1
|
Jenkins KM, Foster W, Napoli JG, Meyer DL, Bever GS, Bhullar BAS. Cranial anatomy and phylogenetic affinities of Bolosaurus major, with new information on the unique bolosaurid feeding apparatus and evolution of the impedance-matching ear. Anat Rec (Hoboken) 2024. [PMID: 39072999 DOI: 10.1002/ar.25546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Resolving the phylogenetic relationships of early amniotes, in particular stem reptiles, remains a difficult problem. Three-dimensional morphological analysis of well-preserved stem-reptile specimens can reveal important anatomical data and clarify regions of phylogeny. Here, we present the first thorough description of the unusual early Permian stem reptile Bolosaurus major, including the first comprehensive description of a bolosaurid braincase. We describe previously obscured details of the palate, allowing for insight into bolosaurid feeding mechanics. Aspects of the rostrum, palate, mandible, and neurocranium suggest that B. major had a particularly strong bite. We additionally found B. major has a surprisingly slender stapes, similar to that of the middle Permian stem reptile Macroleter poezicus, which may suggest enhanced hearing abilities compared to other Paleozoic amniotes (e.g., captorhinids). We incorporated our new anatomical information into a large phylogenetic matrix (150 OTUs, 590 characters) to explore the relationship of Bolosauridae among stem reptiles. Our analyses generally recovered a paraphyletic "Parareptilia," and found Bolosauridae to diverge after Captorhinidae + Araeoscelidia. We also included B. major within a smaller matrix (10 OTUs, 27 characters) designed to explore the interrelationships of Bolosauridae and found all species of Bolosaurus to be monophyletic. While reptile relationships still require further investigation, our phylogeny suggests repeated evolution of impedance-matching ears in Paleozoic stem reptiles.
Collapse
Affiliation(s)
- Kelsey M Jenkins
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
- Yale Peabody Museum, New Haven, Connecticut, USA
| | - William Foster
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James G Napoli
- Division of Paleontology, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Division of Paleontology, American Museum of Natural History, New York, New York, USA
| | - Dalton L Meyer
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Gabriel S Bever
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bhart-Anjan S Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
- Yale Peabody Museum, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Formoso KK, Habib MB, Vélez-Juarbe J. The Role of Locomotory Ancestry on Secondarily Aquatic Transitions. Integr Comp Biol 2023; 63:1140-1153. [PMID: 37591628 DOI: 10.1093/icb/icad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023] Open
Abstract
Land-to-sea evolutionary transitions are great transformations where terrestrial amniote clades returned to aquatic environments. These secondarily aquatic amniote clades include charismatic marine mammal and marine reptile groups, as well as countless semi-aquatic forms that modified their terrestrial locomotor anatomy to varying degrees to be suited for swimming via axial and/or appendicular propulsion. The terrestrial ancestors of secondarily aquatic groups would have started off swimming strikingly differently from one another given their evolutionary histories, as inferred by the way modern terrestrial amniotes swim. With such stark locomotor functional differences between reptiles and mammals, we ask if this impacted these transitions. Axial propulsion appears favored by aquatic descendants of terrestrially sprawling quadrupedal reptiles, with exceptions. Appendicular propulsion is more prevalent across the aquatic descendants of ancestrally parasagittal-postured mammals, particularly early transitioning forms. Ancestral terrestrial anatomical differences that precede secondarily aquatic invasions between mammals and reptiles, as well as the distribution of axial and appendicular swimming in secondarily aquatic clades, may indicate that ancestral terrestrial locomotor anatomy played a role, potentially in both constraint and facilitation, in certain aquatic locomotion styles. This perspective of the land-to-sea transition can lead to new avenues of functional, biomechanical, and developmental study of secondarily aquatic transitions.
Collapse
Affiliation(s)
- Kiersten K Formoso
- Department of Earth Sciences, University of Southern California, 3651 Trousedale Pkwy, Zumberge Hall, Los Angeles, CA 90089, USA
- Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Blvd, Los Angeles, CA 90007-4057, USA
| | - Michael B Habib
- Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Blvd, Los Angeles, CA 90007-4057, USA
- UCLA Cardiac Arrhythmia Center, Division of Cardiology, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
| | - Jorge Vélez-Juarbe
- Department of Mammalogy, Natural History Museum of Los Angeles County, 900 Exposition Blvd, Los Angelss, CA 90007-4057, USA
| |
Collapse
|
3
|
Verrière A, Fröbisch J. Ontogenetic, dietary, and environmental shifts in Mesosauridae. PeerJ 2022; 10:e13866. [PMID: 36132215 PMCID: PMC9484468 DOI: 10.7717/peerj.13866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023] Open
Abstract
Mesosaurs are the first secondarily aquatic amniotes and one of the most enigmatic clades of reptiles from the early Permian. They have long puzzled paleontologists with their unique morphologies: possessing an elongated skull with thin needle-like teeth, a long neck, large webbed hindlimbs, banana-shaped pachyosteosclerotic ribs, and a long tail. Here, we look at a large dataset of morphometric measurements from 270 mesosaur specimens in collections around the world. These measurements characterize skull, tooth, and limb proportions and their variation with size. This data presents evidence of surprising ontogenetic changes in these animals as well as new insights into their taxonomy. Our results support the recent hypothesis that Mesosaurus tenuidens is the only valid species within Mesosauridae and suggest that "Stereosternum tumidum" and "Brazilosaurus sanpauloensis" represent immature stages or incomplete specimens of Mesosaurus by showing that all three species occupy an incomplete portion of the overall size range of mesosaurs. Under the single-species hypothesis, we highlight a number of ontogenetic trends: (1) a reduction in skull length accompanied by an elongation of the snout within the skull, (2) an elongation of teeth, (3) a reduction in hind limb length, and (4) a reduction in manus length. Concurrent with these changes, we hypothesize that mesosaurs went through a progressive ecological shift during their growth, with juveniles being more common in shallow water deposits, whereas large adults are more frequent in pelagic sediments. These parallel changes suggest that mesosaurs underwent a diet and lifestyle transition during ontogeny, from an active predatory lifestyle as juveniles to a more filter-feeding diet as adults. We propose that this change in lifestyle and environments may have been driven by the pursuit of different food sources, but a better understanding of the Irati Sea fauna will be necessary to obtain a more definitive answer to the question of young mesosaur diet.
Collapse
Affiliation(s)
- Antoine Verrière
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung und Institut für Biologie, Berlin, Germany
| | - Jörg Fröbisch
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung und Institut für Biologie, Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Hone DWE, Persons WS, Le Comber SC. New data on tail lengths and variation along the caudal series in the non-avialan dinosaurs. PeerJ 2021; 9:e10721. [PMID: 33628634 PMCID: PMC7891087 DOI: 10.7717/peerj.10721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/16/2020] [Indexed: 11/20/2022] Open
Abstract
The tails of non-avialan dinosaurs varied considerably in terms of overall length, total number of vertebrae, and gross form and function. A new dataset confirms that there is little or no consistent relationship between tail length and snout-sacrum length. Consequently, attempts to estimate one from the other are likely to be very error-prone. Patterns of changes in centra lengths across the caudal series vary among non-avian dinosaurs. However, some overarching patterns do emerge. A number of taxa show (anterior to posterior) a series of short centra, followed by a series of longer centra, with the remainder of the tail consisting of a long series of centra tapering in length. This pattern is consistent with functional constraints, and the anterior series of longer centra are coincident with the major attachments of femoral musculature. This pattern is not present in many basal taxa and may have evolved independently in different dinosaurian groups, further suggesting functional importance.
Collapse
Affiliation(s)
- David W E Hone
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - W Scott Persons
- Mace Brown Museum of Natural History, College of Charleston, Charleston, SC, United States of America
| | - Steven C Le Comber
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
5
|
Szczygielski T, Dróżdż D, Surmik D, Kapuścińska A, Rothschild BM. New tomographic contribution to characterizing mesosaurid congenital scoliosis. PLoS One 2019; 14:e0212416. [PMID: 30811483 PMCID: PMC6392265 DOI: 10.1371/journal.pone.0212416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/02/2019] [Indexed: 11/19/2022] Open
Abstract
The presence of a pathology in the vertebral column of the early Permian mesosaurid specimen ZPAL R VII/1, being one of the oldest amniotic occurrences of congenital scoliosis caused by a hemivertebra, was recently recognized. Here we provide CT data to further characterize the phenomenon. The affected hemivertebra is wedged (incarcerated) between the preceding and succeeding vertebrae. The neural canal is misshapen but continuous and the number of dorsal ribs on each side of the specimen corresponds with the number of the vertebrae, documenting its congenital (homeobox-related) derivation.
Collapse
Affiliation(s)
- Tomasz Szczygielski
- Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| | - Dawid Dróżdż
- Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland
| | - Dawid Surmik
- Faculty of Earth Sciences, University of Silesia, Sosnowiec, Poland
| | | | - Bruce M. Rothschild
- Carnegie Museum, Pittsburgh, Pennsylvania, United States of America
- Indiana University Ball Memorial Hospital, Muncie, Indiana, United States of America
| |
Collapse
|