1
|
Barak MM, Schlott J, Gundersen L, Diaz G, Rhee V, Villoth N, Ferber A, Blair S. Morphological examination of abdominal vertebral bodies from grass carp using high-resolution micro-CT scans. J Anat 2024; 245:84-96. [PMID: 38419134 PMCID: PMC11161828 DOI: 10.1111/joa.14032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/19/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
The vertebral column, a defining trait of all vertebrates, is organized as a concatenated chain of vertebrae, and therefore its support to the body depends on individual vertebral morphology. Consequently, studying the morphology of the vertebral centrum is of anatomical and clinical importance. Grass carp (GC) is a member of the infraclass Teleostei (teleost fish), which accounts for the majority of all vertebrate species; thus, its vertebral anatomical structure can help us understand vertebrate development and vertebral morphology. In this study, we have investigated the morphology and symmetry of the grass carp vertebral centrum using high-resolution micro-CT scans. To this end, three abdominal vertebrae (V9, V10, & V11) from eight grass carp were micro-CT scanned and then segmented using Dragonfly (ORS Inc.). Grass carp vertebral centrum conformed to the basic teleost pattern and demonstrated an amphicoelous shape (biconcave hourglass). The centrum's cranial endplate was smaller, less circular, and shallower compared to the caudal endplate. While the vertebral centrum demonstrated bilateral symmetry along the sagittal plane (left/right), the centrum focus was shifted dorsally and cranially, breaking dorsoventral and craniocaudal symmetry. The sum of these findings implies that the caudal aspect of grass carp vertebral centrum is bigger and more robust. Currently, we have no information whether this is due to nature, for example, differences in gene expression, or nurture, for example, environmental effect. As the vertebral parapophyses and spinous processes are slanted caudally, the direction of muscle action during swimming may create a gradient of stresses from cranial to caudal, resulting in a more robust caudal aspect of the vertebral centrum. Expanding our study to include additional quadrupedal and bipedal (i.e., human) vertebrae, as well as testing if these morphological aspects of the vertebrae are indeed plastic and can be affected by environmental factors (i.e., temperature or other stressors) may help answer this question.
Collapse
Affiliation(s)
- Meir M Barak
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
| | - James Schlott
- Department of Biology, Winthrop University, Rock Hill, South Carolina, USA
| | - Laura Gundersen
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
| | - Giovanni Diaz
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
| | - Vanessa Rhee
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
| | | | | | - Salvatore Blair
- Department of Biology, Winthrop University, Rock Hill, South Carolina, USA
| |
Collapse
|
2
|
Kumar N, Marée R, Geurts P, Muller M. Recent Advances in Bioimage Analysis Methods for Detecting Skeletal Deformities in Biomedical and Aquaculture Fish Species. Biomolecules 2023; 13:1797. [PMID: 38136667 PMCID: PMC10742266 DOI: 10.3390/biom13121797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Detecting skeletal or bone-related deformities in model and aquaculture fish is vital for numerous biomedical studies. In biomedical research, model fish with bone-related disorders are potential indicators of various chemically induced toxins in their environment or poor dietary conditions. In aquaculture, skeletal deformities are affecting fish health, and economic losses are incurred by fish farmers. This survey paper focuses on showcasing the cutting-edge image analysis tools and techniques based on artificial intelligence that are currently applied in the analysis of bone-related deformities in aquaculture and model fish. These methods and tools play a significant role in improving research by automating various aspects of the analysis. This paper also sheds light on some of the hurdles faced when dealing with high-content bioimages and explores potential solutions to overcome these challenges.
Collapse
Affiliation(s)
- Navdeep Kumar
- Department of Computer Science and Electrical Engineering, Montefiore Institute, University of Liège, 4000 Liège, Belgium; (R.M.); (P.G.)
| | - Raphaël Marée
- Department of Computer Science and Electrical Engineering, Montefiore Institute, University of Liège, 4000 Liège, Belgium; (R.M.); (P.G.)
| | - Pierre Geurts
- Department of Computer Science and Electrical Engineering, Montefiore Institute, University of Liège, 4000 Liège, Belgium; (R.M.); (P.G.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium;
| |
Collapse
|
3
|
Martini A, Sahd L, Rücklin M, Huysseune A, Hall BK, Boglione C, Witten PE. Deformity or variation? Phenotypic diversity in the zebrafish vertebral column. J Anat 2023; 243:960-981. [PMID: 37424444 PMCID: PMC10641053 DOI: 10.1111/joa.13926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023] Open
Abstract
Vertebral bodies are composed of two types of metameric elements, centra and arches, each of which is considered as a developmental module. Most parts of the teleost vertebral column have a one-to-one relationship between centra and arches, although, in all teleosts, this one-to-one relationship is lost in the caudal fin endoskeleton. Deviation from the one-to-one relationship occurs in most vertebrates, related to changes in the number of vertebral centra or to a change in the number of arches. In zebrafish, deviations also occur predominantly in the caudal region of the vertebral column. In-depth phenotypic analysis of wild-type zebrafish was performed using whole-mount stained samples, histological analyses and synchrotron radiation X-ray tomographic microscopy 3D reconstructions. Three deviant centra phenotypes were observed: (i) fusion of two vertebral centra, (ii) wedge-shaped hemivertebrae and (iii) centra with reduced length. Neural and haemal arches and their spines displayed bilateral and unilateral variations that resemble vertebral column phenotypes of stem-ward actinopterygians or other gnathostomes as well as pathological conditions in extant species. Whether it is possible to distinguish variations from pathological alterations and whether alterations resemble ancestral conditions is discussed in the context of centra and arch variations in other vertebrate groups and basal actinopterygian species.
Collapse
Affiliation(s)
- Arianna Martini
- Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Lauren Sahd
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - Martin Rücklin
- Department of Vertebrate Evolution, Development and Ecology, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Ann Huysseune
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Brian K Hall
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Clara Boglione
- Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - P Eckhard Witten
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Trumpp M, Tan WH, Burdzinski W, Basler Y, Jatzlau J, Knaus P, Winkler C. Characterization of Fibrodysplasia Ossificans Progessiva relevant Acvr1/Acvr2 Activin receptors in medaka (Oryzias latipes). PLoS One 2023; 18:e0291379. [PMID: 37708126 PMCID: PMC10501582 DOI: 10.1371/journal.pone.0291379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Activin and Bone Morphogenetic Protein (BMP) signaling plays crucial roles in vertebrate organ formation, including osteo- and angiogenesis, and tissue homeostasis, such as neuronal maintenance. Activin and BMP signaling needs to be precisely controlled by restricted expression of shared receptors, stoichiometric composition of receptor-complexes and presence of regulatory proteins. A R206H mutation in the human (hs) BMP type I receptor hsACVR1, on the other hand, leads to excessive phosphorylation of Sons of mothers against decapentaplegic (SMAD) 1/5/8. This in turn causes increased inflammation and heterotopic ossification in soft tissues of patients suffering from Fibrodysplasia Ossificans Progressiva (FOP). Several animal models have been established to understand the spontaneous and progressive nature of FOP, but often have inherent limitations. The Japanese medaka (Oryzias latipes, ola) has recently emerged as popular model for bone research. To assess whether medaka is suitable as a potential FOP animal model, we determined the expression of Activin receptor type I (ACVR1) orthologs olaAcvr1 and olaAcvr1l with that of Activin type II receptors olaAcvr2ab, olaAcvr2ba and olaAcvr2bb in embryonic and adult medaka tissues by in situ hybridization. Further, we showed that Activin A binding properties are conserved in olaAcvr2, as are the mechanistic features in the GS-Box of both olaAcvr1 and olaAcvr1l. This consequently leads to FOP-typical elevated SMAD signaling when the medaka type I receptors carry the R206H equivalent FOP mutation. Together, this study therefore provides experimental groundwork needed to establish a unique medaka model to investigate mechanisms underlying FOP.
Collapse
Affiliation(s)
- Michael Trumpp
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Wen Hui Tan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Wiktor Burdzinski
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
| | - Yara Basler
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jerome Jatzlau
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Petra Knaus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Dellacqua Z, Di Biagio C, Costa C, Pousão-Ferreira P, Ribeiro L, Barata M, Gavaia PJ, Mattei F, Fabris A, Izquierdo M, Boglione C. Distinguishing the Effects of Water Volumes versus Stocking Densities on the Skeletal Quality during the Pre-Ongrowing Phase of Gilthead Seabream ( Sparus aurata). Animals (Basel) 2023; 13:ani13040557. [PMID: 36830345 PMCID: PMC9951685 DOI: 10.3390/ani13040557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Gilthead seabream (Sparus aurata) production is a highly valued aquaculture industry in Europe. The presence of skeletal deformities in farmed gilthead seabream represents a major bottleneck for the industry leading to economic losses, negative impacts on the consumers' perception of aquaculture, and animal welfare issues for the fish. Although past work has primarily focused on the hatchery phase to reduce the incidence of skeletal anomalies, this work targets the successive pre-ongrowing phase in which more severe anomalies affecting the external shape often arise. This work aimed to test the effects of: (i) larger and smaller tank volumes, stocked at the same density; and (ii) higher and lower stocking densities maintained in the same water volume, on the skeleton of gilthead seabream fingerlings reared for ~63 days at a pilot scale. Experimental rearing was conducted with gilthead seabream juveniles (~6.7 ± 2.5 g), which were selected as 'non-deformed' based on external inspection, stocked at three different densities (Low Density (LD): 5 kg/m3; Medium Density (MD): 10 kg/m3; High Density (HD): 20 kg/m3) in both 500 L and 1000 L tanks. Gilthead seabream were sampled for growth performance and radiographed to assess the skeletal elements at the beginning and end of the experimental trial. Results revealed that (i) LD fish were significantly longer than HD fish, although there were no differences in final weights, regardless of the water volume; (ii) an increase in the prevalence of seabream exhibiting cranial and vertebral axis anomalies was found to be associated with increased density. These results suggest that farmers can significantly reduce the presence of some cranial and axis anomalies affecting pre-ongrown gilthead seabream by reducing the stocking density.
Collapse
Affiliation(s)
- Zachary Dellacqua
- Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
- Ecoaqua Institute, University of Las Palmas de Gran Canaria, 35214 Telde, Gran Canaria, Spain
- Correspondence: ; Tel.: +39-351-857-0196
| | - Claudia Di Biagio
- Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
- Laboratory of Evolutionary Developmental Biology, University of Ghent, 9000 Ghent, Belgium
| | - Corrado Costa
- CREA—Consiglio per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria (CREA)—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, 00015 Rome, Italy
| | - Pedro Pousão-Ferreira
- IPMA—Instituto Portugues do Mar e Atmosfera—Research Station, 8700-305 Olhão, Portugal
| | - Laura Ribeiro
- IPMA—Instituto Portugues do Mar e Atmosfera—Research Station, 8700-305 Olhão, Portugal
| | - Marisa Barata
- IPMA—Instituto Portugues do Mar e Atmosfera—Research Station, 8700-305 Olhão, Portugal
| | - Paulo J. Gavaia
- CCMAR—Centre of Marine Sciences, University of the Algarve, 8005-139 Faro, Portugal
| | - Francesco Mattei
- UMR 7093, Laboratoire d’Oceanographie de Villefranche (LOV), Sorbonne University, 06230 Villefranche-sur-Mer, France
| | - Andrea Fabris
- Associazione Piscicoltori Italiani, 37135 Verona, Italy
| | - Marisol Izquierdo
- Ecoaqua Institute, University of Las Palmas de Gran Canaria, 35214 Telde, Gran Canaria, Spain
| | - Clara Boglione
- Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
| |
Collapse
|
6
|
Printzi A, Mazurais D, Witten PE, Madec L, Gonzalez AA, Mialhe X, Zambonino-Infante JL, Koumoundouros G. Juvenile zebrafish (Danio rerio) are able to recover from lordosis. Sci Rep 2022; 12:21533. [PMID: 36513797 PMCID: PMC9748118 DOI: 10.1038/s41598-022-26112-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Haemal lordosis, a frequent skeletal deformity in teleost fish, has long been correlated with increased mechanical loads induced by swimming activity. In the present study, we examine whether juvenile zebrafish can recover from haemal lordosis and explore the musculoskeletal mechanisms involved. Juveniles were subjected to a swimming challenge test (SCT) that induced severe haemal lordosis in 49% of the animals and then immediately transferred them to 0.0 total body lengths (TL) per second of water velocity for a week. The recovery from lordosis was examined by means of whole mount staining, histology and gene expression analysis. Results demonstrate that 80% of the lordotic zebrafish are capable of internal and external recovery within a week after the SCT. Recovered individuals presented normal shape of the vertebral centra, maintaining though distorted internal tissue organization. Through the transcriptomic analysis of the affected haemal regions, several processes related to chromosome organization, DNA replication, circadian clock and transcription regulation were enriched within genes significantly regulated behind this musculoskeletal recovery procedure. Genes especially involved in adipogenesis, bone remodeling and muscular regeneration were regulated. A remodeling tissue-repair hypothesis behind haemal lordosis recovery is raised. Limitations and future possibilities for zebrafish as a model organism to clarify mechanically driven musculoskeletal changes are discussed.
Collapse
Affiliation(s)
- A. Printzi
- grid.8127.c0000 0004 0576 3437Biology Department, University of Crete, Crete, Greece ,grid.463763.30000 0004 0638 0577IFREMER, University of Brest, CNRS, IRD, LEMAR, 29280 Plouzané, France
| | - D. Mazurais
- grid.463763.30000 0004 0638 0577IFREMER, University of Brest, CNRS, IRD, LEMAR, 29280 Plouzané, France
| | - P. E. Witten
- grid.5342.00000 0001 2069 7798Department of Biology, Gent University, Gent, Belgium
| | - L. Madec
- grid.463763.30000 0004 0638 0577IFREMER, University of Brest, CNRS, IRD, LEMAR, 29280 Plouzané, France
| | - A.-A. Gonzalez
- grid.121334.60000 0001 2097 0141MGX-Montpellier GenomiX, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - X. Mialhe
- grid.121334.60000 0001 2097 0141MGX-Montpellier GenomiX, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - J.-L. Zambonino-Infante
- grid.463763.30000 0004 0638 0577IFREMER, University of Brest, CNRS, IRD, LEMAR, 29280 Plouzané, France
| | - G. Koumoundouros
- grid.8127.c0000 0004 0576 3437Biology Department, University of Crete, Crete, Greece
| |
Collapse
|