1
|
Abdelhameed NG, Ahmed YH, Yasin NAE, Mahmoud MY, El-Sakhawy MA. Effects of Aluminum Oxide Nanoparticles in the Spinal Cord of Male Wistar Rats and the Potential Ameliorative Role of Melatonin. ENVIRONMENTAL TOXICOLOGY 2025; 40:737-749. [PMID: 39705097 DOI: 10.1002/tox.24466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/22/2024]
Abstract
Aluminum oxide nanoparticles (Al2O3 NPs) are widely utilized in vaccine manufacturing and other medical preparations. Melatonin has numerous effects as an antioxidant and anti-apoptotic. The purpose of this study was to examine the beneficial impact of melatonin on Al2O3 NPs toxicity in the spinal cord. Forty male rats were divided into four groups: Group I, the negative controls (received standard diet and distilled water); Group II, Al2O3 NPs (received 30 mg/kg bw Al2O3 NPs); Group III, melatonin and Al2O3 NPs (received 30 mg/kg bw Al2O3 NPs + 10 mg/kg bw melatonin); Group IV, melatonin (received 10 mg/kg bw melatonin). All treatments were administered daily for 28 days by gastric gavage. After that, all rats were sacrificed, then, the samples from different spinal cords were subjected to histopathological, biochemical, and immunohistochemical analyses. Al2O3 NPs markedly elevated malondialdehyde and 8-hydroxydeoxyguanosine while inhibiting superoxide dismutase and catalase. Al2O3 NPs also induced histological alterations in both gray and white matter manifested by neuronal degeneration, vacuolation, axonal degeneration, ballooning, and fusion of myelin sheaths. Furthermore, immunohistochemical results displayed a strong positive expression of caspase-3. Conversely, melatonin significantly mitigated the effects of Al2O3 NPs by increasing the activities of antioxidant enzymes and inhibiting malondialdehyde and 8-hydroxydeoxyguanosine. Moreover, melatonin alleviated most histological alterations induced by Al2O3 NPs and reduced caspase-3 immunoreactivity. Collectively, melatonin could protect the spinal cord and mitigate Al2O3 NPs-induced neurotoxicity.
Collapse
Affiliation(s)
- Nermeen G Abdelhameed
- Cytology and Histology Department, Veterinary Medicine, Cairo University, Giza, Egypt
| | - Yasmine H Ahmed
- Cytology and Histology Department, Veterinary Medicine, Cairo University, Giza, Egypt
| | - Noha A E Yasin
- Cytology and Histology Department, Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Y Mahmoud
- Toxicology and Forensic Medicine Department, Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed A El-Sakhawy
- Cytology and Histology Department, Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Zhao Y, Wang H, Su G, Zhu Y. Changes in Contrast-Enhanced Ultrasonography Results, Vascular Endothelial Cell Damage, and Oxidative Stress Indicators in Rabbit Models With Varying Degrees of Testicular Injury. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025. [PMID: 40241679 DOI: 10.1002/jum.16704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 03/22/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVE It is difficult to quickly assess the degree of testicular injury in patients with blunt testicular trauma, and accurate and rapid assessment of the degree of injury is related to clinical decision-making and treatment outcomes. This study explored the sonographic characteristics of patients with different degrees of blunt testicular trauma via contrast-enhanced ultrasound (CEUS), as well as biomarkers of oxidative stress and vascular endothelial cell injury, to further evaluate the diagnostic value of these parameters in blunt testicular trauma. METHOD New Zealand male rabbits were used to establish blunt testicular trauma models of different degrees, including contusion, hematoma, rupture, and control models. Routine ultrasound and CEUS were performed immediately, 2, 4, and 6 h after modeling, and pathological examination was used to confirm the modeling results further. The levels of von Willebrand factor (vWF), endothelin-1 (ET-1), reactive oxygen species (ROS), and nitric oxide (NO) in the serum were analyzed. RESULTS According to the CEUS results, the arrival time (AT) (F = 35.159, P < .001), time to peak intensity (TTP) (F = 122.434; P < .001), and area under the curve (AUC) (F = 47.444; P < .001) of the time-intensity curves showed significant differences among the groups. There was no significant difference between Hematoma Trauma (HT) (F = 0.178; P = .91) and Peak Intensity (PI) (F = 0.172; P = .92). For biomarkers, there were significant differences in vWF (F = 40.61; P < .001), ROS (F = 106.3; P < .001), NO (F = 79.3; P < .001), and ET-1 (F = 61.94; P < .001) levels among the groups. CONCLUSIONS For blunt testicular trauma, the AT, TTP, and AUC indices of CEUS can more accurately distinguish the degree of testicular injury. Oxidative stress and endothelial cell damage may also be used as biomarkers for evaluating the degree of testicular injury.
Collapse
Affiliation(s)
- Yaxi Zhao
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Haifei Wang
- Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Gaofeng Su
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yanbin Zhu
- Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
3
|
Cheng H, Zhang X, Li Y, Cao D, Luo C, Zhang Q, Zhang S, Jiao Y. Age-related testosterone decline: mechanisms and intervention strategies. Reprod Biol Endocrinol 2024; 22:144. [PMID: 39543598 PMCID: PMC11562514 DOI: 10.1186/s12958-024-01316-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Contemporary societies exhibit delayed reproductive age and increased life expectancy. While the male reproductive system demonstrates relatively delayed aging compared to that of females, increasing age substantially impacts its function. A characteristic manifestation is age-induced testosterone decline. Testosterone, a crucial male sex hormone, plays pivotal roles in spermatogenesis and sexual function, and contributes significantly to metabolism, psychology, and cardiovascular health. Aging exerts profound effects on the hypothalamic-pituitary-gonadal axis and Leydig cells, precipitating testosterone reduction, which adversely affects male health. Exogenous testosterone supplementation can partially ameliorate age-related testosterone deficiency; however, its long-term safety remains contentious. Preserving endogenous testosterone production capacity during the aging process warrants further investigation as a potential intervention strategy.
Collapse
Affiliation(s)
- Haoyang Cheng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyan Zhang
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Yongheng Li
- Jiading Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Dezhong Cao
- First People's Hospital of Dongcheng District, Beijing, China
| | - Chenglong Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sizheng Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongzheng Jiao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Hashemi Karoii D, Baghaei H, Abroudi AS, Djamali M, Hasani Mahforoozmahalleh Z, Azizi H, Skutella T. Alteration of the metabolite interconversion enzyme in sperm and Sertoli cell of non-obstructive azoospermia: a microarray data and in-silico analysis. Sci Rep 2024; 14:25965. [PMID: 39472682 PMCID: PMC11522476 DOI: 10.1038/s41598-024-77875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
Numerous variables that regulate the metabolism of Sertoli cells and sperm have been identified, one of which is sex steroid hormones. These hormones play a vital role in maintaining energy homeostasis, influencing the overall metabolic balance of the human body. The proper functioning of the reproductive system is closely linked to energy status, as the reproductive axis responds to metabolic signals. The aim of this study was to investigate the gene expression patterns of metabolite interconversion enzymes in testicular cells (Sertoli cells and spermatogonia) of non-obstructive azoospermia (NOA) patients, as compared to normal controls, to understand the molecular mechanisms contributing to NOA. We used microarray and bioinformatics techniques to analyze 2912 genes encoding metabolite interconversion enzymes, including methyltransferase, monooxygenase, transmembrane reductase, and phosphohydrolase, in both testicular cells and normal samples. In sperm, the upregulation of MOXD1, ACAD10, PCYT1A, ARG1, METTL6, GPLD1, MAOA, and CYP46A1 was observed, while ENTPD2, CPT1C, ADC, and CYB5B were downregulated. Similarly, in the Sertoli cells of three NOA patients, RPIA, PIK3C3, LYPLA2, CA11, MBOAT7, and HDHD2 were upregulated, while NAA25, MAN2A1, CYB561, PNPLA5, RRM2, and other genes were downregulated. Using STRING and Cytoscape, we predicted the functional and molecular interactions of these proteins and identified key hub genes. Pathway enrichment analysis highlighted significant roles for G1/S-specific transcription, pyruvate metabolism, and citric acid metabolism in sperm, and the p53 signaling pathway and folate metabolism in Sertoli cells. Additionally, Weighted Gene Co-expression Network Analysis (WGCNA) and single-cell RNA sequencing (scRNA-seq) were performed to validate these findings, revealing significant alterations in gene expression and cellular distribution in NOA patients. Together, these results provide new insights into the molecular mechanisms underlying NOA and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hamoon Baghaei
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical University, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Ali Shakeri Abroudi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Melika Djamali
- Department of Biology, Faculty of Science, Tehran University, Tehran, Iran
| | | | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| |
Collapse
|
5
|
Wanta A, Noguchi K, Sugawara T, Sonoda K, Somsuan K, Wakayama T. Short-Term Treatment of Melatonin Improves the Expression of Cell Adhesion Molecules in the Testis of the Mouse Cryptorchidism Model. J Histochem Cytochem 2024; 72:623-640. [PMID: 39301779 PMCID: PMC11483776 DOI: 10.1369/00221554241279505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/26/2024] [Indexed: 09/22/2024] Open
Abstract
Melatonin plays a major role in regulating the sleep-wake cycle and enhancing testosterone production. We investigated the short-term effects of melatonin treatment for 14 consecutive days in the cryptorchidism model. We categorized experimental mice into Sham (S), Orchiopexy (O), Melatonin (Mel), and Orchiopexy + Melatonin (OMel) groups. Surgery involved inducing cryptorchidism in the left testis for seven days, followed by orchiopexy. The Mel group's testes did not descend, but they received melatonin injections after seven days of cryptorchidism. The OMel group underwent both orchiopexy and melatonin treatment. Both O and Mel groups exhibited decreased sperm and round-headed sperm in the epididymis. Significant increases were observed in the numbers of giant cells and negative Nectin-3 cells at p-value<0.05. The pattern of Cadm1 expression changed, and Nectin-2 and Nectin-3 co-expression was lacking in abnormal spermatids. Sertoli cell cytoplasm in both O and Mel groups exhibited autophagosomes and multivesicular bodies, which correlated with increased cyclooxygenase-2 expression. However, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cell numbers increased significantly in all treatment groups compared to the S group. Our study found that the combination of orchiopexy and melatonin positively influenced the expression of cell adhesion molecules (Cadm1, Nectin-2, and Nectin-3) involved in spermatogenesis, while reducing giant cells, autophagosomes, and apoptosis.
Collapse
Affiliation(s)
- Arunothai Wanta
- School of Medicine and Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai, Thailand
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhiro Noguchi
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taichi Sugawara
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kayoko Sonoda
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keerakarn Somsuan
- School of Medicine and Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai, Thailand
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Frungieri MB, Calandra RS, Matzkin ME, Rossi SP. Melatonin as a natural anti-inflammatory and anti-oxidant therapy in the testis: a focus on infertility and aging†. Biol Reprod 2024; 111:543-556. [PMID: 38869910 DOI: 10.1093/biolre/ioae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Melatonin is a pineal hormone that regulates testicular activity (i.e., steroidogenesis and spermatogenesis) through two complementary mechanisms, indirect effects exerted via the hypothalamic-adenohypophyseal axis and direct actions that take place on the different cell populations of the male gonad. The effects of increased age on the testis and the general mechanisms involved in testicular pathology leading to infertility are still only poorly understood. However, there is growing evidence that link testicular aging and idiopathic male infertility to local inflammatory and oxidative stress events. Because literature data strongly indicate that melatonin exhibits anti-inflammatory and anti-oxidant properties, this review focuses on the potential benefits exerted by this indoleamine at testicular level in male reproductive fertility and aging. Taking into account that the effects of melatonin supplementation on testicular function are currently being investigated, the overview covers not only promising prospects but also many questions concerning the future therapeutic value of this indoleamine as an anti-aging drug as well as in the management of cases of male infertility for which there are no medical treatments currently available.
Collapse
Affiliation(s)
- Mónica Beatriz Frungieri
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - Ricardo Saúl Calandra
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - María Eugenia Matzkin
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Cátedra 1, Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Soledad Paola Rossi
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Cátedra 1, Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
7
|
Cheng J, Xu J, Gu Y, Wang Y, Wang J, Sun F. Melatonin ameliorates 10-hydroxycamptothecin-induced oxidative stress and apoptosis via autophagy-regulated p62/Keap1/Nrf2 pathway in mouse testicular cells. J Pineal Res 2024; 76:e12959. [PMID: 38738543 DOI: 10.1111/jpi.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
10-Hydroxycamptothecin (HCPT) is a widely used clinical anticancer drug but has a significant side effect profile. Melatonin has a beneficial impact on the chemotherapy of different cancer cells and reproductive processes, but the effect and underlying molecular mechanism of melatonin's involvement in the HCPT-induced side effects in cells, especially in the testicular cells, are poorly understood. In this study, we found that melatonin therapy significantly restored HCPT-induced testicular cell damage and did not affect the antitumor effect of HCPT. Further analysis found that melatonin therapy suppressed HCPT-induced DNA damage associated with ataxia-telangiectasia mutated- and Rad3-related and CHK1 phosphorylation levels in the testis. Changes in apoptosis-associated protein levels (Bax, Bcl-2, p53, and Cleaved caspase-3) and in reactive oxygen species-associated proteins (Nrf2 and Keap1) and index (malondialdehyde and glutathione) suggested that melatonin treatment relieved HCPT-induced cell apoptosis and oxidative damage, respectively. Mechanistically, melatonin-activated autophagy proteins (ATG7, Beclin1, and LC3bII/I) may induce p62-dependent autophagy to degrade Keap1, eliciting Nrf2 from Keap1-Nrf2 interaction to promote antioxidant enzyme expression such as HO-1, which would salvage HCPT-induced ROS production and mitochondrial dysfunction. Collectively, this study reveals that melatonin therapy may protect testicular cells from HCPT-induced damage via the activation of autophagy, which alleviates oxidative stress, mitochondrial dysfunction, and cell apoptosis.
Collapse
Affiliation(s)
- Jinmei Cheng
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Junjie Xu
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yimin Gu
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Yueming Wang
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Jianyu Wang
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Fei Sun
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
8
|
Gautam R, Priyadarshini E, Patel AK, Arora T. Assessing the impact and mechanisms of environmental pollutants (heavy metals and pesticides) on the male reproductive system: a comprehensive review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:126-153. [PMID: 38240636 DOI: 10.1080/26896583.2024.2302738] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The escalation of technological advancements, coupled with the increased use of hazardous chemicals, has emerged as a significant concern for human health. Exposure to environmental pollutants like heavy metals and pesticides (insecticides, herbicides and fungicides) is known to significantly contribute to various health problems, particularly affecting reproductive health. Disturbances in reproductive potential and reproductive toxicity in males are particularly worrisome. Existing literature suggests that exposure to these environmental pollutants significantly alters male reproductive parameters. Thus, it is imperative to thoroughly analyze, comprehend, and evaluate their impact on male reproductive toxicity. Oxidative stress and disruptions in redox equilibrium are major factors through which these pollutants induce changes in sperm parameters and affect the reproductive system. Insecticides, fungicides, and herbicides act as endocrine disruptors, interfering with the secretion and function of reproductive hormones such as testosterone and luteinizing hormone (LH), consequently impacting spermatogenesis. Additionally, heavy metals are reported to bio-accumulate in reproductive organs, acting as endocrine disruptors and triggering oxidative stress. The co-operative association of these pollutants can lead to severe damage. In this comprehensive review, we have conducted an in-depth analysis of the impact of these environmental pollutants on the male reproductive system, shedding light on the underlying mechanisms of action.
Collapse
Affiliation(s)
- Rohit Gautam
- Division of RCN, Indian Council of Medical Research, New Delhi, India
| | | | - Arbind Kumar Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Taruna Arora
- Division of RCN, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
9
|
Lavrentiadou SN, Sapanidou V, Tzekaki EE, Margaritis I, Tsantarliotou MP. Melatonin Protects Bovine Spermatozoa by Reinforcing Their Antioxidant Defenses. Animals (Basel) 2023; 13:3219. [PMID: 37893943 PMCID: PMC10603642 DOI: 10.3390/ani13203219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Cryopreserved semen is widely used in assisted reproductive techniques. Post-thawing spermatozoa endure oxidative stress due to the high levels of reactive oxygen and nitrogen species, which are produced during the freezing/thawing process, and the depletion of antioxidants. To counteract this depletion, supplementation of sperm preparation medium with antioxidants has been widely applied. Melatonin is a hormone with diverse biological roles and a potent antioxidant, with an ameliorative effect on spermatozoa. In the present study, we assessed the effect of melatonin on thawed bovine spermatozoa during their handling. Cryopreserved bovine spermatozoa were thawed and incubated for 60 min in the presence or absence of 100 μΜ melatonin. Also, the effect of melatonin was assessed on spermatozoa further challenged by the addition of 100 μΜ hydrogen peroxide. Spermatozoa were evaluated in terms of kinematic parameters (CASA), viability (trypan blue staining) and antioxidant capacity (glutathione and NBT assay, determination of iNOS levels by Western blot analysis). In the presence of melatonin, spermatozoa presented better kinematic parameters, as the percentage of motile and rapid spermatozoa was higher in the melatonin group. They also presented higher viability and antioxidant status, as determined by the increased cellular glutathione levels and the decreased iNOS protein levels.
Collapse
Affiliation(s)
- Sophia N. Lavrentiadou
- Laboratory of Physiology, Department of Animal Structure and Function, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.S.); (I.M.); (M.P.T.)
| | - Vasiliki Sapanidou
- Laboratory of Physiology, Department of Animal Structure and Function, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.S.); (I.M.); (M.P.T.)
| | - Elena E. Tzekaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece;
| | - Ioannis Margaritis
- Laboratory of Physiology, Department of Animal Structure and Function, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.S.); (I.M.); (M.P.T.)
| | - Maria P. Tsantarliotou
- Laboratory of Physiology, Department of Animal Structure and Function, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.S.); (I.M.); (M.P.T.)
| |
Collapse
|
10
|
Tozihi M, Shademan B, Yousefi H, Avci CB, Nourazarian A, Dehghan G. Melatonin: a promising neuroprotective agent for cerebral ischemia-reperfusion injury. Front Aging Neurosci 2023; 15:1227513. [PMID: 37600520 PMCID: PMC10436333 DOI: 10.3389/fnagi.2023.1227513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Cerebral ischemia-reperfusion (CIR) injury is initiated by the generation of reactive oxygen species (ROS), which leads to the oxidation of cellular proteins, DNA, and lipids as an initial event. The reperfusion process impairs critical cascades that support cell survival, including mitochondrial biogenesis and antioxidant enzyme activity. Failure to activate prosurvival signals may result in increased neuronal cell death and exacerbation of CIR damage. Melatonin, a hormone produced naturally in the body, has high concentrations in both the cerebrospinal fluid and the brain. However, melatonin production declines significantly with age, which may contribute to the development of age-related neurological disorders due to reduced levels. By activating various signaling pathways, melatonin can affect multiple aspects of human health due to its diverse range of activities. Therefore, understanding the underlying intracellular and molecular mechanisms is crucial before investigating the neuroprotective effects of melatonin in cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Majid Tozihi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Türkiye
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
11
|
Dehdari Ebrahimi N, Sadeghi A, Ala M, Ebrahimi F, Pakbaz S, Azarpira N. Protective effects of melatonin against oxidative stress induced by metabolic disorders in the male reproductive system: a systematic review and meta-analysis of rodent models. Front Endocrinol (Lausanne) 2023; 14:1202560. [PMID: 37476491 PMCID: PMC10354453 DOI: 10.3389/fendo.2023.1202560] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
Background Male infertility is a multifaceted issue that has gained scientific interest due to its increasing rate. Studies have demonstrated that oxidative stress is involved in male infertility development. Furthermore, metabolic disorders, including obesity, diabetes, hypo- and hyperthyroidism, are risk factors for male infertility, and oxidative stress is believed to contribute to this association. Melatonin, functioning as an oxidative scavenger, may represent a promising therapeutic approach for the prevention and treatment of metabolic disorder-associated male infertility. Material and methods We systematically searched three online databases (PubMed, Scopus, and Web of Science) for studies that evaluated the effects of melatonin therapy on metabolic disorders-induce infertility in male rodents. The favorable outcomes were histopathological parameters of testicular tissue, reproductive hormones, and markers of oxidative stress. Then, meta-analyses were done for each outcome. The results are reported as standardized mean difference (Cohen's d) and 95% confidence interval. Results 24 studies with 31 outcomes were included. Rats and mice were the subjects. Studies have employed obesity, diabetes, hypothyroidism, hyperthyroidism, hyperlipidemia, and food deprivation as metabolic disorders. To induce these disorders, a high-fat diet, high-fructose diet, leptin, streptozotocin, alloxan, carbimazole, and levothyroxine were used. The outcomes included histopathologic characteristics (abnormal sperm morphology, apoptotic cells, apoptotic index, Johnsen's testicular biopsy score, seminiferous epithelial height, tubular basement membrane thickness, tubular diameter, sperm count, and motility), weight-related measurements (absolute epididymis, testis, and body weight, body weight gain, epididymal adipose tissue weight, and relative testis to body weight), hormonal characteristics (androgen receptor expression, serum FSH, LH, and testosterone level), markers of oxidative stress (tissue and serum GPx and MDA activity, tissue CAT, GSH, and SOD activity), and exploratory outcomes (serum HDL, LDL, total cholesterol, triglyceride, and blood glucose level). The overall pooled effect sizes were statistically significant for all histopathological characteristics and some markers of oxidative stress. Conclusions Melatonin can reduce damage to male rodents' gonadal tissue and improve sperm count, motility, and morphology in metabolic diseases. Future clinical studies and randomized controlled trials are needed to evaluate the safety and effectiveness of melatonin for male infertility in patients with metabolic diseases.
Collapse
Affiliation(s)
| | - Alireza Sadeghi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ebrahimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Pathology, University of Toronto, Toronto, ON, Canada
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|