1
|
Botagarova A, Murakami T, Fujimoto H, Fauzi M, Kiyobayashi S, Otani D, Fujimoto N, Inagaki N. Noninvasive quantitative evaluation of viable islet grafts using 111 In-exendin-4 SPECT/CT. FASEB J 2023; 37:e22859. [PMID: 36906290 PMCID: PMC11977520 DOI: 10.1096/fj.202201787rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/13/2023]
Abstract
Islet transplantation (IT) is an effective β-cell replacement therapy for patients with type 1 diabetes; however, the lack of methods to detect islet grafts and evaluate their β-cell mass (BCM) has limited the further optimization of IT protocols. Therefore, the development of noninvasive β-cell imaging is required. In this study, we investigated the utility of the 111 Indium-labeled exendin-4 probe {[Lys12(111In-BnDTPA-Ahx)] exendin-4} (111 In exendin-4) to evaluate islet graft BCM after intraportal IT. The probe was cultured with various numbers of isolated islets. Streptozotocin-induced diabetic mice were intraportally transplanted with 150 or 400 syngeneic islets. After a 6-week observation following IT, the ex-vivo liver graft uptake of 111 In-exendin-4 was compared with the liver insulin content. In addition, the in-vivo liver graft uptake of 111 In exendin-4 using SPECT/CT was compared with that of liver graft BCM measured by a histological method. As a result, probe accumulation was significantly correlated with islet numbers. The ex-vivo liver graft uptake in the 400-islet-transplanted group was significantly higher than that in the control and the 150-islet-transplanted groups, consistent with glycemic control and liver insulin content. In conclusion, in-vivo SPECT/CT displayed liver islet grafts, and uptakes were corroborated by histological liver BCM. 111 In-exendin-4 SPECT/CT can be used to visualize and evaluate liver islet grafts noninvasively after intraportal IT.
Collapse
Affiliation(s)
- Ainur Botagarova
- Department of Diabetes, Endocrinology and NutritionGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology and NutritionGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency for Health, Safety and EnvironmentKyoto UniversityKyotoJapan
| | - Muhammad Fauzi
- Department of Diabetes, Endocrinology and NutritionGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Sakura Kiyobayashi
- Department of Diabetes, Endocrinology and NutritionGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Daisuke Otani
- Department of Diabetes, Endocrinology and NutritionGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Nanae Fujimoto
- Department of Regeneration Science and Engineering Laboratory of Experimental ImmunologyInstitute for Life and Medical Sciences, Kyoto UniversityKyotoJapan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and NutritionGraduate School of Medicine, Kyoto UniversityKyotoJapan
- Medical Research Institute KITANO HOSPITAL, PIIF Tazuke‐kofukaiOsakaJapan
| |
Collapse
|
2
|
Fauzi M, Murakami T, Fujimoto H, Botagarova A, Sakaki K, Kiyobayashi S, Ogura M, Inagaki N. Preservation effect of imeglimin on pancreatic β-cell mass: Noninvasive evaluation using 111In-exendin-4 SPECT/CT imaging and the perspective of mitochondrial involvements. Front Endocrinol (Lausanne) 2022; 13:1010825. [PMID: 36246910 PMCID: PMC9559817 DOI: 10.3389/fendo.2022.1010825] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022] Open
Abstract
Progressive loss of β-cell mass (BCM) has a pernicious influence on type 2 diabetes mellitus (T2DM); evaluation of BCM has conventionally required an invasive method that provides only cross-sectional data. However, a noninvasive approach to longitudinal assessment of BCM in living subjects using an indium 111-labeled exendin-4 derivative ([Lys12(111In-BnDTPA-Ahx)]exendin-4) (111In-exendin-4) has been developed recently. Imeglimin is a novel antidiabetic agent that is reported to improve glycemic control and glucose-stimulated insulin secretion (GSIS) via augmentation of mitochondrial function. However, the influence of imeglimin on BCM is not fully understood. We have investigated the effects of imeglimin on BCM in vivo in prediabetic db/db mice using a noninvasive 111In-exendin-4 single-photon emission computed tomography/computed tomography (SPECT/CT) technique. During the 5-week study period, imeglimin treatment attenuated the progression of glucose intolerance, and imeglimin-treated mice retained greater BCM than control, which was consistent with the results of 111In-exendin-4 SPECT/CT scans. Furthermore, immunohistochemical analysis revealed reduced β-cell apoptosis in the imeglimin-treated db/db mice, and also lowered release of cytosolic cytochrome c protein in the β cells. Furthermore, electron microscopy observation and membrane potential measurement revealed improved structural integrity and membrane potential of the mitochondria of imeglimin-treated islets, respectively. These results demonstrate attenuation of progression of BCM loss in prediabetic db/db mice partly via inhibition of mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Muhammad Fauzi
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency of Health, Safety, and Environment, Kyoto University, Kyoto, Japan
| | - Ainur Botagarova
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kentaro Sakaki
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sakura Kiyobayashi
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahito Ogura
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- *Correspondence: Nobuya Inagaki,
| |
Collapse
|