1
|
Taylor M, Brook B, Johnson C, de Little S. Wildlife Conservation on Private Land: A Social-Ecological Systems Study. ENVIRONMENTAL MANAGEMENT 2024; 73:1049-1071. [PMID: 38520553 PMCID: PMC11024003 DOI: 10.1007/s00267-024-01962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
As human activity accelerates the global crisis facing wildlife populations, private land conservation provides an example of wildlife management challenges in social-ecological systems. This study reports on the research phase of 'WildTracker' - a co-created citizen science project, involving 160 landholders across three Tasmanian regions. This was a transdisciplinary collaboration between an environmental organisation, university researchers, and local landholders. Focusing on mammal and bird species, the project integrated diverse data types and technologies: social surveys, quantitative ecology, motion sensor cameras, acoustic recorders, and advanced machine-learning analytics. An iterative analytical methodology encompassed Pearson and point-biserial correlation for interrelationships, Non-Metric Multidimensional Scaling (NMDS) for clustering, and Random Forest machine learning for variable importance and prediction. Taken together, these analyses revealed complex relationships between wildlife populations and a suite of ecological, socio-economic, and land management variables. Both site-scale habitat characteristics and landscape-scale vegetation patterns were useful predictors of mammal and bird activity, but these relationships were different for mammals and birds. Four focal mammal species showed variation in their response to ecological and land management drivers. Unexpectedly, threatened species, such as the eastern quoll (Dasyurus viverrinus), favoured locations where habitat was substantially modified by human activities. The research provides actionable insights for landowners, and highlights the importance of 'messy,' ecologically heterogeneous, mixed agricultural landscapes for wildlife conservation. The identification of thresholds in habitat fragmentation reinforced the importance of collaboration across private landscapes. Participatory research models such as WildTracker can complement efforts to address the wicked problem of wildlife conservation in the Anthropocene.
Collapse
Affiliation(s)
- Matthew Taylor
- College of Sciences and Engineering, University of Tasmania, Hobart, TAS, Australia.
| | - Barry Brook
- College of Sciences and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Christopher Johnson
- College of Sciences and Engineering, University of Tasmania, Hobart, TAS, Australia
| | | |
Collapse
|
2
|
von Takach B, Sargent H, Penton CE, Rick K, Murphy BP, Neave G, Davies HF, Hill BM, Banks SC. Population genomics and conservation management of the threatened black-footed tree-rat (Mesembriomys gouldii) in northern Australia. Heredity (Edinb) 2023; 130:278-288. [PMID: 36899176 PMCID: PMC10162988 DOI: 10.1038/s41437-023-00601-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/12/2023] Open
Abstract
Genomic diversity is a fundamental component of Earth's total biodiversity, and requires explicit consideration in efforts to conserve biodiversity. To conserve genomic diversity, it is necessary to measure its spatial distribution, and quantify the contribution that any intraspecific evolutionary lineages make to overall genomic diversity. Here, we describe the range-wide population genomic structure of a threatened Australian rodent, the black-footed tree-rat (Mesembriomys gouldii), aiming to provide insight into the timing and extent of population declines across a large region with a dearth of long-term monitoring data. By estimating recent trajectories in effective population sizes at four localities, we confirm widespread population decline across the species' range, but find that the population in the peri-urban area of the Darwin region has been more stable. Based on current sampling, the Melville Island population made the greatest contribution to overall allelic richness of the species, and the prioritisation analysis suggested that conservation of the Darwin and Cobourg Peninsula populations would be the most cost-effective scenario to retain more than 90% of all alleles. Our results broadly confirm current sub-specific taxonomy, and provide crucial data on the spatial distribution of genomic diversity to help prioritise limited conservation resources. Along with additional sampling and genomic analysis from the far eastern and western edges of the black-footed tree-rat distribution, we suggest a range of conservation and research priorities that could help improve black-footed tree-rat population trajectories at large and fine spatial scales, including the retention and expansion of structurally complex habitat patches.
Collapse
Affiliation(s)
- Brenton von Takach
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Holly Sargent
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Cara E Penton
- Warddeken Land Management Ltd, Darwin, NT, Australia
| | - Kate Rick
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Brett P Murphy
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Georgina Neave
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Hugh F Davies
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Brydie M Hill
- Flora and Fauna Division, Department of Environment, Parks and Water Security, Northern Territory Government, Berrimah, NT, 0831, Australia
| | - Sam C Banks
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia.
| |
Collapse
|
3
|
Bergstrom BJ, Scruggs SB, Vieira EM. Tropical savanna small mammals respond to loss of cover following disturbance: A global review of field studies. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1017361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Small-mammal faunas of tropical savannas consist of endemic assemblages of murid rodents, small marsupials, and insectivores on four continents. Small mammals in tropical savannas are understudied compared to other tropical habitats and other taxonomic groups (e.g., Afrotropical megafauna or Neotropical rainforest mammals). Their importance as prey, ecosystem engineers, disease reservoirs, and declining members of endemic biodiversity in tropical savannas compels us to understand the factors that regulate their abundance and diversity. We reviewed field studies published in the last 35 years that examined, mostly experimentally, the effects of varying three primary endogenous disturbances in tropical savanna ecosystems—fire, large mammalian herbivory (LMH), and drought—on abundance and diversity of non-volant small mammals. These disturbances are most likely to affect habitat structure (cover or concealment), food availability, or both, for ground-dwelling small mammalian herbivores, omnivores, and insectivores. Of 63 studies (included in 55 published papers) meeting these criteria from the Afrotropics, Neotropics, and northern Australia (none was found from southern Asia), 29 studies concluded that small mammals responded (mostly negatively) to a loss of cover (mostly from LMH and fire); four found evidence of increased predation on small mammals in lower-cover treatments (e.g., grazed or burned). Eighteen studies concluded a combination of food- and cover-limitation explained small-mammal responses to endogenous disturbances. Only two studies concluded small-mammal declines in response to habitat-altering disturbance were caused by food limitation and not related to cover reduction. Evidence to date indicates that abundance and richness of small savanna mammals, in general (with important exceptions), is enhanced by vegetative cover (especially tall grass, but sometimes shrub cover) as refugia for these prey species amid a “landscape of fear,” particularly for diurnal, non-cursorial, and non-fossorial species. These species have been called “decreasers” in response to cover reduction, whereas a minority of small-mammal species have been shown to be “increasers” or disturbance-tolerant. Complex relationships between endogenous disturbances and small-mammal food resources are important secondary factors, but only six studies manipulated or measured food resources simultaneous to habitat manipulations. While more such studies are needed, designing effective ones for cryptic consumer communities of omnivorous dietary opportunists is a significant challenge.
Collapse
|