1
|
Gould AL, Osland HK. Strain-level variation in microbial symbiosis: lessons from the Siphamia-Photobacterium mandapamensis system. Trends Microbiol 2025:S0966-842X(25)00042-3. [PMID: 40107953 DOI: 10.1016/j.tim.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
The Siphamia-Photobacterium mandapamensis symbiosis is a binary, gut-associated mutualism that serves as a powerful model for studying strain-level variation in host-microbe interactions. Its combination of high species-level specificity and significant strain diversity makes it ideal for exploring host selectivity, microbial diversity, and the broader mechanisms driving strain-level dynamics in microbial symbioses.
Collapse
Affiliation(s)
- Alison L Gould
- Biology Department, Temple University, Philadelphia, PA 19122, USA; Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA 94118, USA.
| | - Hannah K Osland
- Biology Department, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
2
|
Ludington WB. The importance of host physical niches for the stability of gut microbiome composition. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230066. [PMID: 38497267 PMCID: PMC10945397 DOI: 10.1098/rstb.2023.0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/04/2023] [Indexed: 03/19/2024] Open
Abstract
Gut bacteria are prevalent throughout the Metazoa and form complex microbial communities associated with food breakdown, nutrient provision and disease prevention. How hosts acquire and maintain a consistent bacterial flora remains mysterious even in the best-studied animals, including humans, mice, fishes, squid, bugs, worms and flies. This essay visits the evidence that hosts have co-evolved relationships with specific bacteria and that some of these relationships are supported by specialized physical niches that select, sequester and maintain microbial symbionts. Genetics approaches could uncover the mechanisms for recruiting and maintaining the stable and consistent members of the microbiome. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- William B. Ludington
- Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Baltimore, MD 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
3
|
Gould AL, Henderson JB. Comparative genomics of symbiotic Photobacterium using highly contiguous genome assemblies from long read sequences. Microb Genom 2023; 9:001161. [PMID: 38112751 PMCID: PMC10763503 DOI: 10.1099/mgen.0.001161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
This study presents the assembly and comparative genomic analysis of luminous Photobacterium strains isolated from the light organs of 12 fish species using Oxford Nanopore Technologies (ONT) sequencing. The majority of assemblies achieved chromosome-level continuity, consisting of one large (>3 Mbp) and one small (~1.5 Mbp) contig, with near complete BUSCO scores along with varying plasmid sequences. Leveraging this dataset, this study significantly expanded the available genomes for P. leiognathi and its subspecies P. 'mandapamensis', enabling a comparative genomic analysis between the two lineages. An analysis of the large and small chromosomes unveiled distinct patterns of core and accessory genes, with a larger fraction of the core genes residing on the large chromosome, supporting the hypothesis of secondary chromosome evolution from megaplasmids in Vibrionaceae. In addition, we discovered a proposed new species, Photobacterium acropomis sp. nov., isolated from an acropomatid host, with an average nucleotide identify (ANI) of 93 % compared to the P. leiognathi and P. 'mandapamensis' strains. A comparison of the P. leiognathi and P. 'mandapamensis' lineages revealed minimal differences in gene content, yet highlighted the former's larger genome size and potential for horizontal gene transfer. An investigation of the lux-rib operon, responsible for light production, indicated congruence between the presence of luxF and host family, challenging its role in differentiating P. 'mandapamensis' from P. leiognathi. Further insights were derived from the identification of metabolic differences, such as the presence of the NADH:quinone oxidoreductase respiratory complex I in P. leiognathi as well as variations in the type II secretion system (T2S) genes between the lineages, potentially impacting protein secretion and symbiosis. In summary, this study advances our understanding of Photobacterium genome evolution, highlighting subtle differences between closely related lineages, specifically P. leiognathi and P. 'mandapamensis'. These findings highlight the benefit of long read sequencing for bacterial genome assembly and pangenome analysis and provide a foundation for exploring early bacterial speciation processes of these facultative light organ symbionts.
Collapse
Affiliation(s)
- Alison L. Gould
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr. San Francisco, CA 94118, California, USA
| | - James B. Henderson
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr. San Francisco, CA 94118, California, USA
| |
Collapse
|
4
|
Gould AL, Donohoo SA, Román ED, Neff EE. Strain-level diversity of symbiont communities between individuals and populations of a bioluminescent fish. THE ISME JOURNAL 2023; 17:2362-2369. [PMID: 37891426 PMCID: PMC10689835 DOI: 10.1038/s41396-023-01550-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
The bioluminescent symbiosis involving the urchin cardinalfish, Siphamia tubifer, and Photobacterium mandapamensis, a luminous member of the Vibrionaceae, is highly specific compared to other bioluminescent fish-bacteria associations. Despite this high degree of specificity, patterns of genetic diversity have been observed for the symbionts from hosts sampled over relatively small spatial scales. We characterized and compared sub-species, strain-level symbiont diversity within and between S. tubifer hosts sampled from the Philippines and Japan using PCR fingerprinting. We then carried out whole genome sequencing of the unique symbiont genotypes identified to characterize the genetic diversity of the symbiont community and the symbiont pangenome. We determined that an individual light organ contains six symbiont genotypes on average, but varied between 1-13. Additionally, we found that there were few genotypes shared between hosts from the same location. A phylogenetic analysis of the unique symbiont strains indicated location-specific clades, suggesting some genetic differentiation in the symbionts between host populations. We also identified symbiont genes that were variable between strains, including luxF, a member of the lux operon, which is responsible for light production. We quantified the light emission and growth rate of two strains missing luxF along with the other strains isolated from the same light organs and determined that strains lacking luxF were dimmer but grew faster than most of the other strains, suggesting a potential metabolic trade-off. This study highlights the importance of strain-level diversity in microbial associations and provides new insight into the underlying genetic architecture of intraspecific symbiont communities within a host.
Collapse
Affiliation(s)
- A L Gould
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, SanFrancisco, CA, 94121, USA.
| | - S A Donohoo
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, SanFrancisco, CA, 94121, USA
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - E D Román
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, SanFrancisco, CA, 94121, USA
- Department of Biology, Stanford University, Palo Alto, CA, 94305, USA
| | - E E Neff
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, SanFrancisco, CA, 94121, USA
| |
Collapse
|
5
|
The mitochondrial genome of the red icefish (Channichthys rugosus) casts doubt on its species status. Polar Biol 2022; 45:1541-1552. [DOI: 10.1007/s00300-022-03083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022]
Abstract
AbstractAntarctic notothenioid fishes are recognised as one of the rare examples of adaptive radiation in the marine system. Withstanding the freezing temperatures of Antarctic waters, these fishes have diversified into over 100 species within no more than 10–20 million years. However, the exact species richness of the radiation remains contested. In the genus Channichthys, between one and nine species are recognised by different authors. To resolve the number of Channichthys species, genetic information would be highly valuable; however, so far, only sequences of a single species, C. rhinoceratus, are available. Here, we present the nearly complete sequence of the mitochondrial genome of C. rugosus, obtained from a formalin-fixed museum specimen sampled in 1974. This sequence differs from the mitochondrial genome of C. rhinoceratus in no more than 27 positions, suggesting that the two species may be synonymous.
Collapse
|
6
|
Gould AL, Henderson JB, Lam AW. Chromosome-Level Genome Assembly of the Bioluminescent Cardinalfish Siphamia tubifer: An Emerging Model for Symbiosis Research. Genome Biol Evol 2022; 14:evac044. [PMID: 35349687 PMCID: PMC9035438 DOI: 10.1093/gbe/evac044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/15/2022] Open
Abstract
The bioluminescent symbiosis involving the sea urchin cardinalfish Siphamia tubifer and the luminous bacterium Photobacterium mandapamensis is an emerging vertebrate model for the study of microbial symbiosis. However, little genetic data are available for the host, limiting the scope of research that can be implemented with this association. We present a chromosome-level genome assembly for S. tubifer using a combination of PacBio HiFi sequencing and Hi-C technologies. The final assembly was 1.2 Gb distributed on 23 chromosomes and contained 32,365 protein coding genes with a BUSCO score of 99%. A comparison of the S. tubifer genome to that of another nonluminous species of cardinalfish revealed a high degree of synteny, whereas a comparison to a more distant relative in the sister order Gobiiformes revealed the fusion of two chromosomes in the cardinalfish genomes. The complete mitogenome of S. tubifer was also assembled, and an inversion in the vertebrate WANCY tRNA genes as well as heteroplasmy in the length of the control region were discovered. A phylogenetic analysis based on whole the mitochondrial genome indicated that S. tubifer is divergent from the rest of the cardinalfish family, highlighting the potential role of the bioluminescent symbiosis in the initial divergence of Siphamia. This high-quality reference genome will provide novel opportunities for the bioluminescent S. tubifer-P. mandapamensis association to be used as a model for symbiosis research.
Collapse
Affiliation(s)
- A. L. Gould
- Ichthyology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, California 94118, USA
| | - J. B. Henderson
- Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, California 94118, USA
| | - A. W. Lam
- Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, California 94118, USA
| |
Collapse
|
7
|
Vibrio spp.: Life Strategies, Ecology, and Risks in a Changing Environment. DIVERSITY 2022. [DOI: 10.3390/d14020097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vibrios are ubiquitous bacteria in aquatic systems, especially marine ones, and belong to the Gammaproteobacteria class, the most diverse class of Gram-negative bacteria. The main objective of this review is to update the information regarding the ecology of Vibrio species, and contribute to the discussion of their potential risk in a changing environment. As heterotrophic organisms, Vibrio spp. live freely in aquatic environments, from marine depths to the surface of the water column, and frequently may be associated with micro- and macroalgae, invertebrates, and vertebrates such as fish, or live in symbiosis. Some Vibrio spp. are pathogenic to humans and animals, and there is evidence that infections caused by vibrios are increasing in the world. This rise may be related to global changes in human behavior (increases in tourism, maritime traffic, consumption of seafood, aquaculture production, water demand, pollution), and temperature. Most likely in the future, Vibrio spp. in water and in seafood will be monitored in order to safeguard human and animal health. Regulators of the microbiological quality of water (marine and freshwater) and food for human and animal consumption, professionals involved in marine and freshwater production chains, consumers and users of aquatic resources, and health professionals will be challenged to anticipate and mitigate new risks.
Collapse
|
8
|
Jiang C, Tanaka M, Nishikawa S, Mino S, Romalde JL, Thompson FL, Gomez-Gil B, Sawabe T. Vibrio Clade 3.0: New Vibrionaceae Evolutionary Units Using Genome-Based Approach. Curr Microbiol 2021; 79:10. [PMID: 34905112 DOI: 10.1007/s00284-021-02725-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2023]
Abstract
Currently, over 190 species in family Vibrionaceae, including not-yet-cultured taxa, have been described and classified into over nine genera, in which the number of species has doubled compared to the previous vibrio evolutionary update (Vibrio Clade 2.0) (Sawabe et al. 2014). In this study, "Vibrio Clade 3.0," the second update of the molecular phylogenetic analysis was performed based on nucleotide sequences of eight housekeeping genes (8-HKGs) retrieved from genome sequences, including 22 newly determined genomes. A total of 51 distinct clades were observed, of which 21 clades are newly described. We further evaluated the delineation powers of the clade classification based on nucleotide sequences of 34 single-copy genes and 11 ribosomal protein genes (11-RPGs) retrieved from core-genome sequences; however, the delineation power of 8-HKGs is still high and that gene set can be reliably used for the classification and identification of Vibrionaceae. Furthermore, the 11-RPGs set proved to be useful in identifying uncultured species among metagenome-assembled genome (MAG) and/or single-cell genome-assembled genome (SAG) pools. This study expands the awareness of the diversity and evolutionary history of the family Vibrionaceae and accelerates the taxonomic applications in classifying as not-yet-cultured taxa among MAGs and SAGs.
Collapse
Affiliation(s)
- Chunqi Jiang
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Mami Tanaka
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Sayo Nishikawa
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CRETUS & CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, España
| | - Fabiano L Thompson
- Institute of Biology and SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno Gomez-Gil
- CIAD, AC, Mazatlan Unit for Aquaculture and Environmental Management, Mazatlán, México
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan.
| |
Collapse
|
9
|
Hahn EE, Alexander MR, Grealy A, Stiller J, Gardiner DM, Holleley CE. Unlocking inaccessible historical genomes preserved in formalin. Mol Ecol Resour 2021; 22:2130-2147. [PMID: 34549888 DOI: 10.1111/1755-0998.13505] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/27/2022]
Abstract
Museum specimens represent an unparalleled record of historical genomic data. However, the widespread practice of formalin preservation has thus far impeded genomic analysis of a large proportion of specimens. Limited DNA sequencing from formalin-preserved specimens has yielded low genomic coverage with unpredictable success. We set out to refine sample processing methods and to identify specimen characteristics predictive of sequencing success. With a set of taxonomically diverse specimens collected between 1962 and 2006 and ranging in preservation quality, we compared the efficacy of several end-to-end whole genome sequencing workflows alongside a k-mer-based trimming-free read alignment approach to maximize mapping of endogenous sequence. We recovered complete mitochondrial genomes and up to 3× nuclear genome coverage from formalin-preserved tissues. Hot alkaline lysis coupled with phenol-chloroform extraction out-performed proteinase K digestion in recovering DNA, while library preparation method had little impact on sequencing success. The strongest predictor of DNA yield was overall specimen condition, which additively interacts with preservation conditions to accelerate DNA degradation. Here, we demonstrate a significant advance in capability beyond limited recovery of a small number of loci via PCR or target-capture sequencing. To facilitate strategic selection of suitable specimens for genomic sequencing, we present a decision-making framework that utilizes independent and nondestructive assessment criteria. Sequencing of formalin-preserved specimens will contribute to a greater understanding of temporal trends in genetic adaptation, including those associated with a changing climate. Our work enhances the value of museum collections worldwide by unlocking genomes of specimens that have been disregarded as a valid molecular resource.
Collapse
Affiliation(s)
- Erin E Hahn
- National Research Collections Australia, Commonwealth Scientific Industrial Research Organisation, Canberra, ACT, Australia
| | - Marina R Alexander
- National Research Collections Australia, Commonwealth Scientific Industrial Research Organisation, Canberra, ACT, Australia
| | - Alicia Grealy
- National Research Collections Australia, Commonwealth Scientific Industrial Research Organisation, Canberra, ACT, Australia
| | - Jiri Stiller
- Agriculture and Food, Commonwealth Scientific Industrial Research Organisation, St Lucia, Qld, Australia
| | - Donald M Gardiner
- Agriculture and Food, Commonwealth Scientific Industrial Research Organisation, St Lucia, Qld, Australia
| | - Clare E Holleley
- National Research Collections Australia, Commonwealth Scientific Industrial Research Organisation, Canberra, ACT, Australia
| |
Collapse
|