1
|
Mulvey LPA, May MR, Brown JM, Höhna S, Wright AM, Warnock RCM. Assessing the Adequacy of Morphological Models Using Posterior Predictive Simulations. Syst Biol 2025; 74:34-52. [PMID: 39374100 DOI: 10.1093/sysbio/syae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024] Open
Abstract
Reconstructing the evolutionary history of different groups of organisms provides insight into how life originated and diversified on Earth. Phylogenetic trees are commonly used to estimate this evolutionary history. Within Bayesian phylogenetics a major step in estimating a tree is in choosing an appropriate model of character evolution. While the most common character data used is molecular sequence data, morphological data remains a vital source of information. The use of morphological characters allows for the incorporation fossil taxa, and despite advances in molecular sequencing, continues to play a significant role in neontology. Moreover, it is the main data source that allows us to unite extinct and extant taxa directly under the same generating process. We therefore require suitable models of morphological character evolution, the most common being the Mk Lewis model. While it is frequently used in both palaeobiology and neontology, it is not known whether the simple Mk substitution model, or any extensions to it, provide a sufficiently good description of the process of morphological evolution. In this study we investigate the impact of different morphological models on empirical tetrapod datasets. Specifically, we compare unpartitioned Mk models with those where characters are partitioned by the number of observed states, both with and without allowing for rate variation across sites and accounting for ascertainment bias. We show that the choice of substitution model has an impact on both topology and branch lengths, highlighting the importance of model choice. Through simulations, we validate the use of the model adequacy approach, posterior predictive simulations, for choosing an appropriate model. Additionally, we compare the performance of model adequacy with Bayesian model selection. We demonstrate how model selection approaches based on marginal likelihoods are not appropriate for choosing between models with partition schemes that vary in character state space (i.e., that vary in Q-matrix state size). Using posterior predictive simulations, we found that current variations of the Mk model are often performing adequately in capturing the evolutionary dynamics that generated our data. We do not find any preference for a particular model extension across multiple datasets, indicating that there is no "one size fits all" when it comes to morphological data and that careful consideration should be given to choosing models of discrete character evolution. By using suitable models of character evolution, we can increase our confidence in our phylogenetic estimates, which should in turn allow us to gain more accurate insights into the evolutionary history of both extinct and extant taxa.
Collapse
Affiliation(s)
- Laura P A Mulvey
- GeoZentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Loewenichstraße 28, 91054 Erlangen, Germany
| | - Michael R May
- Department of Evolution and Ecology, University of California Davis, Davis, 2320 Storer Hall, One Shields Avenue Davis, CA 95616, USA
| | - Jeremy M Brown
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, 202 Life Science Bldg, Baton Rouge, LA 70803, USA
| | - Sebastian Höhna
- GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 München, Germany
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany
| | - April M Wright
- Department of Biological Sciences, Biology Building, SLU 10736, Southeastern Louisiana University, Hammond, LA 70402, USA
| | - Rachel C M Warnock
- GeoZentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Loewenichstraße 28, 91054 Erlangen, Germany
| |
Collapse
|
2
|
Matamales-Andreu R, Kammerer CF, Angielczyk KD, Simões TR, Mujal E, Galobart À, Fortuny J. Early-middle Permian Mediterranean gorgonopsian suggests an equatorial origin of therapsids. Nat Commun 2024; 15:10346. [PMID: 39690157 DOI: 10.1038/s41467-024-54425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Therapsids were a dominant component of middle-late Permian terrestrial ecosystems worldwide, eventually giving rise to mammals during the early Mesozoic. However, little is currently known about the time and place of origin of Therapsida. Here we describe a definitive therapsid from the lower-?middle Permian palaeotropics, a partial skeleton of a gorgonopsian from the island of Mallorca, western Mediterranean. This specimen represents, to our knowledge, the oldest gorgonopsian record worldwide, and possibly the oldest known therapsid. Using emerging relaxed clock models, we provide a quantitative timeline for the origin and early diversification of therapsids, indicating a long ghost lineage leading to the evolutionary radiation of all major therapsid clades within less than 10 Myr, in the aftermath of Olson's Extinction. Our findings place this unambiguous early therapsid in an ancient summer wet biome of equatorial Pangaea, thus suggesting that the group originated in tropical rather than temperate regions.
Collapse
Affiliation(s)
- Rafel Matamales-Andreu
- MUCBO | Museu Balear de Ciències Naturals, FJBS-MBCN, ctra. Palma-Port de Sóller km 30.5, 07100, Sóller, Mallorca, Illes Balears, Spain.
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193, Cerdanyola del Vallès, Barcelona, Catalunya, Spain.
| | - Christian F Kammerer
- North Carolina Museum of Natural Sciences, 11 W. Jones Street, Raleigh, NC, 27604, USA
| | - Kenneth D Angielczyk
- Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Tiago R Simões
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08540, USA
| | - Eudald Mujal
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193, Cerdanyola del Vallès, Barcelona, Catalunya, Spain
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191, Stuttgart, Germany
| | - Àngel Galobart
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193, Cerdanyola del Vallès, Barcelona, Catalunya, Spain
- Museu de la Conca Dellà, c/ del Museu 4, 25650, Isona i Conca Dellà, Lleida, Spain
| | - Josep Fortuny
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193, Cerdanyola del Vallès, Barcelona, Catalunya, Spain
| |
Collapse
|
3
|
Fau M, Wright DF, Ewin TA, Gale AS, Villier L. Phylogenetic and taxonomic revisions of Jurassic sea stars support a delayed evolutionary origin of the Asteriidae. PeerJ 2024; 12:e18169. [PMID: 39494292 PMCID: PMC11531740 DOI: 10.7717/peerj.18169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/03/2024] [Indexed: 11/05/2024] Open
Abstract
Background The superorder Forcipulatacea is a major clade of sea stars with approximately 400 extant species across three orders (Forcipulatida, Brisingida, Zorocallida). Over the past century, the systematics of Forcipulatacea have undergone multiple revisions by various authors, with some considering numerous families such as Asteriidae, Zoroasteridae, Pedicellasteridae, Stichasteridae, Heliasteridae, Labidiasteridae, and Neomorphasteridae, while others recognized only two families (i.e., Asteriidae and Zoroasteridae). Recent molecular analyses have shown the artificial nature of some of these groupings. Notably, four well-supported clades (Zorocallida, Brisingida, Stichasteridae, and Asteriidae) emerged from a synthesis of morphological and molecular evidence. The majority of extinct forcipulatacean species have been placed in modern families. However, many of these fossil species are in need of revision, especially those species placed within the Asteriidae, the largest of all forcipulatacean families. Methods In light of recent advancements in forcipulatacean systematics, we comprehensively reassess six well-preserved Jurassic forcipulatacean taxa, including the earliest crown-group members from the Hettangian (∼201.4 Ma), and also describe two new Jurassic genera, Forbesasterias gen. nov. and Marbleaster gen. nov. We assembled the largest and most comprehensive phylogenetic matrix for this group, sampling 42 fossil and extant forcipulatacean species for 120 morphological characters. To infer phylogenetic relationships and construct an evolutionary timeline for the diversification of major clades, we conducted a Bayesian tip-dating analysis incorporating the fossilized birth-death process. A total of 13 fossil species were sampled in our analysis, including six taxonomically revaluated herein, two recently reappraised species from the Jurassic, and five additional species from the Cretaceous and Miocene. Results Contrary to prior assumptions, our results indicate that none of the Jurassic taxa investigated belong to Asteriidae or any other modern families, and instead represent stem-forcipulatids. Furthermore, our phylogenetic results suggest that Asteriidae likely originated during the late Cretaceous. Our findings highlight a greater early diversity within the Forcipulatacea than previously presumed, challenging existing perceptions of the evolutionary history of this significant clade of marine invertebrates.
Collapse
Affiliation(s)
- Marine Fau
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America
| | - David F. Wright
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America
- Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK, United States of America
- School of Geosciences, University of Oklahoma, Norman, OK, United States of America
| | | | - Andrew S. Gale
- Science Group, Natural History Museum, London, United Kingdom
- School of the Environment, Geography and Geological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Loïc Villier
- Centre de Recherche en Paléontologie—Paris, Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Hohmann N, Koelewijn JR, Burgess P, Jarochowska E. Identification of the mode of evolution in incomplete carbonate successions. BMC Ecol Evol 2024; 24:113. [PMID: 39180003 PMCID: PMC11342597 DOI: 10.1186/s12862-024-02287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND The fossil record provides the unique opportunity to observe evolution over millions of years, but is known to be incomplete. While incompleteness varies spatially and is hard to estimate for empirical sections, computer simulations of geological processes can be used to examine the effects of the incompleteness in silico. We combine simulations of different modes of evolution (stasis, (un)biased random walks) with deposition of carbonate platforms strata to examine how well the mode of evolution can be recovered from fossil time series, and how test results vary between different positions in the carbonate platform and multiple stratigraphic architectures generated by different sea level curves. RESULTS Stratigraphic architecture and position along an onshore-offshore gradient has only a small influence on the mode of evolution recovered by statistical tests. For simulations of random walks, support for the correct mode decreases with time series length. Visual examination of trait evolution in lineages shows that rather than stratigraphic incompleteness, maximum hiatus duration determines how much fossil time series differ from the original evolutionary process. Gradual directional evolution is more susceptible to stratigraphic effects, turning it into punctuated evolution. In contrast, stasis remains unaffected. CONCLUSIONS • Fossil time series favor the recognition of both stasis and complex, punctuated modes of evolution. • Not stratigraphic incompleteness, but the presence of rare, prolonged gaps has the largest effect on trait evolution. This suggests that incomplete sections with regular hiatus frequency and durations can potentially preserve evolutionary history without major biases. Understanding external controls on stratigraphic architectures such as sea level fluctuations is crucial for distinguishing between stratigraphic effects and genuine evolutionary process.
Collapse
Affiliation(s)
- Niklas Hohmann
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Vening Meinesz building A, Princetonlaan 8A, Utrecht, 3584 CB, The Netherlands.
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, ul. Żwirki i Wigury 101, Warsaw, 02-089, Poland.
| | - Joël R Koelewijn
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Vening Meinesz building A, Princetonlaan 8A, Utrecht, 3584 CB, The Netherlands
| | - Peter Burgess
- Department of Geology, University of Liverpool, Chatham St, Liverpool, L69 7ZT, UK
| | - Emilia Jarochowska
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Vening Meinesz building A, Princetonlaan 8A, Utrecht, 3584 CB, The Netherlands
| |
Collapse
|
5
|
Barido-Sottani J, Schwery O, Warnock RCM, Zhang C, Wright AM. Practical guidelines for Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC). OPEN RESEARCH EUROPE 2024; 3:204. [PMID: 38481771 PMCID: PMC10933576 DOI: 10.12688/openreseurope.16679.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 06/06/2024]
Abstract
Phylogenetic estimation is, and has always been, a complex endeavor. Estimating a phylogenetic tree involves evaluating many possible solutions and possible evolutionary histories that could explain a set of observed data, typically by using a model of evolution. Values for all model parameters need to be evaluated as well. Modern statistical methods involve not just the estimation of a tree, but also solutions to more complex models involving fossil record information and other data sources. Markov chain Monte Carlo (MCMC) is a leading method for approximating the posterior distribution of parameters in a mathematical model. It is deployed in all Bayesian phylogenetic tree estimation software. While many researchers use MCMC in phylogenetic analyses, interpreting results and diagnosing problems with MCMC remain vexing issues to many biologists. In this manuscript, we will offer an overview of how MCMC is used in Bayesian phylogenetic inference, with a particular emphasis on complex hierarchical models, such as the fossilized birth-death (FBD) model. We will discuss strategies to diagnose common MCMC problems and troubleshoot difficult analyses, in particular convergence issues. We will show how the study design, the choice of models and priors, but also technical features of the inference tools themselves can all be adjusted to obtain the best results. Finally, we will also discuss the unique challenges created by the incorporation of fossil information in phylogenetic inference, and present tips to address them.
Collapse
Affiliation(s)
- Joëlle Barido-Sottani
- Institut de Biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, Île-de-France, 75005, France
| | - Orlando Schwery
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, 70402, USA
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Rachel C. M. Warnock
- GeoZentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Bavaria, 91054, Germany
| | - Chi Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - April Marie Wright
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, 70402, USA
| |
Collapse
|
6
|
Wolfe JM, Ballou L, Luque J, Watson-Zink VM, Ahyong ST, Barido-Sottani J, Chan TY, Chu KH, Crandall KA, Daniels SR, Felder DL, Mancke H, Martin JW, Ng PKL, Ortega-Hernández J, Palacios Theil E, Pentcheff ND, Robles R, Thoma BP, Tsang LM, Wetzer R, Windsor AM, Bracken-Grissom HD. Convergent Adaptation of True Crabs (Decapoda: Brachyura) to a Gradient of Terrestrial Environments. Syst Biol 2024; 73:247-262. [PMID: 37941464 PMCID: PMC11282366 DOI: 10.1093/sysbio/syad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/15/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023] Open
Abstract
For much of terrestrial biodiversity, the evolutionary pathways of adaptation from marine ancestors are poorly understood and have usually been viewed as a binary trait. True crabs, the decapod crustacean infraorder Brachyura, comprise over 7600 species representing a striking diversity of morphology and ecology, including repeated adaptation to non-marine habitats. Here, we reconstruct the evolutionary history of Brachyura using new and published sequences of 10 genes for 344 tips spanning 88 of 109 brachyuran families. Using 36 newly vetted fossil calibrations, we infer that brachyurans most likely diverged in the Triassic, with family-level splits in the late Cretaceous and early Paleogene. By contrast, the root age is underestimated with automated sampling of 328 fossil occurrences explicitly incorporated into the tree prior, suggesting such models are a poor fit under heterogeneous fossil preservation. We apply recently defined trait-by-environment associations to classify a gradient of transitions from marine to terrestrial lifestyles. We estimate that crabs left the marine environment at least 7 and up to 17 times convergently, and returned to the sea from non-marine environments at least twice. Although the most highly terrestrial- and many freshwater-adapted crabs are concentrated in Thoracotremata, Bayesian threshold models of ancestral state reconstruction fail to identify shifts to higher terrestrial grades due to the degree of underlying change required. Lineages throughout our tree inhabit intertidal and marginal marine environments, corroborating the inference that the early stages of terrestrial adaptation have a lower threshold to evolve. Our framework and extensive new fossil and natural history datasets will enable future comparisons of non-marine adaptation at the morphological and molecular level. Crabs provide an important window into the early processes of adaptation to novel environments, and different degrees of evolutionary constraint that might help predict these pathways. [Brachyura; convergent evolution; crustaceans; divergence times; fossil calibration; molecular phylogeny; terrestrialization; threshold model.].
Collapse
Affiliation(s)
- Joanna M Wolfe
- Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA
| | - Lauren Ballou
- Institute of Environment and Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami, FL 33181, USA
| | - Javier Luque
- Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA
- Institute of Environment and Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami, FL 33181, USA
| | | | - Shane T Ahyong
- Australian Museum, 1 William St, Sydney, NSW 2010, Australia
- School of Biological, Earth & Environmental Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Joëlle Barido-Sottani
- Institut de Biologie de l’École Normale Supérieure (IBENS), ENS, CNRS, INSERM, Université PSL (Paris Sciences & Lettres), Paris, France
| | - Tin-Yam Chan
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan, ROC
| | - Ka Hou Chu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Keith A Crandall
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
- Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Savel R Daniels
- Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Darryl L Felder
- Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
- Department of Biology and Laboratory for Crustacean Research, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Harrison Mancke
- Institute of Environment and Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami, FL 33181, USA
| | - Joel W Martin
- Research and Collections, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA
| | - Peter K L Ng
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, 117377 Singapore, Singapore
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA
| | - Emma Palacios Theil
- Department of Invertebrate Zoology and Hydrobiology, University of Łódź, ul. Banacha 12/16, 90-237 Łódź, Poland
| | - N Dean Pentcheff
- Research and Collections, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA
| | - Rafael Robles
- Department of Biology and Laboratory for Crustacean Research, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Campeche, San Francisco de Campeche, Campeche, México
| | - Brent P Thoma
- Department of Biology, Jackson State University, P.O. Box 18540, Jackson, MS 39217, USA
| | - Ling Ming Tsang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Regina Wetzer
- Research and Collections, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA
| | - Amanda M Windsor
- Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
- United States Food and Drug Administration, Office of Regulatory Science, 5001 Campus Dr. College Park, MD 20740, USA
| | - Heather D Bracken-Grissom
- Institute of Environment and Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami, FL 33181, USA
- Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| |
Collapse
|
7
|
Simões TR, Vernygora OV, de Medeiros BAS, Wright AM. Handling Logical Character Dependency in Phylogenetic Inference: Extensive Performance Testing of Assumptions and Solutions Using Simulated and Empirical Data. Syst Biol 2023; 72:662-680. [PMID: 36773019 PMCID: PMC10276625 DOI: 10.1093/sysbio/syad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/08/2022] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Logical character dependency is a major conceptual and methodological problem in phylogenetic inference of morphological data sets, as it violates the assumption of character independence that is common to all phylogenetic methods. It is more frequently observed in higher-level phylogenies or in data sets characterizing major evolutionary transitions, as these represent parts of the tree of life where (primary) anatomical characters either originate or disappear entirely. As a result, secondary traits related to these primary characters become "inapplicable" across all sampled taxa in which that character is absent. Various solutions have been explored over the last three decades to handle character dependency, such as alternative character coding schemes and, more recently, new algorithmic implementations. However, the accuracy of the proposed solutions, or the impact of character dependency across distinct optimality criteria, has never been directly tested using standard performance measures. Here, we utilize simple and complex simulated morphological data sets analyzed under different maximum parsimony optimization procedures and Bayesian inference to test the accuracy of various coding and algorithmic solutions to character dependency. This is complemented by empirical analyses using a recoded data set on palaeognathid birds. We find that in small, simulated data sets, absent coding performs better than other popular coding strategies available (contingent and multistate), whereas in more complex simulations (larger data sets controlled for different tree structure and character distribution models) contingent coding is favored more frequently. Under contingent coding, a recently proposed weighting algorithm produces the most accurate results for maximum parsimony. However, Bayesian inference outperforms all parsimony-based solutions to handle character dependency due to fundamental differences in their optimization procedures-a simple alternative that has been long overlooked. Yet, we show that the more primary characters bearing secondary (dependent) traits there are in a data set, the harder it is to estimate the true phylogenetic tree, regardless of the optimality criterion, owing to a considerable expansion of the tree parameter space. [Bayesian inference, character dependency, character coding, distance metrics, morphological phylogenetics, maximum parsimony, performance, phylogenetic accuracy.].
Collapse
Affiliation(s)
- Tiago R Simões
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Oksana V Vernygora
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | | | - April M Wright
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, USA
| |
Collapse
|
8
|
Barido-Sottani J, Żyła D, Heath TA. Estimating the Age of Poorly Dated Fossil Specimens and Deposits Using a Total-Evidence Approach and the Fossilized Birth-Death Process. Syst Biol 2023; 72:466-475. [PMID: 36382797 PMCID: PMC10275547 DOI: 10.1093/sysbio/syac073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/04/2022] [Indexed: 02/02/2024] Open
Abstract
Bayesian total-evidence approaches under the fossilized birth-death model enable biologists to combine fossil and extant data while accounting for uncertainty in the ages of fossil specimens, in an integrative phylogenetic analysis. Fossil age uncertainty is a key feature of the fossil record as many empirical data sets may contain a mix of precisely dated and poorly dated fossil specimens or deposits. In this study, we explore whether reliable age estimates for fossil specimens can be obtained from Bayesian total-evidence phylogenetic analyses under the fossilized birth-death model. Through simulations based on the example of the Baltic amber deposit, we show that estimates of fossil ages obtained through such an analysis are accurate, particularly when the proportion of poorly dated specimens remains low and the majority of fossil specimens have precise dates. We confirm our results using an empirical data set of living and fossil penguins by artificially increasing the age uncertainty around some fossil specimens and showing that the resulting age estimates overlap with the recorded age ranges. Our results are applicable to many empirical data sets where classical methods of establishing fossil ages have failed, such as the Baltic amber and the Gobi Desert deposits. [Bayesian phylogenetic inference; fossil age estimates; fossilized birth-death; Lagerstätte; total-evidence.].
Collapse
Affiliation(s)
- Joëlle Barido-Sottani
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, 2200 Osborne Drive, Ames, IA 50011, USA
- Institut de Biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 46 rue d’Ulm, 75005 Paris, France
| | - Dagmara Żyła
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, 2200 Osborne Drive, Ames, IA 50011, USA
- Department of Invertebrate Zoology and Parasitology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
- Museum of Nature Hamburg, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Tracy A Heath
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, 2200 Osborne Drive, Ames, IA 50011, USA
| |
Collapse
|
9
|
Brée B, Condamine FL, Guinot G. Combining palaeontological and neontological data shows a delayed diversification burst of carcharhiniform sharks likely mediated by environmental change. Sci Rep 2022; 12:21906. [PMID: 36535995 PMCID: PMC9763247 DOI: 10.1038/s41598-022-26010-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Estimating deep-time species-level diversification processes remains challenging. Both the fossil record and molecular phylogenies allow the estimation of speciation and extinction rates, but each type of data may still provide an incomplete picture of diversification dynamics. Here, we combine species-level palaeontological (fossil occurrences) and neontological (molecular phylogenies) data to estimate deep-time diversity dynamics through process-based birth-death models for Carcharhiniformes, the most speciose shark order today. Despite their abundant fossil record dating back to the Middle Jurassic, only a small fraction of extant carcharhiniform species is recorded as fossils, which impedes relying only on the fossil record to study their recent diversification. Combining fossil and phylogenetic data, we recover a complex evolutionary history for carcharhiniforms, exemplified by several variations in diversification rates with an early low diversity period followed by a Cenozoic radiation. We further reveal a burst of diversification in the last 30 million years, which is partially recorded with fossil data only. We also find that reef expansion and temperature change can explain variations in speciation and extinction through time. These results pinpoint the primordial importance of these environmental variables in the evolution of marine clades. Our study also highlights the benefit of combining the fossil record with phylogenetic data to address macroevolutionary questions.
Collapse
Affiliation(s)
- Baptiste Brée
- grid.462058.d0000 0001 2188 7059Institut des Sciences de l’Evolution de Montpellier, CNRS, IRD, EPHE, Université de Montpellier, 34095 Montpellier, France
| | - Fabien L. Condamine
- grid.462058.d0000 0001 2188 7059Institut des Sciences de l’Evolution de Montpellier, CNRS, IRD, EPHE, Université de Montpellier, 34095 Montpellier, France
| | - Guillaume Guinot
- grid.462058.d0000 0001 2188 7059Institut des Sciences de l’Evolution de Montpellier, CNRS, IRD, EPHE, Université de Montpellier, 34095 Montpellier, France
| |
Collapse
|
10
|
Claramunt S. CladeDate
: Calibration information generator for divergence time estimation. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Santiago Claramunt
- Department of Natural History Royal Ontario Museum Toronto Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| |
Collapse
|
11
|
Mongle CS, Pugh KD, Strait DS, Grine FE. Modelling hominin evolution requires accurate hominin data. Nat Ecol Evol 2022; 6:1090-1091. [PMID: 35788710 DOI: 10.1038/s41559-022-01791-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/17/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Carrie S Mongle
- Division of Anthropology, American Museum of Natural History, New York, USA. .,Department of Anthropology, Stony Brook University, New York, USA. .,Turkana Basin Institute, Stony Brook University, New York, USA.
| | - Kelsey D Pugh
- Division of Anthropology, American Museum of Natural History, New York, USA.,New York Consortium in Evolutionary Primatology, New York, USA
| | - David S Strait
- Department of Anthropology, Washington University in St Louis, St Louis, USA
| | - Frederick E Grine
- Department of Anthropology, Stony Brook University, New York, USA.,Department of Anatomical Sciences, Stony Brook University, New York, USA
| |
Collapse
|
12
|
Pohle A, Kröger B, Warnock RCM, King AH, Evans DH, Aubrechtová M, Cichowolski M, Fang X, Klug C. Early cephalopod evolution clarified through Bayesian phylogenetic inference. BMC Biol 2022; 20:88. [PMID: 35421982 PMCID: PMC9008929 DOI: 10.1186/s12915-022-01284-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Despite the excellent fossil record of cephalopods, their early evolution is poorly understood. Different, partly incompatible phylogenetic hypotheses have been proposed in the past, which reflected individual author's opinions on the importance of certain characters but were not based on thorough cladistic analyses. At the same time, methods of phylogenetic inference have undergone substantial improvements. For fossil datasets, which typically only include morphological data, Bayesian inference and in particular the introduction of the fossilized birth-death model have opened new possibilities. Nevertheless, many tree topologies recovered from these new methods reflect large uncertainties, which have led to discussions on how to best summarize the information contained in the posterior set of trees. RESULTS We present a large, newly compiled morphological character matrix of Cambrian and Ordovician cephalopods to conduct a comprehensive phylogenetic analysis and resolve existing controversies. Our results recover three major monophyletic groups, which correspond to the previously recognized Endoceratoidea, Multiceratoidea, and Orthoceratoidea, though comprising slightly different taxa. In addition, many Cambrian and Early Ordovician representatives of the Ellesmerocerida and Plectronocerida were recovered near the root. The Ellesmerocerida is para- and polyphyletic, with some of its members recovered among the Multiceratoidea and early Endoceratoidea. These relationships are robust against modifications of the dataset. While our trees initially seem to reflect large uncertainties, these are mainly a consequence of the way clade support is measured. We show that clade posterior probabilities and tree similarity metrics often underestimate congruence between trees, especially if wildcard taxa are involved. CONCLUSIONS Our results provide important insights into the earliest evolution of cephalopods and clarify evolutionary pathways. We provide a classification scheme that is based on a robust phylogenetic analysis. Moreover, we provide some general insights on the application of Bayesian phylogenetic inference on morphological datasets. We support earlier findings that quartet similarity metrics should be preferred over the Robinson-Foulds distance when higher-level phylogenetic relationships are of interest and propose that using a posteriori pruned maximum clade credibility trees help in assessing support for phylogenetic relationships among a set of relevant taxa, because they provide clade support values that better reflect the phylogenetic signal.
Collapse
Affiliation(s)
- Alexander Pohle
- Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, CH-8006, Zürich, Switzerland.
| | - Björn Kröger
- Finnish Museum of Natural History, University of Helsinki, P.O. Box 44, Jyrängöntie 2, FI-00014, Helsinki, Finland
| | - Rachel C M Warnock
- GeoZentrum Nordbayern, Friedrich-Alexander Universität Erlangen-Nürnberg, Loewenichstrasse 28, 91054, Erlangen, Germany
| | - Andy H King
- Geckoella Ltd, Suite 323, 7 Bridge Street, Taunton, TA1 1TG, UK
| | - David H Evans
- Natural England, Rivers House, East Quay, Bridgwater, TA6 4YS, UK
| | - Martina Aubrechtová
- Institute of Geology and Palaeontology, Faculty of Science, Charles University, Albertov 6, 12843, Prague, Czech Republic
- Institute of Geology, Czech Academy of Sciences, Rozvojová 269, 16500, Prague, Czech Republic
| | - Marcela Cichowolski
- Instituto de Estudios Andinos "Don Pablo Groeber", CONICET and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EGA, Buenos Aires, Argentina
| | - Xiang Fang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing, 210008, China
| | - Christian Klug
- Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, CH-8006, Zürich, Switzerland
| |
Collapse
|
13
|
Marjanović D. The Making of Calibration Sausage Exemplified by Recalibrating the Transcriptomic Timetree of Jawed Vertebrates. Front Genet 2021; 12:521693. [PMID: 34054911 PMCID: PMC8149952 DOI: 10.3389/fgene.2021.521693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/22/2021] [Indexed: 01/20/2023] Open
Abstract
Molecular divergence dating has the potential to overcome the incompleteness of the fossil record in inferring when cladogenetic events (splits, divergences) happened, but needs to be calibrated by the fossil record. Ideally but unrealistically, this would require practitioners to be specialists in molecular evolution, in the phylogeny and the fossil record of all sampled taxa, and in the chronostratigraphy of the sites the fossils were found in. Paleontologists have therefore tried to help by publishing compendia of recommended calibrations, and molecular biologists unfamiliar with the fossil record have made heavy use of such works (in addition to using scattered primary sources and copying from each other). Using a recent example of a large node-dated timetree inferred from molecular data, I reevaluate all 30 calibrations in detail, present the current state of knowledge on them with its various uncertainties, rerun the dating analysis, and conclude that calibration dates cannot be taken from published compendia or other secondary or tertiary sources without risking strong distortions to the results, because all such sources become outdated faster than they are published: 50 of the (primary) sources I cite to constrain calibrations were published in 2019, half of the total of 280 after mid-2016, and 90% after mid-2005. It follows that the present work cannot serve as such a compendium either; in the slightly longer term, it can only highlight known and overlooked problems. Future authors will need to solve each of these problems anew through a thorough search of the primary paleobiological and chronostratigraphic literature on each calibration date every time they infer a new timetree, and that literature is not optimized for that task, but largely has other objectives.
Collapse
Affiliation(s)
- David Marjanović
- Department of Evolutionary Morphology, Science Programme “Evolution and Geoprocesses”, Museum für Naturkunde – Leibniz Institute for Evolutionary and Biodiversity Research, Berlin, Germany
| |
Collapse
|
14
|
Mongiardino Koch N, Garwood RJ, Parry LA. Fossils improve phylogenetic analyses of morphological characters. Proc Biol Sci 2021; 288:20210044. [PMID: 33947239 PMCID: PMC8246652 DOI: 10.1098/rspb.2021.0044] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Fossils provide our only direct window into evolutionary events in the distant past. Incorporating them into phylogenetic hypotheses of living clades can help time-calibrate divergences, as well as elucidate macroevolutionary dynamics. However, the effect fossils have on phylogenetic reconstruction from morphology remains controversial. The consequences of explicitly incorporating the stratigraphic ages of fossils using tip-dated inference are also unclear. Here, we use simulations to evaluate the performance of inference methods across different levels of fossil sampling and missing data. Our results show that fossil taxa improve phylogenetic analysis of morphological datasets, even when highly fragmentary. Irrespective of inference method, fossils improve the accuracy of phylogenies and increase the number of resolved nodes. They also induce the collapse of ancient and highly uncertain relationships that tend to be incorrectly resolved when sampling only extant taxa. Furthermore, tip-dated analyses under the fossilized birth-death process outperform undated methods of inference, demonstrating that the stratigraphic ages of fossils contain vital phylogenetic information. Fossils help to extract true phylogenetic signals from morphology, an effect that is mediated by both their distinctive morphology and their temporal information, and their incorporation in total-evidence phylogenetics is necessary to faithfully reconstruct evolutionary history.
Collapse
Affiliation(s)
| | - Russell J Garwood
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
- Earth Sciences Department, Natural History Museum, London, UK
| | - Luke A Parry
- Department of Earth Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Simões TR, Caldwell MW, Pierce SE. Sphenodontian phylogeny and the impact of model choice in Bayesian morphological clock estimates of divergence times and evolutionary rates. BMC Biol 2020; 18:191. [PMID: 33287835 PMCID: PMC7720557 DOI: 10.1186/s12915-020-00901-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The vast majority of all life that ever existed on earth is now extinct and several aspects of their evolutionary history can only be assessed by using morphological data from the fossil record. Sphenodontian reptiles are a classic example, having an evolutionary history of at least 230 million years, but currently represented by a single living species (Sphenodon punctatus). Hence, it is imperative to improve the development and implementation of probabilistic models to estimate evolutionary trees from morphological data (e.g., morphological clocks), which has direct benefits to understanding relationships and evolutionary patterns for both fossil and living species. However, the impact of model choice on morphology-only datasets has been poorly explored. RESULTS Here, we investigate the impact of a wide array of model choices on the inference of evolutionary trees and macroevolutionary parameters (divergence times and evolutionary rates) using a new data matrix on sphenodontian reptiles. Specifically, we tested different clock models, clock partitioning, taxon sampling strategies, sampling for ancestors, and variations on the fossilized birth-death (FBD) tree model parameters through time. We find a strong impact on divergence times and background evolutionary rates when applying widely utilized approaches, such as allowing for ancestors in the tree and the inappropriate assumption of diversification parameters being constant through time. We compare those results with previous studies on the impact of model choice to molecular data analysis and provide suggestions for improving the implementation of morphological clocks. Optimal model combinations find the radiation of most major lineages of sphenodontians to be in the Triassic and a gradual but continuous drop in morphological rates of evolution across distinct regions of the phenotype throughout the history of the group. CONCLUSIONS We provide a new hypothesis of sphenodontian classification, along with detailed macroevolutionary patterns in the evolutionary history of the group. Importantly, we provide suggestions to avoid overestimated divergence times and biased parameter estimates using morphological clocks. Partitioning relaxed clocks offers methodological limitations, but those can be at least partially circumvented to reveal a detailed assessment of rates of evolution across the phenotype and tests of evolutionary mosaicism.
Collapse
Affiliation(s)
- Tiago R Simões
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Michael W Caldwell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Stephanie E Pierce
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|