECTIVE To study the characteristics of selective polyadenylation (APA) in gestational diabetes mellitus (GDM) by poly(A) site sequencing and to explore the role of APA process in the pathogenesis of GDM. METHODS Three pregnant women diagnosed as GDM in our hospital were randomly selected as the GDM group, and three healthy pregnant women at the same time as the control group. The placental tissues of two groups of pregnant women after delivery were collected for high-throughput transcriptome sequencing (RNA-seq) and poly(A) site sequencing (PAS-seq) to screen differentially expressed genes and variable 3'UTR genes in GDM. Gene Ontology (GO) analysis and pathway analysis were used to analyze the functional classification and pathway of differential genes, and preliminarily explore the susceptible genes in GDM. RESULTS Compared with the control group, there were 202 TTS loci in the GDM group, including 103 genes with shortened TTS loci and 99 genes with delayed TTS loci. There were 57 genes with significant difference in TTS (P<0.05). Subsequently, we found that VCPIP1 and LGR4 were differentially expressed in RNA-seq. The genes in advance of TTS locus were enriched in biological processes such as cell development, protein transport and phosphorylation, signal transduction, etc. Delayed TTS genes are enriched in biological processes such as transcriptional regulation, cell migration and cycle, DNA repair and damage. CONCLUSION The abnormality of APA process may be involved in the occurrence and development of GDM. The genes with significantly different changes in TTS locus may become biomarkers or predictors for GDM to assess the incidence, disease progression and disease severity, and may also become potential targets for GDM treatment.
Collapse
Affiliation(s)
- Yujing He
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
- Department of Medical Service Quality, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
19
|
Zheng L, Duan SL, Wen XL, Dai YC. Molecular regulation after mucosal injury and regeneration in ulcerative colitis. Front Mol Biosci 2022; 9:996057. [PMID: 36310594 PMCID: PMC9606627 DOI: 10.3389/fmolb.2022.996057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease with a complex etiology. Intestinal mucosal injury is an important pathological change in individuals with UC. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5+) intestinal stem cells (ISCs) exhibit self-renewal and high differentiation potential and play important roles in the repair of intestinal mucosal injury. Moreover, LGR5+ ISCs are intricately regulated by both the Wnt/β-catenin and Notch signaling pathways, which jointly maintain the function of LGR5+ ISCs. Combination therapy targeting multiple signaling pathways and transplantation of LGR5+ ISCs may lead to the development of new clinical therapies for UC.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|