1
|
Zhong C, Zeng H, Deng J, Li Q, Li Z, Zhai J, Li X, Luan T. High-Throughput Single-Cell Mass Spectrometry Reveals Sex-Specific Metabolic Responses to 6:2 Chlorinated Polyfluoroalkyl Ether Sulfonate in Zebrafish Liver Cells. Anal Chem 2025; 97:7600-7605. [PMID: 40176633 DOI: 10.1021/acs.analchem.4c06345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Compound 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA) is an emerging per- and polyfluoroalkyl substance (PFAS) with potential toxicity and health risks to biosystems and ecosystems. Here, we developed a metabolomics method based on single-cell mass spectrometry to investigate the hepatotoxicity and heterogeneous responses in zebrafish exposed to 6:2 Cl-PFESA. Zebrafish were exposed to an environmentally relevant concentration (200 ng/L) of 6:2 Cl-PFESA for 14 days. The livers were dissociated and prepared as cell suspensions and then introduced to high-throughput single-cell mass spectrometry for analysis of 6:2 Cl-PFESA and endogenous metabolites in individual primary liver cells. Significant sex-specific heterogeneity in 6:2 Cl-PFESA accumulation was observed (p < 0.05). Metabolomics analysis revealed perturbations in lipid metabolism, particularly affecting unsaturated fatty acids, ether lipids, and sphingolipids in zebrafish liver cells, indicating potential hepatotoxicity. Sex-dependent metabolic responses were evident: males showed notable changes in glucose and fatty acid metabolism, whereas females experienced pronounced disruptions in glycerophospholipid and amino acid pathways. ROC analysis identified sex-specific biomarkers, including FA(18:3) and FA(16:1) in males (AUC > 0.85), as well as proline and phosphatidylcholine in females (AUC > 0.90). These findings reflect metabolic dysregulation and highlight sex-specific responses. This study demonstrates the feasibility of single-cell metabolomics to elucidate the cellular mechanisms and metabolic responses of pollutant exposure, offering insights into precise and comprehensive toxicity assessments at the single-cell level.
Collapse
Affiliation(s)
- Chunfei Zhong
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Haishen Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Quchang Li
- Guangdong Institute for Drug Control, Guangzhou 510633, China
| | - Ziqing Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Junqiu Zhai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xinyan Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
2
|
Cicuéndez B, Mora A, López JA, Curtabbi A, Pérez-García J, Porteiro B, Jimenez-Blasco D, Latorre-Muro P, Vo P, Jerome M, Gómez-Santos B, Romero-Becerra R, Leiva M, Rodríguez E, León M, Leiva-Vega L, Gómez-Lado N, Torres JL, Hernández-Cosido L, Aguiar P, Marcos M, Jastroch M, Daiber A, Aspichueta P, Bolaños JP, Spinelli JB, Puigserver P, Enriquez JA, Vázquez J, Folgueira C, Sabio G. Absence of MCJ/DnaJC15 promotes brown adipose tissue thermogenesis. Nat Commun 2025; 16:229. [PMID: 39805849 PMCID: PMC11730624 DOI: 10.1038/s41467-024-54353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
Obesity poses a global health challenge, demanding a deeper understanding of adipose tissue (AT) and its mitochondria. This study describes the role of the mitochondrial protein Methylation-controlled J protein (MCJ/DnaJC15) in orchestrating brown adipose tissue (BAT) thermogenesis. Here we show how MCJ expression decreases during obesity, as evident in human and mouse adipose tissue samples. MCJKO mice, even without UCP1, a fundamental thermogenic protein, exhibit elevated BAT thermogenesis. Electron microscopy unveils changes in mitochondrial morphology resembling BAT activation. Proteomic analysis confirms these findings and suggests involvement of the eIF2α mediated stress response. The pivotal role of eIF2α is scrutinized by in vivo CRISPR deletion of eIF2α in MCJKO mice, abrogating thermogenesis. These findings uncover the importance of MCJ as a regulator of BAT thermogenesis, presenting it as a promising target for obesity therapy.
Collapse
Grants
- K99 DK133502 NIDDK NIH HHS
- R01 DK136640 NIDDK NIH HHS
- This work has been supported by the following projects: PMP21/00057 funded by the Instituto de Salud Carlos III (ISCIII) - European Union (FEDER/FSE) "Una manera de hacer Europa"/ "El FSE invierte en tu futuro"/ Next Generation EU and cofunded by the European Union / Plan de Recuperación, Transformación y Resiliencia (PRTR); PID2022-138525OB-I00 de la Agencia Estatal de Investigación 10.13039/501100011033, financiado por MICIU/AEI/10.13039/501100011033 fondos FEDER and EU, PDC2021-121147-I00 and PID2019-104399RB-I00 funded by MCIN/AEI/10.13039/501100011033 and the European Union “NextGenerationEU”/Plan de Recuperación Transformación y Resiliencia -PRTR; Grant RED2022-134397-T funded by MCIN/AEI/10.13039/501100011033 and, as appropriate, by “ERDF A way of making Europe”, by the “European Union” or by the “European Union NextGenerationEU/PRTR”; Fundación Jesús Serra; EFSD/Lilly Dr Sabio; 2017 Leonardo Grant BBVA Foundation (Investigadores-BBVA-2017); Comunidad de Madrid IMMUNOTHERCAN-CM S2010/BMD-2326 and B2017/BMD-373; Fundación AECC PROYE19047SABI, PGC2018-097019-B-I00 and PT17/0019/0003- ISCIII-SGEFI /ERDF, ProteoRed. PreMed-Exp: PMP21/00057, PMP21/00113 Infraestructura de Medicina de Precisión asociada a la Ciencia y Tecnología IMPACT-2021 Instituto de Salud Carlos III (GS, JLT).. G.S is a Miembro Numerario of the RACVE. The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation) and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by MICIN/AEI/10.13039/501100011033).
- A.C was supported by the European Union's Horizon 2020 research and 328 innovation program under the Marie Skłodowska-Curie grant agreement n. 713,673.
- J.P-G was supported by the fellowship from” la Caixa” Foundation (ID 100010434), the fellowship code is LCF/BQ/DR24/12080018.
- M.M is supported by Instituto de Salud Carlos III (ISCIII) and the European Union project PI20/00743.
- P.A is supported by MCIU/AEI/FEDER, UE (PID2021-124425OB-I00) and Basque Government, Department of Education (IT1476-22).
- J.P.B is funded by AEI grants PID2019-105699RB-I00, PID2022-138813OB-I00 and PDC2021-121013-I00; HORIZON-MSCA-2021-DN-01grant 101072759; and La Caixa Research Health grant HR23-00793.
- C.F was funded with Sara Borrell (CD19/ 00078), NNF23SA0083952-EASO/Novo Nordisk New Investigator Award in Basic Sciences 2023, EFSD/Lilly Young Investigator Award 2022, Society for Endocrinology/Early Career Grant 2022, FSEEN/ Jóvenes endocrinólogos 2022, EFSD/Novo Nordisk Rising Star 2024, IBSA Foundation Fellowship Endocrinology 2023.
Collapse
Affiliation(s)
- Beatriz Cicuéndez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Organ Crosstalk in Metabolic Diseases Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Organ Crosstalk in Metabolic Diseases Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Juan Antonio López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrea Curtabbi
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Pérez-García
- Organ Crosstalk in Metabolic Diseases Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Begoña Porteiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Jimenez-Blasco
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Paula Vo
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Madison Jerome
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Beatriz Gómez-Santos
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU. Leioa, Biobizkaia Health Research Institute, Barakaldo, Spain
| | | | - Magdalena Leiva
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Elena Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Organ Crosstalk in Metabolic Diseases Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Marta León
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Organ Crosstalk in Metabolic Diseases Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Organ Crosstalk in Metabolic Diseases Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Noemi Gómez-Lado
- Molecular Imaging Biomarkers and Theragnosis Lab, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS). University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Molecular Imaging Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Nuclear Medicine Service, University Clinical Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | | | - Lourdes Hernández-Cosido
- Bariatric Surgery Unit. Department of General Surgery, University Hospital of Salamanca. Department of Surgery. University of Salamanca, Salamanca, Spain
| | - Pablo Aguiar
- Molecular Imaging Biomarkers and Theragnosis Lab, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS). University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Molecular Imaging Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Nuclear Medicine Service, University Clinical Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Salamanca, Spain
- Department of Medicine. University of Salamanca, Salamanca, Spain
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Andreas Daiber
- Department of Cardiology 1, University Medical Center Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU. Leioa, Biobizkaia Health Research Institute, Barakaldo, Spain
- Centro de Investigación Biomédica en Red sobre enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pedro Bolaños
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| | - Jessica B Spinelli
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
- UMass Chan Medical School Cancer Center, Worcester, MA, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - José Antonio Enriquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Organ Crosstalk in Metabolic Diseases Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Organ Crosstalk in Metabolic Diseases Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain.
| |
Collapse
|
3
|
Yan M, Cui Y, Xiang Q. Metabolism of hepatic stellate cells in chronic liver diseases: emerging molecular and therapeutic interventions. Theranostics 2025; 15:1715-1740. [PMID: 39897543 PMCID: PMC11780521 DOI: 10.7150/thno.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025] Open
Abstract
Chronic liver diseases, primarily metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic and metabolic dysfunction-associated alcoholic liver disease (MetALD), and viral hepatitis, can lead to liver fibrosis, cirrhosis, and cancer. Hepatic stellate cell (HSC) activation plays a central role in the development of myofibroblasts and fibrogenesis in chronic liver diseases. However, HSC activation is influenced by the complex microenvironments within the liver, which are largely shaped by the interactions between HSCs and various other cell types. Changes in HSC phenotypes and metabolic mechanisms involve glucose, lipid, and cholesterol metabolism, oxidative stress, activation of the unfolded protein response (UPR), autophagy, ferroptosis, senescence, and nuclear receptors. Clinical interventions targeting these pathways have shown promising results in addressing liver inflammation and fibrosis, as well as in modulating glucose and lipid metabolism and metabolic stress responses. Therefore, a comprehensive understanding of HSC phenotypes and metabolic mechanisms presents opportunities for novel therapeutic approaches aimed at halting or even reversing chronic liver diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
4
|
Zuo Q, Kang Y. Metabolic Reprogramming and Adaption in Breast Cancer Progression and Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:347-370. [PMID: 39821033 DOI: 10.1007/978-3-031-70875-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Recent evidence has revealed that cancer is not solely driven by genetic abnormalities but also by significant metabolic dysregulation. Cancer cells exhibit altered metabolic demands and rewiring of cellular metabolism to sustain their malignant characteristics. Metabolic reprogramming has emerged as a hallmark of cancer, playing a complex role in breast cancer initiation, progression, and metastasis. The different molecular subtypes of breast cancer exhibit distinct metabolic genotypes and phenotypes, offering opportunities for subtype-specific therapeutic approaches. Cancer-associated metabolic phenotypes encompass dysregulated nutrient uptake, opportunistic nutrient acquisition strategies, altered utilization of glycolysis and TCA cycle intermediates, increased nitrogen demand, metabolite-driven gene regulation, and metabolic interactions with the microenvironment. The tumor microenvironment, consisting of stromal cells, immune cells, blood vessels, and extracellular matrix components, influences metabolic adaptations through modulating nutrient availability, oxygen levels, and signaling pathways. Metastasis, the process of cancer spread, involves intricate steps that present unique metabolic challenges at each stage. Successful metastasis requires cancer cells to navigate varying nutrient and oxygen availability, endure oxidative stress, and adapt their metabolic processes accordingly. The metabolic reprogramming observed in breast cancer is regulated by oncogenes, tumor suppressor genes, and signaling pathways that integrate cellular signaling with metabolic processes. Understanding the metabolic adaptations associated with metastasis holds promise for identifying therapeutic targets to disrupt the metastatic process and improve patient outcomes. This chapter explores the metabolic alterations linked to breast cancer metastasis and highlights the potential for targeted interventions in this context.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, USA.
| |
Collapse
|
5
|
Yang H, Zheng P, Hu J, Lin Z, Sriboonvorakul N, Lin S. Spatial Metabolomics Reveals the Effects of Dietary Capsaicin Intervention on Interscapular Adipose Tissue Metabolome in Mice. Foods 2024; 13:3943. [PMID: 39683015 DOI: 10.3390/foods13233943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Capsaicin is a polyphenol with a well-known anti-obesity potential, which could activate brown adipose tissue and promote the browning of white adipose tissue. Indeed, conventional proteomics have been used to investigate the browning effects of capsaicin on adipose tissue. However, the existence of a layer of white adipose tissue above the interscapular brown adipose tissue poses a great challenge to obtain intact interscapular brown adipose tissue without including adjacent white adipose tissue. Therefore, the traditional method normally focuses on changes occurring in the bottom layer of interscapular brown adipose tissue. Spatial metabolomics is an omics method that enables the analysis of metabolite distributions in tissue sections. Therefore, in the current study, spatial metabolomics was utilized to investigate the effects of dietary capsaicin intervention on interscapular brown adipose tissue and adjacent white adipose tissue. The results indicated several noteworthy findings that capsaicin treatment may induce similar metabolite alterations across various regions of brown adipose tissue irrespective of their proximity to WAT, while it also markedly influences the metabolites in the adjacent white adipose tissue. A KEGG pathway analysis further revealed these changes were associated with key characteristics of beige energy metabolism pathways, such as thermogenesis, glycerol phospholipid metabolism, and pentose phosphate pathway. Taken together, this study may supplement useful details to understand the mechanisms of capsaicin enhancing BAT activity and promoting WAT browning.
Collapse
Affiliation(s)
- Haoqing Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peiying Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiamiao Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Zhongjing Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Natthida Sriboonvorakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| |
Collapse
|
6
|
Alassaf M, Rajan A. Adipocyte metabolic state regulates glial phagocytic function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614765. [PMID: 39386724 PMCID: PMC11463506 DOI: 10.1101/2024.09.24.614765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Obesity and type 2 diabetes are well-established risk factors for neurodegenerative disorders1-4, yet the underlying mechanisms remain poorly understood. The adipocyte-brain axis is crucial for brain function, as adipocytes secrete signaling molecules, including lipids and adipokines, that impinge on neural circuits to regulate feeding and energy expenditure5. Disruptions in the adipocyte-brain axis are associated with neurodegenerative conditions6, but the causal links are not fully understood. Neural debris accumulates with age and injury, and glial phagocytic function is crucial for clearing this debris and maintaining a healthy brain microenvironment7-9. Using adult Drosophila, we investigate how adipocyte metabolism influences glial phagocytic activity in the brain. We demonstrate that a prolonged obesogenic diet increases adipocyte fatty acid oxidation and ketogenesis. Genetic manipulations that mimic obesogenic diet-induced changes in adipocyte lipid and mitochondrial metabolism unexpectedly reduce the expression of the phagocytic receptor Draper in Drosophila microglia-like cells in the brain. We identify Apolpp-the Drosophila equivalent of human apolipoprotein B (ApoB)-as a critical adipocyte-derived signal that regulates glial phagocytosis. Additionally, we show that Lipoprotein Receptor 1 (LpR1), the LDL receptor on phagocytic glia, is required for glial capacity to clear injury-induced neuronal debris. Our findings establish that adipocyte-brain lipoprotein signaling regulates glial phagocytic function, revealing a novel pathway that links adipocyte metabolic disorders with neurodegeneration.
Collapse
Affiliation(s)
- Mroj Alassaf
- Basic Sciences Division, Fred Hutch, Seattle, WA-98109. The USA
| | - Akhila Rajan
- Basic Sciences Division, Fred Hutch, Seattle, WA-98109. The USA
| |
Collapse
|
7
|
Bolin AP, de Fatima Silva F, Salgueiro RB, Dos Santos BA, Komino ACM, Andreotti S, de Sousa É, de Castro É, Real CC, de Paula Faria D, Souza GP, Camara H, Sorgi CA, Tseng YH, Lima FB, Rodrigues AC. Glucocorticoid modulates oxidative and thermogenic function of rat brown adipose tissue and human brown adipocytes. J Cell Physiol 2024; 239:1-12. [PMID: 39091018 DOI: 10.1002/jcp.31397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Chronic and excessive glucocorticoid (GC) exposure can cause Cushing's syndrome, resulting in fat accumulation in selected body areas. Particularly in the brown adipose tissue (BAT), GC acts negatively, resulting in whitening of the tissue. We hypothesized that dysregulation of microRNAs by GC could be an additional mechanism to explain its negative actions in BAT. Male Wistar rats were divided into two groups: (1) Control sham and (2) GC group that was administered dexamethasone 6.25 mg/200 μL via osmotic pump implantation over 28 days. After this period, the animals were euthanized and BAT tissue was properly stored. Human fat cells treated with dexamethasone were used to translate the experimental results found in animals to human biology. GC-treated rat BAT presented with large lipid droplets, severely impaired thermogenic activation, and reduced glucose uptake measured by 18F-FDG PET/CT. GC exposure induced a reduction in the mitochondrial OXPHOS system and oxygen consumption. MicroRNA profiling of BAT revealed five top-regulated microRNAs and among them miR-21-5p was the most significantly upregulated in GC-treated rats compared to the control group. Although upregulation of miR-21-5p in the tissue, differentiated primary brown adipocytes from GC-treated rats had decreased miR-21-5p levels compared to the control group. To translate these results to the clinic, human brown adipocytes were treated with dexamethasone and miR-21-5p inhibitor. In human brown cells, inhibition of miR-21-5p increased brown adipocyte differentiation and prevented GC-induced glucose uptake, resulting in a lower glycolysis rate. In conclusion, high-dose GC therapy significantly impacts brown adipose tissue function, with a notable association between glucose uptake and miR-21-5p.
Collapse
Affiliation(s)
- Anaysa Paola Bolin
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Flaviane de Fatima Silva
- Department of Physiology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Barrera Salgueiro
- Department of Physiology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Araújo Dos Santos
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Sandra Andreotti
- Department of Physiology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Érica de Sousa
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Érique de Castro
- Department of Physiology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Caroline Cristiano Real
- Department of Nuclear Medicine and PET, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Daniele de Paula Faria
- Department of Radiology and Oncology, Laboratory of Nuclear Medicine (LIM43), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Gerson Profeta Souza
- Department of Medicine, Section on Integrative Physiology and Metabolism, Joslin Diabetes Center Harvard Medical School, Boston, Massachusetts, USA
| | - Henrique Camara
- Department of Medicine, Section on Integrative Physiology and Metabolism, Joslin Diabetes Center Harvard Medical School, Boston, Massachusetts, USA
| | - Carlos Arterio Sorgi
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto - FMRP/USP, Ribeirão Preto, Brazil
- Department of Chemistry, Faculdade de Filosofia, Ciencias e Letras de Ribeirão Preto - FFCLRP/USP, Ribeirão Preto, Brazil
| | - Yu-Hua Tseng
- Department of Medicine, Section on Integrative Physiology and Metabolism, Joslin Diabetes Center Harvard Medical School, Boston, Massachusetts, USA
| | - Fábio Bessa Lima
- Department of Physiology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alice Cristina Rodrigues
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Abrosimov R, Baeken MW, Hauf S, Wittig I, Hajieva P, Perrone CE, Moosmann B. Mitochondrial complex I inhibition triggers NAD +-independent glucose oxidation via successive NADPH formation, "futile" fatty acid cycling, and FADH 2 oxidation. GeroScience 2024; 46:3635-3658. [PMID: 38267672 PMCID: PMC11226580 DOI: 10.1007/s11357-023-01059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Inhibition of mitochondrial complex I (NADH dehydrogenase) is the primary mechanism of the antidiabetic drug metformin and various unrelated natural toxins. Complex I inhibition can also be induced by antidiabetic PPAR agonists, and it is elicited by methionine restriction, a nutritional intervention causing resistance to diabetes and obesity. Still, a comprehensible explanation to why complex I inhibition exerts antidiabetic properties and engenders metabolic inefficiency is missing. To evaluate this issue, we have systematically reanalyzed published transcriptomic datasets from MPP-treated neurons, metformin-treated hepatocytes, and methionine-restricted rats. We found that pathways leading to NADPH formation were widely induced, together with anabolic fatty acid biosynthesis, the latter appearing highly paradoxical in a state of mitochondrial impairment. However, concomitant induction of catabolic fatty acid oxidation indicated that complex I inhibition created a "futile" cycle of fatty acid synthesis and degradation, which was anatomically distributed between adipose tissue and liver in vivo. Cofactor balance analysis unveiled that such cycling would indeed be energetically futile (-3 ATP per acetyl-CoA), though it would not be redox-futile, as it would convert NADPH into respirable FADH2 without any net production of NADH. We conclude that inhibition of NADH dehydrogenase leads to a metabolic shift from glycolysis and the citric acid cycle (both generating NADH) towards the pentose phosphate pathway, whose product NADPH is translated 1:1 into FADH2 by fatty acid cycling. The diabetes-resistant phenotype following hepatic and intestinal complex I inhibition is attributed to FGF21- and GDF15-dependent fat hunger signaling, which remodels adipose tissue into a glucose-metabolizing organ.
Collapse
Affiliation(s)
- Roman Abrosimov
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marius W Baeken
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Samuel Hauf
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ilka Wittig
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Parvana Hajieva
- Institute for Translational Medicine, MSH Medical School, Hamburg, Germany
| | - Carmen E Perrone
- Orentreich Foundation for the Advancement of Science, Cold Spring-On-Hudson, NY, USA
| | - Bernd Moosmann
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
9
|
Wang Q, Gu X, Mo L, Wan N, Wu L, Liu S, Zhang M, Li M, Liu X, Liu Y. Per- and polyfluoroalkyl substances induce lipid metabolic impairment in fish: Integration on field investigation and laboratory study. ENVIRONMENT INTERNATIONAL 2024; 187:108687. [PMID: 38677088 DOI: 10.1016/j.envint.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
The biotoxicity of perfluoroalkyl and polyfluoroalkyl substances (PFASs) to aquatic organisms has been widely concerned. However, studies on toxic effects of PFASs are usually evaluated directly by using laboratory exposure rather than laboratory validation based on data obtained in the field. In this study, wild catfish (Silurus meridinalis) was explored on the relationship between PFASs bioaccumulation and lipid disorders. Nine and thirteen lipid metabolites were significantly associated with perfluorooctane sulfonate (PFOS) and 6:2/8:2Cl-PFESA (trade name F-53B) exposures, respectively; and the correlated lipid metabolites were the fatty acid (FA) and conjugates, FA esters, steroids, and glycerophosphate subclasses. The effects of PFASs on lipid metabolism of fish and its mechanism were further analyzed through exposure experiments. Zebrafish (Danio rerio) of different sexes underwent PFOS and F-53B exposures for 21 days at 100 ng/L and 100 μg/L. By determining gene expression levels, hepatic lipid contents, and histopathological change, the adverse effects order on lipid metabolism in male or female was 100 μg/L F-53B > 100 μg/L PFOS > 100 ng/L F-53B > 100 ng/L PFOS; the stress response in male was more intensive than that in female. PFOS and F-53B activated the peroxisome proliferator-activated receptor pathway, promoting the processes of FA and total cholesterol (T-CHO) transport, FA β-oxidation, FA synthesis, and finally induced FA and T-CHO transportation from blood into liver, then accelerated FA to FA ester transformation, and CHO into steroids. Laboratory experiments confirmed the field analysis. This study innovatively explored the adverse effects of PFOS and F-53B on lipid metabolism and their mechanisms at field and laboratory levels, highlighting concerns regarding PFASs health risks.
Collapse
Affiliation(s)
- Qiyu Wang
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xueyan Gu
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China
| | - Limin Mo
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Nannan Wan
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Liu Wu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Shuai Liu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Miao Zhang
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Mingqi Li
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xi Liu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Yu Liu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China.
| |
Collapse
|
10
|
Han G, Yu J, He J, Zheng P, Mao X, Yu B. Subtherapeutic Kitasamycin Promoted Fat Accumulation in the Longissimus Dorsi Muscle in Growing-Finishing Pigs. Animals (Basel) 2024; 14:1057. [PMID: 38612296 PMCID: PMC11010921 DOI: 10.3390/ani14071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Kitasamycin (KM), a broad-spectrum macrolide antibiotic, has implications for growth performance and residue in animals and humans. This study aimed to explore the effects of different KM doses on intramuscular fat accumulation, cecal microflora, and short-chain fatty acids (SCFAs) using a growing-finishing pig model. Forty-two pigs were divided into three groups: control, subtherapeutic KM (50 mg/kg, KM50), and therapeutic KM (200 mg/kg, KM200) diets over 8 weeks. KM50 led to increased back fat thickness, fat content in the longissimus dorsi muscle (LM), and elevated plasma total cholesterol (TC) levels (p < 0.05), supported by upregulated lipid synthesis gene expression (Acc1, Fas, Scd1) (p < 0.05) in the LM. KM50 altered cecal microflora, reducing Lactobacillus spp. and Bifidobacterium spp. abundance, while increasing SCFA concentrations (acetic acid, propionic acid, total SCFAs) (p < 0.05). KM200 had minimal effects on intestinal weight and density, with increased apparent digestibility of nutrients. These findings highlight the dose-dependent impact of KM on intramuscular fat deposition. Subtherapeutic KM induced ectopic fat deposition, emphasizing potential risks in disease treatment for humans and animals.
Collapse
Affiliation(s)
| | | | | | | | | | - Bing Yu
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (G.H.); (J.Y.); (J.H.); (P.Z.)
| |
Collapse
|
11
|
Gnaiger E. Complex II ambiguities-FADH 2 in the electron transfer system. J Biol Chem 2024; 300:105470. [PMID: 38118236 PMCID: PMC10772739 DOI: 10.1016/j.jbc.2023.105470] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/22/2023] Open
Abstract
The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). CII is the only membrane-bound enzyme in the tricarboxylic acid cycle and is part of the electron transfer system of the mitochondrial inner membrane feeding electrons into the coenzyme Q-junction. The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the β-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
Collapse
|
12
|
Sun XN, An YA, Paschoal VA, de Souza CO, Wang MY, Vishvanath L, Bueno LM, Cobb AS, Nieto Carrion JA, Ibe ME, Li C, Kidd HA, Chen S, Li W, Gupta RK, Oh DY. GPR84-mediated signal transduction affects metabolic function by promoting brown adipocyte activity. J Clin Invest 2023; 133:e168992. [PMID: 37856216 PMCID: PMC10721148 DOI: 10.1172/jci168992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023] Open
Abstract
The G protein-coupled receptor 84 (GPR84), a medium-chain fatty acid receptor, has garnered attention because of its potential involvement in a range of metabolic conditions. However, the precise mechanisms underlying this effect remain elusive. Our study has shed light on the pivotal role of GPR84, revealing its robust expression and functional significance within brown adipose tissue (BAT). Mice lacking GPR84 exhibited increased lipid accumulation in BAT, rendering them more susceptible to cold exposure and displaying reduced BAT activity compared with their WT counterparts. Our in vitro experiments with primary brown adipocytes from GPR84-KO mice revealed diminished expression of thermogenic genes and reduced O2 consumption. Furthermore, the application of the GPR84 agonist 6-n-octylaminouracil (6-OAU) counteracted these effects, effectively reinstating the brown adipocyte activity. These compelling in vivo and in vitro findings converge to highlight mitochondrial dysfunction as the primary cause of BAT anomalies in GPR84-KO mice. The activation of GPR84 induced an increase in intracellular Ca2+ levels, which intricately influenced mitochondrial respiration. By modulating mitochondrial Ca2+ levels and respiration, GPR84 acts as a potent molecule involved in BAT activity. These findings suggest that GPR84 is a potential therapeutic target for invigorating BAT and ameliorating metabolic disorders.
Collapse
Affiliation(s)
- Xue-Nan Sun
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yu A. An
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Vivian A. Paschoal
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Camila O. de Souza
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - May-yun Wang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Lorena M.A. Bueno
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ayanna S. Cobb
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph A. Nieto Carrion
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Madison E. Ibe
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Li
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Harrison A. Kidd
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Wenhong Li
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rana K. Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Da Young Oh
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
13
|
Lynes MD, Huang Q, Cora C, Su SC, Yi P, Tseng YH. A CRISPR Screen Identifies the E3 Ubiquitin Ligase Rfwd2 as a Negative Regulator of Glucose Uptake in Brown Adipocytes. Genes (Basel) 2023; 14:1865. [PMID: 37895214 PMCID: PMC10606202 DOI: 10.3390/genes14101865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Brown adipose tissue activation increases energy expenditure and has been shown to improve glucose tolerance, making it a promising target for the treatment of obesity and type 2 diabetes. Brown adipocytes differentiate into cells with multilocular lipid droplets, which can efficiently absorb and oxidize glucose; however, the mechanisms regulating these processes are not completely understood. We conducted a genome-wide loss-of-function screen using a CRISPR-based approach to identify genes that promote or inhibit adipogenesis and glucose uptake in brown adipocytes. We validated genes that negatively or positively regulated these pathways and verified that the E3-ubiquitin ligase Rfwd2 suppressed brown adipocyte glucose uptake. Brown adipocytes with CRISPR-targeted Rfwd2 deletion showed an altered proteomic landscape and increased basal, as well as insulin-stimulated, glucose uptake. These data reveal the complexity of genetic regulation of brown adipogenesis and glucose metabolism.
Collapse
Affiliation(s)
- Matthew D. Lynes
- Center for Molecular Medicine, Maine Health Institute for Research, Scarborough, ME 04074, USA
- Department of Medicine, Maine Health, Portland, ME 04101, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- Roux Institute at Northeastern University, Portland, ME 04101, USA
| | - Qian Huang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; (Q.H.); (S.-C.S.)
| | - Carolina Cora
- Center for Molecular Medicine, Maine Health Institute for Research, Scarborough, ME 04074, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Sheng-Chiang Su
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; (Q.H.); (S.-C.S.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Peng Yi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; (Q.H.); (S.-C.S.)
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; (Q.H.); (S.-C.S.)
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|