1
|
Samadder A, Chattopadhyay A, Mandal A, Kang Y, Bhattacharya S. Trophic flow of contamination: A nontrivial weapon for species coexistence. Math Biosci 2025; 384:109443. [PMID: 40228623 DOI: 10.1016/j.mbs.2025.109443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/21/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
In the modern age of human-induced environmental changes, ecologists are increasingly alarmed about the potential disruption of ecosystems through toxicological processes. As humanity's footprint on the natural world expands, understanding these dynamics becomes crucial. While recent ecotoxicology research has mainly focused on entirely contaminated ecosystems, overlooking the effects of aquatic contamination on terrestrial predators with access to uncontaminated prey, our study addresses this gap. We present a prey-predator model for partially contaminated communities, where predators face a trade-off in prey preference between contaminated and uncontaminated sources. Through mathematical analysis and numerical simulations, we uncover some interpretable findings: (1) In uncontaminated environments, predation pressure may cause the extinction of one prey species. However, when even a small contamination level exists in alternative prey, endangered prey species can coexist with others. (2) Survival under high contamination depends on the predator's preference. A very low preference for contaminated prey trivially allows the predator to persist, while low or high preferences lead to the predator's exclusion. Surprisingly, intermediate preference leads to bi-stability between contaminated prey and predator extinction equilibrium, resulting in a trade-off between the presence of contaminated prey or the predator. (3) Our results confirm the abrupt extinction of predators due to contamination, driven by bistability between predator-free and coexisting states. However, our observation reveals that the likelihood of sudden predator extinction increases with a higher preference for contaminated prey. Additionally, we explore the robustness of these outcomes by considering flexible model assumptions and alternative parameter sets. In summary, our study offers valuable insights into the ecotoxicological processes within partially contaminated communities, shedding light on direct and indirect species interactions.
Collapse
Affiliation(s)
- Amit Samadder
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T Road, Kolkata 700108, India.
| | - Arnab Chattopadhyay
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T Road, Kolkata 700108, India.
| | - Arindam Mandal
- Department of Mathematics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Yun Kang
- Sciences and Mathematics Faculty, College of Integrative Sciences and Arts, Arizona State University, Tempe, AZ 85281, USA.
| | - Sabyasachi Bhattacharya
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T Road, Kolkata 700108, India.
| |
Collapse
|
2
|
Bergerot B, Piscart C, Roussel JM. Tightly intertwined: Waterscapes prompt urgent reconsideration of aquatic insects and their role in agricultural landscapes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178728. [PMID: 39922007 DOI: 10.1016/j.scitotenv.2025.178728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/19/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
In landscape ecology, the waterscape refers to permanent or temporary, running or stagnant surface waters within a terrestrial area. Across ecosystem boundaries, aquatic organisms and nutrients can reach terrestrial ecosystems, as formalised by the meta-ecosystem theory. Recent studies on aquatic insects emerging from temperate streams suggest that the extent of their biomass and fluxes across agricultural landscapes may have been neglected until now. Following a conceptual and empirical approach, we presently discuss how the temporal dynamics of floods coupled with the emergence and aerial fluxes of aquatic insects suggests that the waterscape can largely overlap the landscape. Depending on the season, various species and biomasses of aquatic insects could interact with the receiving terrestrial ecosystems and ultimately support vital ecosystem services and functions such as pollination, soil fertilisation, and control of crop pests or facilitation of their natural enemies. In the current context of a global collapse of terrestrial insect populations, we call for an urgent research effort to include the temporal dimension of waterscapes into landscape models to estimate the fluxes of insects emerging from all kinds of aquatic ecosystems and quantify their role in the functioning of terrestrial ecosystems in agricultural landscapes.
Collapse
Affiliation(s)
- B Bergerot
- University of Rennes, CNRS, UMR 6553 ECOBIO, Rennes, France.
| | - C Piscart
- University of Rennes, CNRS, UMR 6553 ECOBIO, Rennes, France.
| | - J M Roussel
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France.
| |
Collapse
|
3
|
Faburé J, Hedde M, Le Perchec S, Pesce S, Sucré E, Fritsch C. Role of trophic interactions in transfer and cascading impacts of plant protection products on biodiversity: a literature review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2993-3031. [PMID: 39422865 DOI: 10.1007/s11356-024-35190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Plant protection products (PPPs) have historically been one of the classes of chemical compounds at the frontline of raising scientific and public awareness of the global nature of environmental pollution and the role of trophic interactions in shaping the impacts of chemicals on ecosystems. Despite increasingly strong regulatory measures since the 1970s designed to avoid unintentional effects of PPPs, their use is now recognised as a driver of biodiversity erosion. The French Ministries for the Environment, Agriculture and Research commissioned a collective scientific assessment to synthesise the current science and knowledge on the impacts of PPPs on biodiversity and ecosystem services. Here we report a literature review of the state of knowledge on the propagation of PPP residues and the effects of PPPs in food webs, including biopesticides, with a focus on current-use PPPs. Currently used PPPs may be stronger drivers of the current biodiversity loss than the banned compounds no longer in use, and there have been far fewer reviews on current-use PPPs than legacy PPPs. We first provide a detailed overview of the transfer and propagation of effects of PPPs through trophic interactions in both terrestrial and aquatic ecosystems. We then review cross-ecosystem trophic paths of PPP propagation, and provide insight on the role of trophic interactions in the impacts of PPPs on ecological functions. We conclude with a summary of the available knowledge and the perspectives for tackling the main gaps, and address areas that warrant further research and pathways to advancing environmental risk assessment.
Collapse
Affiliation(s)
- Juliette Faburé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, Campus AgroParis Saclay, 22 Place de L'Agronomie, CS 80022, 91120, Palaiseau, France.
| | - Mickael Hedde
- Université de Montpellier, INRAE, IRD, CIRAD, Institut Agro Montpellier, Eco&Sols, 34060, Montpellier, France
| | | | | | - Elliott Sucré
- MARBEC (Marine Biodiversity, Exploitation and Conservation), Université de Montpellier, CNRS, Ifremer, IRD, 34000, Montpellier, France
- Université de Mayotte, Dembeni, 97660, Mayotte, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS / Université de Franche-Comté, 25000, Besançon, France
| |
Collapse
|
4
|
Huszarik M, Roodt AP, Wernicke T, Link M, Lima-Fernandes E, Åhlén D, Schreiner VC, Schulz R, Hambäck P, Entling MH. Shift in diet composition of a riparian predator along a stream pollution gradient. Proc Biol Sci 2024; 291:20242104. [PMID: 39561799 PMCID: PMC11576108 DOI: 10.1098/rspb.2024.2104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
Terrestrial insectivores in riparian areas, such as spiders, can depend on emergent aquatic insects as high-quality prey. However, chemical pollution entering streams from agricultural and urban sources can alter the dynamics and composition of aquatic insect emergence, which may also affect the riparian food web. Few studies have examined the effects of stressor-induced alterations in aquatic insect emergence on spiders, especially in terms of chemical pollution and diet composition. We used DNA metabarcoding of gut content to describe the diet of Tetragnatha montana spiders collected from 10 forested streams with differing levels of pesticide and wastewater pollution. We found that spiders consumed more Chironomidae and fewer other aquatic Diptera, including Tipulidae, Ptychopteridae and Culicidae, at more polluted streams. Pollution-related effects were mainly observed in the spider diet, and were not significant for the number nor composition of flying insects trapped at each site. Our results indicate that the composition of riparian spider diets is sensitive to stream pollution, even in the absence of a change in the overall proportion of aquatic prey consumed. A high reliance on aquatic prey at polluted streams may give spiders an increased risk of dietary exposure to chemical pollutants retained by emergent insects.
Collapse
Affiliation(s)
- Maike Huszarik
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, Landau in der Pfalz76829, Germany
- Field Station Fabrikschleichach, Chair of Conservation Biology and Forest Ecology, Biocenter, University of Würzburg, Glashüttenstraße 5, Rauhenebrach96181, Germany
| | - Alexis P. Roodt
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, Landau in der Pfalz76829, Germany
| | - Teagan Wernicke
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, Landau in der Pfalz76829, Germany
| | - Moritz Link
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, Landau in der Pfalz76829, Germany
| | - Eva Lima-Fernandes
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, Landau in der Pfalz76829, Germany
| | - David Åhlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm10691, Sweden
| | - Verena C. Schreiner
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, Landau in der Pfalz76829, Germany
- Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 2, Essen45141, Germany
- Research Center One Health Ruhr, University Alliance Ruhr, Universitätsstrasse 2, Essen45141, Germany
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, Landau in der Pfalz76829, Germany
- Eußerthal Ecosystem Research Station, University of Kaiserslautern-Landau (RPTU), Birkenthalstraße 13, Eußerthal76857, Germany
| | - Peter Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm10691, Sweden
| | - Martin H. Entling
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, Landau in der Pfalz76829, Germany
| |
Collapse
|
5
|
Huszarik M, Roodt AP, Wernicke T, Chávez F, Metz A, Link M, Lima-Fernandes E, Schulz R, Entling MH. Increased bat hunting at polluted streams suggests chemical exposure rather than prey shortage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167080. [PMID: 37722422 DOI: 10.1016/j.scitotenv.2023.167080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Streams and their riparian areas are important habitats and foraging sites for bats feeding on emergent aquatic insects. Chemical pollutants entering freshwater streams from agricultural and wastewater sources have been shown to alter aquatic insect emergence, yet little is known about how this impacts insectivorous bats in riparian areas. In this study, we investigate the relationships between the presence of wastewater effluent, in-stream pesticide toxicity, the number of emergent and flying aquatic insects, and the activity and hunting behaviour of bats at 14 streams in southwestern Germany. Stream sites were located in riparian forests, sheltered from direct exposure to pollutants from agricultural and urban areas. We focused on three bat species associated with riparian areas: Myotis daubentonii, M. cf. brandtii, and Pipistrellus pipistrellus. We found that streams with higher pesticide toxicity and more frequent detection of wastewater also tended to be warmer and have higher nutrient and lower oxygen concentrations. We did not observe a reduction of insect emergence, bat activity or hunting rates in association with pesticide toxicity and wastewater detections. Instead, the activity and hunting rates of Myotis spp. were higher at more polluted sites. The observed increase in bat hunting at more polluted streams suggests that instead of reduced prey availability, chemical pollution at the levels measured in the present study could expose bats to pollutants transported from the stream by emergent aquatic insects.
Collapse
Affiliation(s)
- Maike Huszarik
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany.
| | - Alexis P Roodt
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Teagan Wernicke
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Fernanda Chávez
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Annika Metz
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Moritz Link
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Eva Lima-Fernandes
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Ralf Schulz
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany; Eußerthal Ecosystem Research Station, RPTU Kaiserslautern-Landau, Birkenthalstr. 13, 76857 Eußerthal, Germany
| | - Martin H Entling
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| |
Collapse
|
6
|
Angeler DG, Heino J, Rubio-Ríos J, Casas JJ. Connecting distinct realms along multiple dimensions: A meta-ecosystem resilience perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 889:164169. [PMID: 37196937 DOI: 10.1016/j.scitotenv.2023.164169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Resilience research is central to confront the sustainability challenges to ecosystems and human societies in a rapidly changing world. Given that social-ecological problems span the entire Earth system, there is a critical need for resilience models that account for the connectivity across intricately linked ecosystems (i.e., freshwater, marine, terrestrial, atmosphere). We present a resilience perspective of meta-ecosystems that are connected through the flow of biota, matter and energy within and across aquatic and terrestrial realms, and the atmosphere. We demonstrate ecological resilience sensu Holling using aquatic-terrestrial linkages and riparian ecosystems more generally. A discussion of applications in riparian ecology and meta-ecosystem research (e.g., resilience quantification, panarchy, meta-ecosystem boundary delineations, spatial regime migration, including early warning indications) concludes the paper. Understanding meta-ecosystem resilience may have potential to support decision making for natural resource management (scenario planning, risk and vulnerability assessments).
Collapse
Affiliation(s)
- David G Angeler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 750 07 Uppsala, Sweden; School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; The Brain Capital Alliance, San Francisco, CA, USA; IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia.
| | - Jani Heino
- Geography Research Unit, University of Oulu, P.O. Box 8000, FI-90014 Oulu, Finland
| | - Juan Rubio-Ríos
- Department of Biology and Geology, University of Almería, 04120 Almería, Spain; Andalusian Centre for the Evaluation and Monitoring of Global Change (CAESCG), Almería, Spain
| | - J Jesús Casas
- Department of Biology and Geology, University of Almería, 04120 Almería, Spain; Andalusian Centre for the Evaluation and Monitoring of Global Change (CAESCG), Almería, Spain; Universitary Institute of Water Research, University of Granada, 18003 Granada, Spain
| |
Collapse
|
7
|
Roodt AP, Huszarik M, Entling MH, Schulz R. Aquatic-terrestrial transfer of neonicotinoid insecticides in riparian food webs. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131635. [PMID: 37196444 DOI: 10.1016/j.jhazmat.2023.131635] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Current-use pesticides are ubiquitous in freshwaters globally, often at very low concentrations. Emerging aquatic insects can accumulate pesticides during their aquatic development, which can be retained through their metamorphosis into terrestrial adults. Emerging insects thus provide a potential, yet largely understudied linkage for exposure of terrestrial insectivores to waterborne pesticides. We measured 82 low to moderately lipophilic organic pesticides (logKow: -2.87 to 6.9) in the aquatic environment, emerging insects and web-building riparian spiders from stream sites impacted by agricultural land use. Insecticides, mainly neuro-active neonicotinoids were ubiquitous and had the highest concentrations in emerging insects and spiders (∑ insecticides: 0.1-33 and 1-240 ng/g, respectively), although their concentrations in water were low, even when compared to global levels. Furthermore, neonicotinoids, although not considered to be bioaccumulative, were biomagnified in riparian spiders. In contrast, concentrations of fungicides and most herbicides decreased from the aquatic environment to the spiders. Our results provide evidence for the transfer and accumulation of neonicotinoids across the aquatic-terrestrial ecosystem boundary. This could threaten food webs in ecologically sensitive riparian areas worldwide.
Collapse
Affiliation(s)
- Alexis P Roodt
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, D-76829 Landau in der Pfalz, Germany.
| | - Maike Huszarik
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, D-76829 Landau in der Pfalz, Germany
| | - Martin H Entling
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, D-76829 Landau in der Pfalz, Germany
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, D-76829 Landau in der Pfalz, Germany
| |
Collapse
|
8
|
Sumasgutner P, Cunningham SJ, Hegemann A, Amar A, Watson H, Nilsson JF, Andersson MN, Isaksson C. Interactive effects of rising temperatures and urbanisation on birds across different climate zones: A mechanistic perspective. GLOBAL CHANGE BIOLOGY 2023; 29:2399-2420. [PMID: 36911976 PMCID: PMC10947105 DOI: 10.1111/gcb.16645] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 05/28/2023]
Abstract
Climate change and urbanisation are among the most pervasive and rapidly growing threats to biodiversity worldwide. However, their impacts are usually considered in isolation, and interactions are rarely examined. Predicting species' responses to the combined effects of climate change and urbanisation, therefore, represents a pressing challenge in global change biology. Birds are important model taxa for exploring the impacts of both climate change and urbanisation, and their behaviour and physiology have been well studied in urban and non-urban systems. This understanding should allow interactive effects of rising temperatures and urbanisation to be inferred, yet considerations of these interactions are almost entirely lacking from empirical research. Here, we synthesise our current understanding of the potential mechanisms that could affect how species respond to the combined effects of rising temperatures and urbanisation, with a focus on avian taxa. We discuss potential interactive effects to motivate future in-depth research on this critically important, yet overlooked, aspect of global change biology. Increased temperatures are a pronounced consequence of both urbanisation (through the urban heat island effect) and climate change. The biological impact of this warming in urban and non-urban systems will likely differ in magnitude and direction when interacting with other factors that typically vary between these habitats, such as resource availability (e.g. water, food and microsites) and pollution levels. Furthermore, the nature of such interactions may differ for cities situated in different climate types, for example, tropical, arid, temperate, continental and polar. Within this article, we highlight the potential for interactive effects of climate and urban drivers on the mechanistic responses of birds, identify knowledge gaps and propose promising future research avenues. A deeper understanding of the behavioural and physiological mechanisms mediating species' responses to urbanisation and rising temperatures will provide novel insights into ecology and evolution under global change and may help better predict future population responses.
Collapse
Affiliation(s)
- Petra Sumasgutner
- Konrad Lorenz Research Centre, Core Facility for Behavior and Cognition, Department of Behavioral & Cognitive BiologyUniversity of ViennaViennaAustria
- FitzPatrick Institute of African Ornithology, DSI‐NRF Centre of ExcellenceUniversity of Cape TownCape TownSouth Africa
| | - Susan J. Cunningham
- FitzPatrick Institute of African Ornithology, DSI‐NRF Centre of ExcellenceUniversity of Cape TownCape TownSouth Africa
| | | | - Arjun Amar
- FitzPatrick Institute of African Ornithology, DSI‐NRF Centre of ExcellenceUniversity of Cape TownCape TownSouth Africa
| | | | | | | | | |
Collapse
|
9
|
Kowarik C, Martin-Creuzburg D, Mathers KL, Weber C, Robinson CT. Stream degradation affects aquatic resource subsidies to riparian ground-dwelling spiders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158658. [PMID: 36113799 DOI: 10.1016/j.scitotenv.2022.158658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Freshwater systems have undergone drastic alterations during the last century, potentially affecting cross-boundary resource transfers between aquatic and terrestrial ecosystems. One important connection is the export of biomass by emergent aquatic insects containing omega-3 polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA), that is scarce in terrestrial systems. Because of taxon-specific differences in PUFA content and functional traits, the contribution of different insect groups should be considered, in addition to total biomass export. In this context, one important trait is the emergence mode. Stoneflies, in contrast to other aquatic insects, crawl to land to emerge instead of flying directly from the water surface, making them accessible to ground-dwelling predators. Because stoneflies are especially susceptible to environmental change, stream degradation might cause a mismatch of available and required nutrients, particularly for ground-dwelling predators. In this study, we estimated emergent biomass and EPA export along two streams with different levels of habitat degradation. The EPA content in aquatic insects did not differ with different degrees of habitat degradation and total biomass export in spring was with 7.9 ± 9.6 mg m-2 day-1 in the degraded and 7.3 ± 8.5 mg m-2 day-1 in the natural system, also unaffected. However, habitat degradation substantially altered the contribution of crawling emergence to the total export in spring, with no biomass export by stoneflies at the most degraded sites. The EPA content in ground-dwelling spiders was correlated with emergent stonefly biomass, making up only 16.0 ± 6.2 % of total fatty acids at sites with no stonefly emergence, but 27.3 ± 3.0 % at sites with highest stonefly emergence. Because immune function in ground-dwelling spiders has been connected to EPA levels, reduced crawling emergence might impact spider fitness. Functional traits, like emergence mode as well as nutritional quality, should be considered when assessing the effects of stream degradation on adjacent terrestrial ecosystems.
Collapse
Affiliation(s)
- Carmen Kowarik
- Eawag (Swiss Federal Institute of Aquatic Science and Technology), Department of Aquatic Ecology, 8600 Dübendorf, Switzerland; Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland.
| | | | - Kate L Mathers
- Geography and Environment, Centre for Hydrological and Ecosystem Science, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK; Eawag (Swiss Federal Institute of Aquatic Science and Technology), Department of Surface Waters Research and Management, 6047 Kastanienbaum, Switzerland
| | - Christine Weber
- Eawag (Swiss Federal Institute of Aquatic Science and Technology), Department of Surface Waters Research and Management, 6047 Kastanienbaum, Switzerland
| | - Christopher T Robinson
- Eawag (Swiss Federal Institute of Aquatic Science and Technology), Department of Aquatic Ecology, 8600 Dübendorf, Switzerland; Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
10
|
Lepori F. Stream pollution causes aggregation of wintering insectivorous birds through increased aquatic emergence. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.926529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cross-boundary prey subsidies can propagate the effects of human impacts from streams to terrestrial ecosystems, but effects during winter are poorly known. Here I focused on this season and investigated the effects of pollution due to a sewage treatment plant (STP) on aquatic insect emergence and wintering insectivorous birds in a Swiss stream. At sites downstream of the STP, a combination of nutrient (phosphorus), organic (biochemical oxygen demand), and thermal pollution led to higher aquatic emergence compared to upstream sites (6× higher). In turn, the higher emergence led to a strong aggregational response by wintering insectivorous birds (8× higher linear densities compared to upstream sites). Polluted sites also had a different bird assemblage, which included rare wintering species that forage largely on aerial insects. A comparison between the polluted (downstream) sites and a nearby unpolluted stream produced similar differences. The magnitude and consistency of the effects illustrate how strongly stream alterations can propagate to birds through changes in aquatic emergence. Moreover, the results provide insights into the responses of linked stream-terrestrial food webs to other environmental issues that cause warming and/or pollution, including urbanization and climate change.
Collapse
|
11
|
Bundschuh M, Pietz S, Roodt AP, Kraus JM. Contaminant fluxes across ecosystems mediated by aquatic insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100885. [PMID: 35144033 DOI: 10.1016/j.cois.2022.100885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Metals and organic contaminants in aquatic systems affect the coupling of aquatic and terrestrial ecosystems through two pathways: contaminant-induced effects on insect emergence and emergence-induced contaminant transfer. Consequently, the impact of aquatic contaminants on terrestrial ecosystems can be driven by modifications in the quantity and quality of adult aquatic insects serving as prey or contaminants entering terrestrial food webs as part of the diet of terrestrial predators. Here, we provide an overview of recent advances in the field, separating metals from organic contaminants due to their differential propensity to bioaccumulate and thus their potential contribution to either of the two pathways. Finally, this review highlights the knowledge gap in the relative impact of these pathways on terrestrial insectivores.
Collapse
Affiliation(s)
- Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau, D-76829, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, Uppsala, SWE-75007, Sweden.
| | - Sebastian Pietz
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau, D-76829, Germany
| | - Alexis P Roodt
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau, D-76829, Germany
| | - Johanna M Kraus
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Road, Columbia, MO 65201, USA
| |
Collapse
|
12
|
Shipley JR, Twining CW, Mathieu-Resuge M, Parmar TP, Kainz M, Martin-Creuzburg D, Weber C, Winkler DW, Graham CH, Matthews B. Climate change shifts the timing of nutritional flux from aquatic insects. Curr Biol 2022; 32:1342-1349.e3. [DOI: 10.1016/j.cub.2022.01.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/21/2021] [Accepted: 01/20/2022] [Indexed: 11/15/2022]
|
13
|
Corra J, Sullivan SMP. Temperature and land use influence tree swallow individual health. CONSERVATION PHYSIOLOGY 2021; 9:coab084. [PMID: 34712488 PMCID: PMC8546433 DOI: 10.1093/conphys/coab084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/30/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Aerial insectivorous bird populations have declined precipitously in both North America and Europe. We assessed the effects of insect prey availability, climate and shifts in water quality associated with urbanization on haematocrit, haemoglobin concentration and heterophil-lymphocyte (H/L) ratios among ~13-day-old tree swallow (Tachycineta bicolor) nestlings in the Columbus, Ohio area. Higher mean temperature and increased frequency of extreme heat days during the early breeding period (May-June) were linked to reduced nestling physiological condition as evidenced by lower concentrations of haemoglobin and haematocrit, potentially due to increased heat stress, shifts in insect prey availability or altered parental provisioning efforts. Urbanization and the size and density of emergent aquatic insects were associated with elevated physiological stress, whereas higher mean temperatures and terrestrial insect size were related to lower stress as measured by H/L ratios. Overall, these findings highlight the complex environmental conditions driving nestling health, which may be indicative of post-fledging survival and, consequently, population growth. Our results underscore the need for conservation approaches that adequately address the interrelated effects of changes in climate, land use and food resources on aerial insectivorous birds.
Collapse
Affiliation(s)
- Joseph Corra
- Office of Research and Development, U.S. Environmental Protection Agency, 26 Martin Luther King Dr., Cincinnati, OH 45268, USA
| | - S Mažeika P Sullivan
- School of Environment and Natural Resources, The Ohio State University, 125 Heffner Bldg 352 W. Dodridge St., Columbus, OH 43202, USA
| |
Collapse
|