1
|
Wang S, Zhang M, Yang X, Chen S. Protective Effect of Semaglutide on Obesity-Induced Renal Disease and Obesity-Induced Kidney Renal Clear Cell Carcinoma. Diabetes Metab Syndr Obes 2025; 18:805-818. [PMID: 40124099 PMCID: PMC11930019 DOI: 10.2147/dmso.s498447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Purpose Proteomics was used to study the effect of semaglutide on the expression of renal protein in obese mice, and looking for proteins that could improve the prognosis of Kidney Renal Clear Cell Carcinoma (KIRC). Materials and Methods Thirty-six mice were randomly divided into normal-fat diet group (NFD), high-fat diet group (HFD), high-fat diet plus semaglutide intervention group (HS). Collected mice serum, urine, kidney tissue samples, and detected urinary protein/creatinine, blood glucose, blood lipid, inflammation, oxidative stress and other related indicators. Different staining methods were used to analyze the pathological changes of mice's kidneys. Liquid chromatography-tandem mass spectrometry mass spectrometry (LC-MS/MS) analysis was used to analyze the total protein in the kidneys of mice. Finally, bioinformatics technology was used to analyze significantly different expressed proteins (DEPs). Results The mechanism of semaglutide protecting the kidneys were related to oxidative phosphorylation, PPAR signaling pathway, thiamine, butyric acid and tryptophan metabolism pathways. Moreover, semaglutide could significantly increase the expression of Man1a1 and Ntn4 in the kidneys of mice, while the high-expression of Man1a1 and Ntn4 in KIRC population had a better overall survival rate. Conclusion Semaglutide could regulate the development of KIRC by up-adjusting the expression of Man1a1 and Ntn4.
Collapse
Affiliation(s)
- Shuqi Wang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Mengmeng Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Xiaoman Yang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Shuchun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
- Key Laboratory of Metabolic Diseases in Hebei Province, Shijiazhuang, People’s Republic of China
| |
Collapse
|
2
|
Lewis JE, Omenge DK, Patterson AR, Anwaegbu O, Tabukum NN, Lewis JE, Lee WC. The impact of semaglutide on wound healing in diabetes related foot ulcer patients: A TriNetX database study. Diab Vasc Dis Res 2025; 22:14791641251322909. [PMID: 40080656 PMCID: PMC11907515 DOI: 10.1177/14791641251322909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
IntroductionDiabetes related foot ulcers (DFUs) are common complications of type 2 diabetes mellitus (T2DM), affecting 15-25% of individuals living with diabetes and significantly contributing to healthcare costs ($9-13 billion annually in the U.S.). Without effective management, these wounds often lead to severe outcomes like amputations. This study aims to examine the association of semaglutide on DFU management.MethodsThis retrospective cohort study utilized TriNetX US Research Network data to assess the impact of semaglutide, a GLP-1 receptor agonist, on DFU outcomes between 2013 and 2023. The study compared outcomes between semaglutide users with DFU (Cohort A, N = 6329) and non-users with DFU (Cohort B, N = 118,821) across 64 healthcare organizations. We matched participants by age, gender, race, and ethnicity; however, we excluded patients with certain co-morbidities. Statistical analysis, such as chi-square analysis and risk ratio, using TriNetX software evaluated different complication outcomes.ResultsSemaglutide users with DFU demonstrated lower relative risks for complications compared to non-users. Within 1 year, semaglutide users were associated with lower relative risks for wound healing complications (0.19% vs 0.38%), chronic non-healing wounds (0.75% vs 1.23%), chronic pain (4.44% vs 8.06%), wound care (2.42% vs 4.86%), wound dehiscence (0.26% vs 0.56%), and amputation (2.34% vs 5.21%) (p < .05). Similar trends persisted over 5 years. While these findings highlight potential benefits of semaglutide with patients with DFU, causation cannot be inferred due to the study's observational design.ConclusionSemaglutide use was associated with favorable outcomes in patients with diabetes-related foot ulcers, including reductions in wound-related complications. While these findings suggest potential benefits of semaglutide as an adjunct in DFU management, further research is needed to confirm these associations and to better understand the mechanisms involved.
Collapse
Affiliation(s)
- Joshua E Lewis
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Diana K Omenge
- Tilman J. Fertitta College of Medicine, University of Houston School of Medicine, Houston, TX, USA
| | - Amani R Patterson
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Ogechukwu Anwaegbu
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Nangah N Tabukum
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Jimmie E Lewis
- School of Podiatric Medicine, Barry University, Miami, FL, USA
| | - Wei-Chen Lee
- Department of Family Medicine, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
3
|
Cool D, Coventon J, Sharma A. Semaglutide Inducing Resolution of Proliferative Diabetic Retinopathy: A Case Report. Case Rep Ophthalmol Med 2024; 2024:5834769. [PMID: 39691771 PMCID: PMC11651726 DOI: 10.1155/crop/5834769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024] Open
Abstract
Purpose: To describe a case of regression of proliferative diabetic retinopathy (PDR) following treatment with semaglutide. Methods: Case report. Results: The case describes a 47-year-old woman with Type 2 diabetes, obesity, hypertension, and dyslipidaemia who had difficulty controlling her blood sugar levels despite oral hypoglycaemic medications. She presented with PDR in her right eye and severe nonproliferative diabetic retinopathy (NPDR) in her left eye. After missing her follow-up appointment for panretinal photocoagulation (PRP), her general practitioner initiated semaglutide therapy. Despite minimal changes in glycaemic control, the patient exhibited resolution of neovascularisation in her right eye and improved diabetic macular oedema (DMO) within 6 weeks of semaglutide therapy. Conclusion: This case report suggests a potential independent role for semaglutide in managing PDR.
Collapse
Affiliation(s)
- Daniel Cool
- Ophthalmology Department, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - James Coventon
- Ophthalmology Department, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Ophthalmology Department, Cairns Hospital, Cairns, Queensland, Australia
| | | |
Collapse
|
4
|
Boboc IKS, Dumitrelea PD, Meca AD, Mititelu-Tartau L, Bogdan M. Exploring the Impact of Semaglutide on Cognitive Function and Anxiety-Related Behaviors in a Murine Model of Alzheimer's Disease. Biomedicines 2024; 12:2689. [PMID: 39767596 PMCID: PMC11673043 DOI: 10.3390/biomedicines12122689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD), the most prevalent form of dementia, is characterized by progressive cognitive decline and behavioral disturbances, with an increasing incidence as the global population ages. This study investigates the effects of semaglutide (SEM), a glucagon-like peptide-1 analog, on cognitive function and anxiety-like behavior in a transgenic murine model of AD. METHODS 20 mice were randomly distributed into the following groups (n = 5): (WT + VEH) group: C57BL/6J + saline, (WT + SEM) group: C57BL/6J + semaglutide, (AD + VEH) group: AD + saline, (AD + SEM) group: AD + semaglutide. The animals underwent a four-week treatment, during which we monitored blood glucose levels, body weight, and responses in an open field test, novel object recognition test, social chamber test, and 0-maze test. RESULTS Post-treatment, SEM significantly reduced blood glucose levels in AD mice, aligning them with those of wild-type controls. Cognitive assessments indicated an improvement in the investigation index for SEM-treated mice compared to those receiving a vehicle, suggesting cognitive benefits. Although SEM did not significantly enhance motor and exploratory activities, it displayed a potential anxiolytic effect, particularly evident in the combined anxiety index, with notable differences observed before and after treatment in the AD group. CONCLUSIONS The findings of this pilot study suggest that SEM may play a dual role in managing AD by improving glycemic control and potentially enhancing cognitive function. As the landscape of AD treatment evolves, the comprehensive approach of utilizing SEM could pave the way for innovative interventions targeting the complex interplay of metabolic and cognitive dysfunctions in this challenging neurodegenerative disorder.
Collapse
Affiliation(s)
- Ianis Kevyn Stefan Boboc
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.K.S.B.); (A.D.M.)
| | | | - Andreea Daniela Meca
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.K.S.B.); (A.D.M.)
| | - Liliana Mititelu-Tartau
- Department of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.K.S.B.); (A.D.M.)
| |
Collapse
|
5
|
Korakas E, Kountouri A, Pavlidis G, Oikonomou E, Vrentzos E, Michalopoulou E, Tsigkou V, Katogiannis K, Pliouta L, Balampanis K, Pililis S, Malandris K, Tsapas A, Siasos G, Ikonomidis I, Lambadiari V. Semaglutide Concurrently Improves Vascular and Liver Indices in Patients With Type 2 Diabetes and Fatty Liver Disease. J Endocr Soc 2024; 8:bvae122. [PMID: 38979402 PMCID: PMC11228545 DOI: 10.1210/jendso/bvae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Indexed: 07/10/2024] Open
Abstract
Context The cardiovascular benefits of semaglutide are established; however, its effects on surrogate vascular markers and liver function are not known. Objective To investigate the effects of semaglutide on vascular, endothelial, and liver function in patients with type 2 diabetes (T2DM) and nonalcoholic fatty liver disease (NAFLD). Methods Overall, 75 consecutive subjects with T2DM and NAFLD were enrolled: 50 patients received semaglutide 1 mg (treatment group) and 25 patients received dipeptidyl peptidase 4 inhibitors (control group). All patients underwent a clinical, vascular, and hepatic examination with Fibroscan elastography at 4 and 12 months after inclusion in the study. Results Treatment with semaglutide resulted in a reduction of Controlled Attenuation Parameter (CAP) score, E fibrosis score, NAFLD fibrosis score, Fibrosis-4 (FIB-4) score and perfused boundary region (PBR) at 4 and at 12 months (P < .05), contrary to controls. Patients treated with semaglutide showed a greater decrease of central systolic blood pressure (SBP) (-6% vs -4%, P = .048 and -11% vs -9%, P = .039), augmentation index (AIx) (-59% vs -52%, P = .041 and -70% vs -57%, P = .022), and pulse wave velocity (PWV) (-6% vs -3.5%, P = .019 and -12% vs -10%, P = .036) at 4 and at 12 months, respectively. In all patients, ΔPWV and ΔPBR were correlated with a corresponding reduction of CAP, E fibrosis, NAFLD fibrosis, and FIB-4 scores. Conclusion Twelve-month treatment with semaglutide simultaneously improves arterial stiffness, endothelial function, and liver steatosis and fibrosis in patients with T2DM and NAFLD.
Collapse
Affiliation(s)
- Emmanouil Korakas
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre Attikon Hospital, Medical School National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Aikaterini Kountouri
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre Attikon Hospital, Medical School National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - George Pavlidis
- 2nd Department of Cardiology Laboratory of Preventive Cardiology and Echocardiography Department Attikon Hospital, Medical School National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Emmanouil Vrentzos
- Rheumatology and Clinical Immunology Unit, 4th Department of Internal Medicine, Attikon University Hospital, Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 12462 Athens, Greece
| | - Eleni Michalopoulou
- 2nd Department of Cardiology Laboratory of Preventive Cardiology and Echocardiography Department Attikon Hospital, Medical School National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Vasiliki Tsigkou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Konstantinos Katogiannis
- 2nd Department of Cardiology Laboratory of Preventive Cardiology and Echocardiography Department Attikon Hospital, Medical School National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Loukia Pliouta
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre Attikon Hospital, Medical School National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Konstantinos Balampanis
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre Attikon Hospital, Medical School National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Sotirios Pililis
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre Attikon Hospital, Medical School National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Konstantinos Malandris
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Apostolos Tsapas
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Ignatios Ikonomidis
- 2nd Department of Cardiology Laboratory of Preventive Cardiology and Echocardiography Department Attikon Hospital, Medical School National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Vaia Lambadiari
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre Attikon Hospital, Medical School National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
6
|
Chee YJ, Dalan R. Novel Therapeutics for Type 2 Diabetes Mellitus-A Look at the Past Decade and a Glimpse into the Future. Biomedicines 2024; 12:1386. [PMID: 39061960 PMCID: PMC11274090 DOI: 10.3390/biomedicines12071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular disease (CVD) and kidney disease are the main causes of morbidity and mortality in type 2 diabetes mellitus (T2DM). Globally, the incidence of T2DM continues to rise. A substantial increase in the burden of CVD and renal disease, alongside the socioeconomic implications, would be anticipated. Adopting a purely glucose-centric approach focusing only on glycemic targets is no longer adequate to mitigate the cardiovascular risks in T2DM. In the past decade, significant advancement has been achieved in expanding the pharmaceutical options for T2DM, with novel agents such as the sodium-glucose cotransporter type 2 (SGLT2) inhibitors and glucagon-like peptide receptor agonists (GLP-1 RAs) demonstrating robust evidence in cardiorenal protection. Combinatorial approaches comprising multiple pharmacotherapies combined in a single agent are an emerging and promising way to not only enhance patient adherence and improve glycemic control but also to achieve the potential synergistic effects for greater cardiorenal protection. In this review, we provide an update on the novel antidiabetic agents in the past decade, with an appraisal of the mechanisms contributing to cardiorenal protection. Additionally, we offer a glimpse into the landscape of T2DM management in the near future by providing a comprehensive summary of upcoming agents in early-phase trials.
Collapse
Affiliation(s)
- Ying Jie Chee
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
7
|
Yaribeygi H, Maleki M, Jamialahmadi T, Sahebkar A. Anti-inflammatory benefits of semaglutide: State of the art. J Clin Transl Endocrinol 2024; 36:100340. [PMID: 38576822 PMCID: PMC10992717 DOI: 10.1016/j.jcte.2024.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Individuals with diabetes often have chronic inflammation and high levels of inflammatory cytokines, leading to insulin resistance and complications. Anti-inflammatory agents are proposed to prevent these issues, including using antidiabetic medications with anti-inflammatory properties like semaglutide, a GLP-1 analogue. Semaglutide not only lowers glucose but also shows potential anti-inflammatory effects. Studies suggest it can modulate inflammatory responses and benefit those with diabetes. However, the exact mechanisms of its anti-inflammatory effects are not fully understood. This review aims to discuss the latest findings on semaglutide's anti-inflammatory effects and the potential pathways involved.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Yang Y, Pan X, Chen S. Effect of Semaglutide and Empagliflozin on Pulmonary Structure and Proteomics in Obese Mice. Diabetes Metab Syndr Obes 2024; 17:1217-1233. [PMID: 38496002 PMCID: PMC10942255 DOI: 10.2147/dmso.s456336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Objective This study utilized proteomics to investigate changes in protein expression associated with lung health in obese mice exposed to semaglutide and empagliflozin through a high-fat diet. Methods Twenty-eight male C57BL/6JC mice were randomly assigned to two groups: a control diet group (n = 7) and a high-fat diet group (n = 21). The HFD group was further divided into three groups: HFD group (n = 7), Sema group (n = 7), and Empa group (n = 7). Post-treatment, mice underwent assessments including glucose tolerance, lipids, oxidative stress markers, body weight, lung weight, and structure. Proteomics identified differentially expressed proteins (DEPs) in lung tissue, and bioinformatics analyzed the biological processes and functions of these proteins. Results Semaglutide and empagliflozin significantly attenuated obesity-induced hyperglycemia, abnormal lipid metabolism, oxidative stress response, and can decrease alveolar wall thickness, enlarge alveolar lumen, and reduce collagen content in lung tissue. Both medications also attenuated lung elastic fibre cracking and disintegration. In the HFD/NCD group, there were 66 DEPs, comprising 30 proteins that were increased and 36 that were decreased. Twenty-three DEPs overlapped between Sema/HFD and Empa/HFD, with 11 up-regulated and 12 down-regulated simultaneously. After analysing DEPs in different groups, four proteins - LYVE1, BRAF, RGCC, and CHMP5 - were all downregulated in the HFD group and upregulated by semaglutide and empagliflozin treatment. Conclusion This study demonstrates that obesity induced by a high-fat diet causes a reduction in the expression of LYVE1, BRAF, RGCC, and CHMP5 proteins, potentially affecting lung function and structure in mice. Significantly, the administration of semaglutide and empagliflozin elevates the levels of these proteins, potentially offering therapeutic benefits against lung injury caused by obesity. Merging semaglutide with empagliflozin may exert a more pronounced impact.
Collapse
Affiliation(s)
- Yu Yang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Xiaoyu Pan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Shuchun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
9
|
Chen SY, Telfser AJ, Olzomer EM, Vancuylenberg CS, Zhou M, Beretta M, Li C, Alexopoulos SJ, Turner N, Byrne FL, Santos W, Hoehn KL. Beneficial effects of simultaneously targeting calorie intake and calorie efficiency in diet-induced obese mice. Clin Sci (Lond) 2024; 138:173-187. [PMID: 38315575 PMCID: PMC10876416 DOI: 10.1042/cs20231016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Semaglutide is an anti-diabetes and weight loss drug that decreases food intake, slows gastric emptying, and increases insulin secretion. Patients begin treatment with low-dose semaglutide and increase dosage over time as efficacy plateaus. With increasing dosage, there is also greater incidence of gastrointestinal side effects. One reason for the plateau in semaglutide efficacy despite continued low food intake is due to compensatory actions whereby the body becomes more metabolically efficient to defend against further weight loss. Mitochondrial uncoupler drugs decrease metabolic efficiency, therefore we sought to investigate the combination therapy of semaglutide with the mitochondrial uncoupler BAM15 in diet-induced obese mice. Mice were fed high-fat western diet (WD) and stratified into six treatment groups including WD control, BAM15, low-dose semaglutide without or with BAM15, and high-dose semaglutide without or with BAM15. Combining BAM15 with either semaglutide dose decreased body fat and liver triglycerides, which was not achieved by any monotherapy, while high-dose semaglutide with BAM15 had the greatest effect on glucose homeostasis. This study demonstrates a novel approach to improve weight loss without loss of lean mass and improve glucose control by simultaneously targeting energy intake and energy efficiency. Such a combination may decrease the need for semaglutide dose escalation and hence minimize potential gastrointestinal side effects.
Collapse
Affiliation(s)
- Sing-Young Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Aiden J. Telfser
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ellen M. Olzomer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Calum S. Vancuylenberg
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mingyan Zhou
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Martina Beretta
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Catherine Li
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Stephanie J. Alexopoulos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nigel Turner
- Cellular Bioenergetics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Frances L. Byrne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Webster L. Santos
- Department of Chemistry and Virginia Tech Centre for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Kyle L. Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Pan X, Yang L, Wang S, Liu Y, Yue L, Chen S. Semaglutide alleviates inflammation-Induced endothelial progenitor cells injury by inhibiting MiR-155 expression in macrophage exosomes. Int Immunopharmacol 2023; 119:110196. [PMID: 37075674 DOI: 10.1016/j.intimp.2023.110196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
The low-grade inflammatory state in obesity can damage vascular endothelial cells and lead to several cardiovascular diseases. Macrophage exosomes improve glucose tolerance and insulin sensitivity in obese mice, and yet it is unclear how it relates to endothelial cell injury. Firstly, lipopolysaccharide (LPS)-induced macrophage exosomes were co-cultured with endothelial progenitor cells (EPCs) to examine the function of EPCs and the level of inflammatory factors. Secondly, macrophages were transfected with MicroRNA-155 (miR-155) miR-155 mimics and inhibitors, and their secreted exosomes were co-cultured with EPCs to detect EPCs function and inflammatory factor levels. Then, EPCs were transfected with miR-155 mimics and inhibitors to clarify the effect of miR-155 on EPCs function and inflammatory factors. Finally, macrophages were intervened using semaglutide, and their secreted exosomes were co-cultured with EPCs to test EPCs function, inflammatory factor levels and macrophages miR-155 expression. LPS-induced macrophage exosomes reduced the cellular activity, migratory capacity and tube-forming ability of EPCs and rendered EPCs in an inflammatory state. LPS-induced microphage exosomes significantly upregulated miR-155 expression. miR-155 high expression exacerbated the pro-inflammatory nature of macrophage exosomes and inhibited the cell viability of EPCs. In contrast, inhibition of miR-155 expression showed the opposite result, suppressing inflammation and increasing the cell viability of EPCs. Semaglutide improved the cell viability of EPCs and also inhibited the expression of inflammatory factors in EPCs as well as miR-155 in exosomes. Semaglutide improves the function and inflammatory status of EPCs may via inhibition of LPS-induced macrophage expression of miR-155 in exosomes.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Lin Yang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Shuqi Wang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Yanhui Liu
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Lin Yue
- Department of Endocrinology, The Third Hospital of Shijiazhuang, Shijiazhuang, China
| | - Shuchun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China.
| |
Collapse
|