1
|
Wang SR, Shen YT, Huang B, Xu HX. Ultrasound-based radiogenomics: status, applications, and future direction. Ultrasonography 2025; 44:95-111. [PMID: 39935290 PMCID: PMC11938802 DOI: 10.14366/usg.24152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/12/2024] [Indexed: 02/13/2025] Open
Abstract
Radiogenomics, an extension of radiomics, explores the relationship between imaging features and underlying gene expression patterns. This field is instrumental in providing reliable imaging surrogates, thus potentially representing an alternative to genetic testing. The rapidly growing area of radiogenomics that utilizes ultrasound (US) imaging seeks to elucidate the connections between US image characteristics and genomic data. In this review, the authors outline the radiogenomics workflow and summarize the applications of US-based radiogenomics. These include the prediction of gene variations, molecular subtypes, and other biological characteristics, as well as the exploration of the relationships between US phenotypes and cancer gene profiles. Although the field faces various challenges, US-based radiogenomics offers promising prospects and avenues for future research.
Collapse
Affiliation(s)
- Si-Rui Wang
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu-Ting Shen
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Huang
- Department of Ultrasound, Zhejiang Hospital, Hangzhou, China
| | - Hui-Xiong Xu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Chen J, Zeng H, Cheng Y, Yang B. Identifying radiogenomic associations of breast cancer based on DCE-MRI by using Siamese Neural Network with manufacturer bias normalization. Med Phys 2024; 51:7269-7281. [PMID: 38922986 DOI: 10.1002/mp.17266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND AND PURPOSE The immunohistochemical test (IHC) for Human Epidermal Growth Factor Receptor 2 (HER2) and hormone receptors (HR) provides prognostic information and guides treatment for patients with invasive breast cancer. The objective of this paper is to establish a non-invasive system for identifying HER2 and HR in breast cancer using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS In light of the absence of high-performance algorithms and external validation in previously published methods, this study utilizes 3D deep features and radiomics features to represent the information of the Region of Interest (ROI). A Siamese Neural Network was employed as the classifier, with 3D deep features and radiomics features serving as the network input. To neutralize manufacturer bias, a batch effect normalization method, ComBat, was introduced. To enhance the reliability of the study, two datasets, Predict Your Therapeutic Response with Imaging and moLecular Analysis (I-SPY 1) and I-SPY 2, were incorporated. I-SPY 2 was utilized for model training and validation, while I-SPY 1 was exclusively employed for external validation. Additionally, a breast tumor segmentation network was trained to improve radiomic feature extraction. RESULTS The results indicate that our approach achieved an average Area Under the Curve (AUC) of 0.632, with a Standard Error of the Mean (SEM) of 0.042 for HER2 prediction in the I-SPY 2 dataset. For HR prediction, our method attained an AUC of 0.635 (SEM 0.041), surpassing other published methods in the AUC metric. Moreover, the proposed method yielded competitive results in other metrics. In external validation using the I-SPY 1 dataset, our approach achieved an AUC of 0.567 (SEM 0.032) for HR prediction and 0.563 (SEM 0.033) for HER2 prediction. CONCLUSION This study proposes a non-invasive system for identifying HER2 and HR in breast cancer. Although the results do not conclusively demonstrate superiority in both tasks, they indicate that the proposed method achieved good performance and is a competitive classifier compared to other reference methods. Ablation studies demonstrate that both radiomics features and deep features for the Siamese Neural Network are beneficial for the model. The introduced manufacturer bias normalization method has been shown to enhance the method's performance. Furthermore, the external validation of the method enhances the reliability of this research. Source code, pre-trained segmentation network, Radiomics and deep features, data for statistical analysis, and Supporting Information of this article are online at: https://github.com/FORRESTHUACHEN/Siamese_Neural_Network_based_Brest_cancer_Radiogenomic.
Collapse
Affiliation(s)
- Junhua Chen
- School of Medicine, Shanghai University, Shanghai, China
| | - Haiyan Zeng
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyan Cheng
- Medical Engineering Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
| | - Banghua Yang
- School of Medicine, Shanghai University, Shanghai, China
- School of Mechatronic Engineering and Automation, Research Center of Brain Computer Engineering, Shanghai University, Shanghai, China
| |
Collapse
|
3
|
Jiang B, Bao L, He S, Chen X, Jin Z, Ye Y. Deep learning applications in breast cancer histopathological imaging: diagnosis, treatment, and prognosis. Breast Cancer Res 2024; 26:137. [PMID: 39304962 DOI: 10.1186/s13058-024-01895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
Breast cancer is the most common malignant tumor among women worldwide and remains one of the leading causes of death among women. Its incidence and mortality rates are continuously rising. In recent years, with the rapid advancement of deep learning (DL) technology, DL has demonstrated significant potential in breast cancer diagnosis, prognosis evaluation, and treatment response prediction. This paper reviews relevant research progress and applies DL models to image enhancement, segmentation, and classification based on large-scale datasets from TCGA and multiple centers. We employed foundational models such as ResNet50, Transformer, and Hover-net to investigate the performance of DL models in breast cancer diagnosis, treatment, and prognosis prediction. The results indicate that DL techniques have significantly improved diagnostic accuracy and efficiency, particularly in predicting breast cancer metastasis and clinical prognosis. Furthermore, the study emphasizes the crucial role of robust databases in developing highly generalizable models. Future research will focus on addressing challenges related to data management, model interpretability, and regulatory compliance, ultimately aiming to provide more precise clinical treatment and prognostic evaluation programs for breast cancer patients.
Collapse
Affiliation(s)
- Bitao Jiang
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, 315800, China.
- Department of Hematology and Oncology, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, 315800, China.
| | - Lingling Bao
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, 315800, China
- Department of Hematology and Oncology, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, 315800, China
| | - Songqin He
- Department of Oncology, The 906th Hospital of the Joint Logistics Force of the Chinese People's Liberation Army, Ningbo, 315100, China
| | - Xiao Chen
- Department of Oncology, The 906th Hospital of the Joint Logistics Force of the Chinese People's Liberation Army, Ningbo, 315100, China
| | - Zhihui Jin
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, 315800, China
- Department of Hematology and Oncology, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, 315800, China
| | - Yingquan Ye
- Department of Oncology, The 906th Hospital of the Joint Logistics Force of the Chinese People's Liberation Army, Ningbo, 315100, China.
| |
Collapse
|
4
|
He W, Huang W, Zhang L, Wu X, Zhang S, Zhang B. Radiogenomics: bridging the gap between imaging and genomics for precision oncology. MedComm (Beijing) 2024; 5:e722. [PMID: 39252824 PMCID: PMC11381657 DOI: 10.1002/mco2.722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 09/11/2024] Open
Abstract
Genomics allows the tracing of origin and evolution of cancer at molecular scale and underpin modern cancer diagnosis and treatment systems. Yet, molecular biomarker-guided clinical decision-making encounters major challenges in the realm of individualized medicine, consisting of the invasiveness of procedures and the sampling errors due to high tumor heterogeneity. By contrast, medical imaging enables noninvasive and global characterization of tumors at a low cost. In recent years, radiomics has overcomes the limitations of human visual evaluation by high-throughput quantitative analysis, enabling the comprehensive utilization of the vast amount of information underlying radiological images. The cross-scale integration of radiomics and genomics (hereafter radiogenomics) has the enormous potential to enhance cancer decoding and act as a catalyst for digital precision medicine. Herein, we provide a comprehensive overview of the current framework and potential clinical applications of radiogenomics in patient care. We also highlight recent research advances to illustrate how radiogenomics can address common clinical problems in solid tumors such as breast cancer, lung cancer, and glioma. Finally, we analyze existing literature to outline challenges and propose solutions, while also identifying future research pathways. We believe that the perspectives shared in this survey will provide a valuable guide for researchers in the realm of radiogenomics aiming to advance precision oncology.
Collapse
Affiliation(s)
- Wenle He
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| | - Wenhui Huang
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| | - Lu Zhang
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| | - Xuewei Wu
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| | - Shuixing Zhang
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| | - Bin Zhang
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| |
Collapse
|
5
|
Jiao P, Zheng Q, Yang R, Ni X, Wu J, Chen Z, Liu X. Prediction of HER2 Status Based on Deep Learning in H&E-Stained Histopathology Images of Bladder Cancer. Biomedicines 2024; 12:1583. [PMID: 39062155 PMCID: PMC11274957 DOI: 10.3390/biomedicines12071583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Epidermal growth factor receptor 2 (HER2) has been widely recognized as one of the targets for bladder cancer immunotherapy. The key to implementing personalized treatment for bladder cancer patients lies in achieving rapid and accurate diagnosis. To tackle this challenge, we have pioneered the application of deep learning techniques to predict HER2 expression status from H&E-stained pathological images of bladder cancer, bypassing the need for intricate IHC staining or high-throughput sequencing methods. Our model, when subjected to rigorous testing within the cohort from the People's Hospital of Wuhan University, which encompasses 106 cases, has exhibited commendable performance on both the validation and test datasets. Specifically, the validation set yielded an AUC of 0.92, an accuracy of 0.86, a sensitivity of 0.87, a specificity of 0.83, and an F1 score of 86.7%. The corresponding metrics for the test set were 0.88 for AUC, 0.67 for accuracy, 0.56 for sensitivity, 0.75 for specificity, and 77.8% for F1 score. Additionally, in a direct comparison with pathologists, our model demonstrated statistically superior performance, with a p-value less than 0.05, highlighting its potential as a powerful diagnostic tool.
Collapse
Affiliation(s)
- Panpan Jiao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (P.J.); (Q.Z.); (R.Y.); (X.N.); (J.W.)
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingyuan Zheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (P.J.); (Q.Z.); (R.Y.); (X.N.); (J.W.)
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Rui Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (P.J.); (Q.Z.); (R.Y.); (X.N.); (J.W.)
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xinmiao Ni
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (P.J.); (Q.Z.); (R.Y.); (X.N.); (J.W.)
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiejun Wu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (P.J.); (Q.Z.); (R.Y.); (X.N.); (J.W.)
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (P.J.); (Q.Z.); (R.Y.); (X.N.); (J.W.)
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (P.J.); (Q.Z.); (R.Y.); (X.N.); (J.W.)
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
6
|
Lin JY, Ye JY, Chen JG, Lin ST, Lin S, Cai SQ. Prediction of Receptor Status in Radiomics: Recent Advances in Breast Cancer Research. Acad Radiol 2024; 31:3004-3014. [PMID: 38151383 DOI: 10.1016/j.acra.2023.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
Breast cancer is a multifactorial heterogeneous disease and the leading cause of cancer-related deaths in women; its diagnosis and treatment require clinical sensitivity and a comprehensive disciplinary research approach. The expression of different receptors on tumor cells not only provides the basis for molecular typing of breast cancer but also has a decisive role in the diagnosis, treatment, and prognosis of breast cancer. To date, immunohistochemistry (IHC), which uses invasive histological sampling, has been extensively used in clinical practice to analyze the status of receptors and to make an accurate diagnosis of breast cancer. As an invasive assay, IHC can provide important biological information on tumors at a single point in time, but cannot predict future changes (due to treatment or tumor mutations) without additional invasive procedures. These issues highlight the need to develop a non-invasive method for predicting receptor status. The emerging field of radiomics may offer a non-invasive approach to identification of receptor status without requiring biopsy. In this paper, we present a review of the latest research results in radiomics for predicting the status of breast cancer receptors, with potential important clinical applications.
Collapse
Affiliation(s)
- Jun-Yuan Lin
- Department of Radiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.L., S.Q.C.)
| | - Jia-Yi Ye
- Department of Radiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.L., S.Q.C.)
| | - Jin-Guo Chen
- Department of Radiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.L., S.Q.C.)
| | - Shu-Ting Lin
- Department of Radiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.L., S.Q.C.)
| | - Shu Lin
- Center of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.Y., J.G.C., S.T.L., S.L.); Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia (S.L.)
| | - Si-Qing Cai
- Department of Radiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.L., S.Q.C.).
| |
Collapse
|
7
|
Du Y, Li F, Zhang M, Pan J, Wu T, Zheng Y, Chen J, Yao M, Kuang Y, Wu R, Diao X. The Emergence of the Potential Therapeutic Targets: Ultrasound-Based Radiomics in the Prediction of Human Epidermal Growth Factor Receptor 2-Low Breast Cancer. Acad Radiol 2024; 31:2674-2683. [PMID: 38309977 DOI: 10.1016/j.acra.2024.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
RATIONALE AND OBJECTIVES To evaluate whether ultrasound-based radiomics features can effectively predict HER2-low expression in patients with breast cancer (BC). MATERIAL AND METHODS Between January 2021 and June 2023, patients who received US scans with pathologically confirmed BC in this multicenter study were included. In total, 383 patients from institution 1 were comprised of training set, 233 patients from institution 2 were comprised of validation set and 149 patients from institution 3 were comprised of external validation set. Radiomics features were derived from conventional ultrasound (US) images. The minimum redundancy and maximum relevancy and the least absolute shrinkage and selector operation algorithm were used to generate an US-based radiomics score (RS). Multivariable logistic regression analysis was used to select variables associated with HER2 expressions. The diagnostic performance of the RS was evaluated through the area under the receiver operating characteristic curve (AUC). RESULTS In the training set, the RS yield an AUC of 0.81 (95%CI: 0.76-0.84) for differentiation HER2-zero from HER2-low and -positive cases, and performed well in validation set (AUC 0.84, 95%CI: 0.78-0.88) and external validation set (AUC 0.82, 95%CI: 0.73-0.90). In the subgroups analysis, the RS showed good performance in distinguishing HER2-zero from HER2 1 + , HER2 2 + and HER2-low tumors (AUC range, 0.79-0.87). CONCLUSION The RS based on conventional US is proven effective for predicting HER2-low expression in BC.
Collapse
Affiliation(s)
- Yu Du
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Fang Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Manqi Zhang
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Jiazhen Pan
- Department of Ultrasound, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, No. 42 Baiziting, Nanjing 210009, China
| | - Tingting Wu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Jing Chen
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Minghua Yao
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Yi Kuang
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Rong Wu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Xuehong Diao
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China.
| |
Collapse
|
8
|
Fu Y, Zhou J, Li J. Diagnostic performance of ultrasound-based artificial intelligence for predicting key molecular markers in breast cancer: A systematic review and meta-analysis. PLoS One 2024; 19:e0303669. [PMID: 38820391 PMCID: PMC11142607 DOI: 10.1371/journal.pone.0303669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/29/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Breast cancer (BC) diagnosis and treatment rely heavily on molecular markers such as HER2, Ki67, PR, and ER. Currently, these markers are identified by invasive methods. OBJECTIVE This meta-analysis investigates the diagnostic accuracy of ultrasound-based radiomics as a novel approach to predicting these markers. METHODS A comprehensive search of PubMed, EMBASE, and Web of Science databases was conducted to identify studies evaluating ultrasound-based radiomics in BC. Inclusion criteria encompassed research on HER2, Ki67, PR, and ER as key molecular markers. Quality assessment using Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and Radiomics Quality Score (RQS) was performed. The data extraction step was performed systematically. RESULTS Our meta-analysis quantifies the diagnostic accuracy of ultrasound-based radiomics with a sensitivity and specificity of 0.76 and 0.78 for predicting HER2, 0.80, and 0.76 for Ki67 biomarkers. Studies did not provide sufficient data for quantitative PR and ER prediction analysis. The overall quality of studies based on the RQS tool was moderate. The QUADAS-2 evaluation showed that the studies had an unclear risk of bias regarding the flow and timing domain. CONCLUSION Our analysis indicated that AI models have a promising accuracy for predicting key molecular biomarkers' status in BC patients. We performed the quantitative analysis for HER2 and Ki67 biomarkers which yielded a moderate to high accuracy. However, studies did not provide adequate data for meta-analysis of ER and PR prediction accuracy of developed models. The overall quality of the studies was acceptable. In future research, studies need to report the results thoroughly. Also, we suggest more prospective studies from different centers.
Collapse
Affiliation(s)
- Yuxia Fu
- Department of Ultrasound, Dianjiang People’s Hospital of Chongqing, Chongqing, China
| | - Jialin Zhou
- Department of Ultrasound, Dianjiang People’s Hospital of Chongqing, Chongqing, China
| | - Junfeng Li
- Department of Oncology, Dianjiang People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
9
|
Barcroft JF, Linton-Reid K, Landolfo C, Al-Memar M, Parker N, Kyriacou C, Munaretto M, Fantauzzi M, Cooper N, Yazbek J, Bharwani N, Lee SR, Kim JH, Timmerman D, Posma J, Savelli L, Saso S, Aboagye EO, Bourne T. Machine learning and radiomics for segmentation and classification of adnexal masses on ultrasound. NPJ Precis Oncol 2024; 8:41. [PMID: 38378773 PMCID: PMC10879532 DOI: 10.1038/s41698-024-00527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Ultrasound-based models exist to support the classification of adnexal masses but are subjective and rely upon ultrasound expertise. We aimed to develop an end-to-end machine learning (ML) model capable of automating the classification of adnexal masses. In this retrospective study, transvaginal ultrasound scan images with linked diagnoses (ultrasound subjective assessment or histology) were extracted and segmented from Imperial College Healthcare, UK (ICH development dataset; n = 577 masses; 1444 images) and Morgagni-Pierantoni Hospital, Italy (MPH external dataset; n = 184 masses; 476 images). A segmentation and classification model was developed using convolutional neural networks and traditional radiomics features. Dice surface coefficient (DICE) was used to measure segmentation performance and area under the ROC curve (AUC), F1-score and recall for classification performance. The ICH and MPH datasets had a median age of 45 (IQR 35-60) and 48 (IQR 38-57) years old and consisted of 23.1% and 31.5% malignant cases, respectively. The best segmentation model achieved a DICE score of 0.85 ± 0.01, 0.88 ± 0.01 and 0.85 ± 0.01 in the ICH training, ICH validation and MPH test sets. The best classification model achieved a recall of 1.00 and F1-score of 0.88 (AUC:0.93), 0.94 (AUC:0.89) and 0.83 (AUC:0.90) in the ICH training, ICH validation and MPH test sets, respectively. We have developed an end-to-end radiomics-based model capable of adnexal mass segmentation and classification, with a comparable predictive performance (AUC 0.90) to the published performance of expert subjective assessment (gold standard), and current risk models. Further prospective evaluation of the classification performance of this ML model against existing methods is required.
Collapse
Affiliation(s)
- Jennifer F Barcroft
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Obstetrics and Gynaecology, Imperial College Healthcare NHS Trust, London, UK
| | | | - Chiara Landolfo
- Department of Obstetrics and Gynaecology, Imperial College Healthcare NHS Trust, London, UK
| | - Maya Al-Memar
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Obstetrics and Gynaecology, Imperial College Healthcare NHS Trust, London, UK
| | - Nina Parker
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Obstetrics and Gynaecology, Imperial College Healthcare NHS Trust, London, UK
| | - Chris Kyriacou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Obstetrics and Gynaecology, Imperial College Healthcare NHS Trust, London, UK
| | - Maria Munaretto
- Department of Obstetrics and Gynaecology, Ospedale Morgagni-Pierantoni, Forli, Italy
| | - Martina Fantauzzi
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Nina Cooper
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Obstetrics and Gynaecology, Imperial College Healthcare NHS Trust, London, UK
| | - Joseph Yazbek
- Department of Obstetrics and Gynaecology, Imperial College Healthcare NHS Trust, London, UK
| | - Nishat Bharwani
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
| | - Sa Ra Lee
- Department of Obstetrics and Gynaecology, Asan Medical Center, Seoul, South Korea
| | - Ju Hee Kim
- Department of Obstetrics and Gynaecology, Asan Medical Center, Seoul, South Korea
| | - Dirk Timmerman
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Joram Posma
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Luca Savelli
- Department of Obstetrics and Gynaecology, Ospedale Morgagni-Pierantoni, Forli, Italy
| | - Srdjan Saso
- Department of Obstetrics and Gynaecology, Imperial College Healthcare NHS Trust, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, London, UK.
| | - Tom Bourne
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Obstetrics and Gynaecology, Imperial College Healthcare NHS Trust, London, UK
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Eida S, Fukuda M, Katayama I, Takagi Y, Sasaki M, Mori H, Kawakami M, Nishino T, Ariji Y, Sumi M. Metastatic Lymph Node Detection on Ultrasound Images Using YOLOv7 in Patients with Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:274. [PMID: 38254765 PMCID: PMC10813890 DOI: 10.3390/cancers16020274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Ultrasonography is the preferred modality for detailed evaluation of enlarged lymph nodes (LNs) identified on computed tomography and/or magnetic resonance imaging, owing to its high spatial resolution. However, the diagnostic performance of ultrasonography depends on the examiner's expertise. To support the ultrasonographic diagnosis, we developed YOLOv7-based deep learning models for metastatic LN detection on ultrasonography and compared their detection performance with that of highly experienced radiologists and less experienced residents. We enrolled 462 B- and D-mode ultrasound images of 261 metastatic and 279 non-metastatic histopathologically confirmed LNs from 126 patients with head and neck squamous cell carcinoma. The YOLOv7-based B- and D-mode models were optimized using B- and D-mode training and validation images and their detection performance for metastatic LNs was evaluated using B- and D-mode testing images, respectively. The D-mode model's performance was comparable to that of radiologists and superior to that of residents' reading of D-mode images, whereas the B-mode model's performance was higher than that of residents but lower than that of radiologists on B-mode images. Thus, YOLOv7-based B- and D-mode models can assist less experienced residents in ultrasonographic diagnoses. The D-mode model could raise the diagnostic performance of residents to the same level as experienced radiologists.
Collapse
Affiliation(s)
- Sato Eida
- Department of Radiology and Biomedical Informatics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (S.E.); (I.K.); (Y.T.); (M.S.); (H.M.); (M.K.); (T.N.)
| | - Motoki Fukuda
- Department of Oral Radiology, Osaka Dental University, 1-5-17 Otemae, Chuo-ku, Osaka 540-0008, Japan; (M.F.); (Y.A.)
| | - Ikuo Katayama
- Department of Radiology and Biomedical Informatics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (S.E.); (I.K.); (Y.T.); (M.S.); (H.M.); (M.K.); (T.N.)
| | - Yukinori Takagi
- Department of Radiology and Biomedical Informatics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (S.E.); (I.K.); (Y.T.); (M.S.); (H.M.); (M.K.); (T.N.)
| | - Miho Sasaki
- Department of Radiology and Biomedical Informatics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (S.E.); (I.K.); (Y.T.); (M.S.); (H.M.); (M.K.); (T.N.)
| | - Hiroki Mori
- Department of Radiology and Biomedical Informatics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (S.E.); (I.K.); (Y.T.); (M.S.); (H.M.); (M.K.); (T.N.)
| | - Maki Kawakami
- Department of Radiology and Biomedical Informatics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (S.E.); (I.K.); (Y.T.); (M.S.); (H.M.); (M.K.); (T.N.)
| | - Tatsuyoshi Nishino
- Department of Radiology and Biomedical Informatics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (S.E.); (I.K.); (Y.T.); (M.S.); (H.M.); (M.K.); (T.N.)
| | - Yoshiko Ariji
- Department of Oral Radiology, Osaka Dental University, 1-5-17 Otemae, Chuo-ku, Osaka 540-0008, Japan; (M.F.); (Y.A.)
| | - Misa Sumi
- Department of Radiology and Biomedical Informatics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (S.E.); (I.K.); (Y.T.); (M.S.); (H.M.); (M.K.); (T.N.)
| |
Collapse
|
11
|
Xu R, You T, Liu C, Lin Q, Guo Q, Zhong G, Liu L, Ouyang Q. Ultrasound-based radiomics model for predicting molecular biomarkers in breast cancer. Front Oncol 2023; 13:1216446. [PMID: 37583930 PMCID: PMC10424446 DOI: 10.3389/fonc.2023.1216446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Background Breast cancer (BC) is the most common cancer in women and is highly heterogeneous. BC can be classified into four molecular subtypes based on the status of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and proliferation marker protein Ki-67. However, they can only be obtained by biopsy or surgery, which is invasive. Radiomics can noninvasively predict molecular expression via extracting the image features. Nevertheless, there is a scarcity of data available regarding the prediction of molecular biomarker expression using ultrasound (US) images in BC. Objectives To investigate the prediction performance of US radiomics for the assessment of molecular profiling in BC. Methods A total of 342 patients with BC who underwent preoperative US examination between January 2013 and December 2021 were retrospectively included. They were confirmed by pathology and molecular subtype analysis of ER, PR, HER2 and Ki-67. The radiomics features were extracted and four molecular models were constructed through support vector machine (SVM). Pearson correlation coefficient heatmaps are employed to analyze the relationship between selected features and their predictive power on molecular expression. The receiver operating characteristic curve was used for the prediction performance of US radiomics in the assessment of molecular profiling. Results 359 lesions with 129 ER- and 230 ER+, 163 PR- and 196 PR+, 265 HER2- and 94 HER2+, 114 Ki-67- and 245 Ki-67+ expression were included. 1314 features were extracted from each ultrasound image. And there was a significant difference of some specific radiomics features between the molecule positive and negative groups. Multiple features demonstrated significant association with molecular biomarkers. The area under curves (AUCs) were 0.917, 0.835, 0.771, and 0.896 in the training set, while 0.868, 0.811, 0.722, and 0.706 in the validation set to predict ER, PR, HER2, and Ki-67 expression respectively. Conclusion Ultrasound-based radiomics provides a promising method for predicting molecular biomarker expression of ER, PR, HER2, and Ki-67 in BC.
Collapse
Affiliation(s)
- Rong Xu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Tao You
- Department of Ultrasound, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Chen Liu
- Department of Breast, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Qing Lin
- Department of Ultrasound, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Quehui Guo
- Department of Ultrasound, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Guodong Zhong
- Department of Pathology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Leilei Liu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Qiufang Ouyang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|