1
|
Gupta H, Raghubansi A, Bharat, Sharma K, Zutshi K, Panchal P, Bhattacharya S, Ranjan P, Puri G, Saini N. Targeting GSK3β and signaling pathways in breast cancer: role of individual members of miR- 23/24/27 cluster. BMC Cancer 2025; 25:737. [PMID: 40254586 PMCID: PMC12010543 DOI: 10.1186/s12885-025-14045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/31/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND The high mortality rate of breast cancer and the difficulties associated with therapeutic resistance, especially in cases where targeted treatments are unavailable, make it a serious threat to women's health. This study examines the relationship between three mature microRNAs (miRNAs) that are clustered together, namely miR- 23a, miR- 27a, and miR- 24-2, as well as their potential correlation with breast cancer. METHODS We identified common gene targets of miR- 23a, miR- 27a, and miR- 24-2 using computational analysis. We also checked for the levels of miR- 23a, miR- 27a, and miR- 24-2 in 26 breast tumor tissues (with their matched control) as well as MCF7 and MDA-MB- 231 cell lines using qRT-PCR. Dual-luciferase reporter assay was conducted to validate the binding site of the microRNAs in their target gene. Western blot was performed to study the expression of various breast cancer related genes in the presence of the three microRNAs. In addition, the effect of microRNAs in cancer cell metastasis and cell division was carried out using invasion and cell cycle assay. RESULTS Computational analysis identified key genes, including GSK3β, NCOA1 and SP1, which are functionally linked to tumor progression and various other malignancies. All three microRNAs were found to be significantly downregulated in the breast cancer tissue samples in comparison to their respective controls. Kaplan-Meier plot analysis revealed that the expression levels of these genes and associated microRNAs correlates with breast cancer patient survival rates. Reduced SP1 and NCOA1 levels predicted a worse prognosis, but elevated levels of GSK3β were linked with decreased survival. Moreover, miR- 23a and miR- 24-2 specifically target GSK3β, potentially disrupting the Wnt/β-catenin pathway involved in breast cancer development. Functional tests showed that miR- 23a, miR- 27a and miR- 24-2 affect expression of EMT related genes, influencing cell invasion and migration, impacting ERK signaling and EMT, critical in the spread of breast cancer. CONCLUSION This study unlocks the potential of targeting the microRNA cluster as a therapeutic approach and emphasizes the complex regulatory roles of each individual members of the miR- 23a/27a/24-2 cluster in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Harshi Gupta
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
| | - Anushka Raghubansi
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
| | - Bharat
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kritika Sharma
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
| | - Krittika Zutshi
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
| | - Partibha Panchal
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sushant Bhattacharya
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Piyush Ranjan
- Department of Surgical Disciplines, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Gopal Puri
- Department of Surgical Disciplines, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Neeru Saini
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi, 110007, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Gao S, Su M, Bian T, Liu Y, Xu Y, Zhang Y. NEK6 functions as an oncogene to promote the proliferation and metastasis of ovarian cancer. J Cancer 2025; 16:1335-1346. [PMID: 39895790 PMCID: PMC11786049 DOI: 10.7150/jca.103769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/29/2024] [Indexed: 02/04/2025] Open
Abstract
Background: Ovarian cancer (OC) is a common malignant tumor of the female reproductive organs. The novel serine/threonine kinase NEK6 is highly expressed in various cancers and affects the prognosis of patients. However, the role of NEK6 in OC is still unclear. Methods: In this study, the expression profiles of NEK6 in OC and its roles in the development of OC were investigated. The expression profiles of NEK6 across cancers and OC were explored using bioinformatics analysis, and its expression in OC patients was detected by immunohistochemical (IHC) staining. The correlation between its expression and clinicopathological factors was also analyzed. Furthermore, the NEK6 levels in the tumor tissues of OC patients were detected via RT‒qPCR and Western blotting. Biological functions, including cell growth, migration, invasion and apoptosis, were analyzed using MTT, Transwell and flow cytometry assays, respectively. Results: Bioinformatics analysis revealed that NEK6 was highly expressed in most human cancers, including OC. IHC revealed 67.27% moderate or strong NEK6 staining in tumor tissues, 32.73% (36/110) weak staining, and negative or weak NEK6 staining in normal ovarian tissues, and its high expression was correlated with clinicopathological factors, including histological grade (P=0.008) and metastasis (P=0.006). The Kaplan‒Meier survival curve revealed that OC patients with high expression of NEK6 had poorer overall survival rates (P=0.025). NEK6 was overexpressed in OC tissues and SK-OV-3 and A2780 cells, and when NEK6 was knocked down with siRNAs, cell growth, migration and invasion were inhibited, whereas cell apoptosis was significantly promoted. Conclusion: NEK6 is highly expressed in OC; its overexpression indicates poor prognosis; and NEK6 knockdown leads to inhibited growth, migration and invasion while promoting the apoptosis of OC cells. These findings indicate that NEK6 is a potential oncogene and a poor prognostic factor in OC, suggesting that NEK6 can serve as a new therapeutic candidate for OC and that NEK6 inhibition may be an effective strategy for OC treatment.
Collapse
Affiliation(s)
- Sainan Gao
- Suzhou Medical College of Soochow University, Suzhou 215123, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Min Su
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Tingting Bian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yanhua Xu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yuquan Zhang
- Suzhou Medical College of Soochow University, Suzhou 215123, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
3
|
Su L, Zhao D, Zhou C, Zhang B. NEK6 Accelerates Hepatocellular Carcinoma Progression and Glycolysis through Ubiquitination of TCP10L. Crit Rev Eukaryot Gene Expr 2025; 35:1-13. [PMID: 40228222 DOI: 10.1615/critreveukaryotgeneexpr.2025057446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Never in mitosis a related kinases 6 (NEK6) is a serine/threonine kinase, and dysregulation of NEK6 is associated with malignant progression of human cancers. Nonetheless, the biological function and molecular mechanism of NEK6 in hepatocellular carcinoma (HCC) are unknown. Our study found that NEK6 was obviously raised in HCC patient tissues and cells, and patients with high NEK6 expression had a worse prognosis. Silencing of NEK6 reduced the growth, metastasis, cell cycle, and glycolysis of HCC cells while facilitating apoptosis. In vivo experiments also showed that NEK6 knockdown dramatically hampered tumor growth, suggesting that NEK6 enhanced HCC progression in vivo and in vitro. Next, we proved that TCP10L was a target gene of NEK6, and NEK6 negatively regulated TCP10L expression. Mechanistically, we confirmed that NEK6 was bound to TCP10L, and NEK6 degraded TCP10L protein expression through ubiquitination. Rescue experiments also declared that TCP10L reversed the effect of NEK6 on HCC cells. Our results disclosed that NEK6 heightened HCC progression and glycolysis through ubiquitination of TCP10L. Our study may provide a new perspective for the treatment of HCC.
Collapse
Affiliation(s)
- Ling Su
- Department of Pathology, The People's Hospital of Suzhou New District, Suzhou 215011, Jiangsu, China
| | - Dehong Zhao
- Department of General Surgery, Yancheng No. 1 People's Hospital, Yancheng 224000, Jiangsu, China
| | - Cheng Zhou
- Department of General Surgery, Yancheng No. 1 People's Hospital, Yancheng 224000, Jiangsu, China
| | | |
Collapse
|
4
|
Liu S, Wang R, Fang J. Exploring the frontiers: tumor immune microenvironment and immunotherapy in head and neck squamous cell carcinoma. Discov Oncol 2024; 15:22. [PMID: 38294629 PMCID: PMC10830966 DOI: 10.1007/s12672-024-00870-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
The global prevalence of head and neck malignancies positions them as the sixth most common form of cancer, with the head and neck squamous cell carcinoma (HNSCC) representing the predominant histological subtype. Despite advancements in multidisciplinary approaches and molecular targeted therapies, the therapeutic outcomes for HNSCC have only marginally improved, particularly in cases of recurrent or metastatic HNSCC (R/MHNSCC). This situation underscores the critical necessity for the development of innovative therapeutic strategies. Such strategies are essential not only to enhance the efficacy of HNSCC treatment but also to minimize the incidence of associated complications, thus improving overall patient prognosis. Cancer immunotherapy represents a cutting-edge cancer treatment that leverages the immune system for targeting and destroying cancer cells. It's applied to multiple cancers, including melanoma and lung cancer, offering precision, adaptability, and the potential for long-lasting remission through immune memory. It is observed that while HNSCC patients responsive to immunotherapy often experience prolonged therapeutic benefits, only a limited subset demonstrates such responsiveness. Additionally, significant clinical challenges remain, including the development of resistance to immunotherapy. The biological characteristics, dynamic inhibitory changes, and heterogeneity of the tumor microenvironment (TME) in HNSCC play critical roles in its pathogenesis, immune evasion, and therapeutic resistance. This review aims to elucidate the functions and mechanisms of anti-tumor immune cells and extracellular components within the HNSCC TME. It also introduces several immunosuppressive agents commonly utilized in HNSCC immunotherapy, examines factors influencing the effectiveness of these treatments, and provides a comprehensive summary of immunotherapeutic strategies relevant to HNSCC.
Collapse
Affiliation(s)
- Shaokun Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Fan Q, Li H, Wang X, Tham YC, Teo KYC, Yasuda M, Lim WK, Kwan YP, Teo JX, Chen CJ, Chen LJ, Ahn J, Davila S, Miyake M, Tan P, Park KH, Pang CP, Khor CC, Wong TY, Yanagi Y, Cheung CMG, Cheng CY. Contribution of common and rare variants to Asian neovascular age-related macular degeneration subtypes. Nat Commun 2023; 14:5574. [PMID: 37696869 PMCID: PMC10495468 DOI: 10.1038/s41467-023-41256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
Neovascular age-related macular degeneration (nAMD), along with its clinical subtype known as polypoidal choroidal vasculopathy (PCV), are among the leading causes of vision loss in elderly Asians. In a genome-wide association study (GWAS) comprising 3,128 nAMD (1,555 PCV and 1,573 typical nAMD), and 5,493 controls of East Asian ancestry, we identify twelve loci, of which four are novel ([Formula: see text]). Substantial genetic sharing between PCV and typical nAMD is noted (rg = 0.666), whereas collagen extracellular matrix and fibrosis-related pathways are more pronounced for PCV. Whole-exome sequencing in 259 PCV patients revealed functional rare variants burden in collagen type I alpha 1 chain gene (COL1A1; [Formula: see text]) and potential enrichment of functional rare mutations at AMD-associated loci. At the GATA binding protein 5 (GATA5) locus, the most significant GWAS novel loci, the expressions of genes including laminin subunit alpha 5 (Lama5), mitochondrial ribosome associated GTPase 2 (Mtg2), and collagen type IX alpha 3 chain (Col9A3), are significantly induced during retinal angiogenesis and subretinal fibrosis in murine models. Furthermore, retinoic acid increased the expression of LAMA5 and MTG2 in vitro. Taken together, our data provide insights into the genetic basis of AMD pathogenesis in the Asian population.
Collapse
Affiliation(s)
- Qiao Fan
- Center for Quantitative Medicine, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore.
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore.
| | - Hengtong Li
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaomeng Wang
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Center for Vision Research, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Yih-Chung Tham
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kelvin Yi Chong Teo
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Masayuki Yasuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Laboratory of Genome Variation Analytics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yuet Ping Kwan
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Jing Xian Teo
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore
| | - Ching-Jou Chen
- Center for Vision Research, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Sonia Davila
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore
| | - Masahiro Miyake
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Patrick Tan
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chiea Chuan Khor
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Tien Yin Wong
- Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Yasuo Yanagi
- Department of Ophthalmology and Microtechnology, Yokohama City University, Yokohama, Japan
| | - Chui Ming Gemmy Cheung
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Ching-Yu Cheng
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore.
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|