1
|
Perrichon G, Pochat-Cottilloux Y, Conedera D, Richardin P, Fernandez V, Hautier L, Martin JE. Neuroanatomy and pneumaticity of the extinct Malagasy "horned" crocodile Voay robustus and its implications for crocodylid phylogeny and palaeoecology. Anat Rec (Hoboken) 2024; 307:2749-2786. [PMID: 38116895 DOI: 10.1002/ar.25367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/05/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Voay robustus, the extinct Malagasy "horned" crocodile, was originally considered to be the only crocodylian representative in Madagascar during most part of the Holocene. However, Malagasy crocodylian remains have had confused taxonomic attributions and recent studies have underlined that Crocodylus and Voay populations coexisted on the island for at least 7500 years. Here, we describe the inner braincase anatomy of Voay robustus using x-ray computed tomography on four specimens, to provide new anatomical information that distinguishes Voay from Crocodylus, especially features of the brain endocast and the paratympanic sinuses. Geometric morphometric analyses are performed on 3D models of the internal organs to compare statistically Voay with a subset of extant Crocodylidae. Following these comparisons, we build an endocranial morphological matrix to discuss the proposed phylogenetic affinities of Voay with Osteolaeminae from an endocranial point of view. Additionally, we discuss the use of internal characters in systematic studies and find that they can have a major impact on morphological analyses. Finally, new radiocarbon data on Voay and subfossil Crocodylus specimens are recovered between 2010 and 2750 cal BP, which confirm the cohabitation of the two species in the same area for a long period of time. We thus assess several extinction scenarios, and propose a slightly different ecology of Voay compared to Crocodylus, which could have allowed habitat partitioning on the island. Our approach complements information obtained from previous molecular and morphological phylogenies, as well as previous radiocarbon dating, together revealing past diversity and faunal turnovers in Madagascar.
Collapse
Affiliation(s)
- Gwendal Perrichon
- CNRS UMR 5276, Université Claude Bernard Lyon 1, ENS de Lyon, Laboratoire de Géologie de Lyon-Terre, Planètes, Environnement, Villeurbanne, France
| | - Yohan Pochat-Cottilloux
- CNRS UMR 5276, Université Claude Bernard Lyon 1, ENS de Lyon, Laboratoire de Géologie de Lyon-Terre, Planètes, Environnement, Villeurbanne, France
| | - Davide Conedera
- CNRS UMR 5276, Université Claude Bernard Lyon 1, ENS de Lyon, Laboratoire de Géologie de Lyon-Terre, Planètes, Environnement, Villeurbanne, France
| | - Pascale Richardin
- Centre de Recherche et de Restauration des Musées de France (C2RMF), Palais du Louvre, Porte des Lions, Paris, France
- CNRS-UMR 8068, Technologie Ethnologie des Mondes Préhistoriques (TEMPS), Université Paris Nanterre, Nanterre Cedex, France
| | - Vincent Fernandez
- Imaging and Analysis Centre, The Natural History Museum, London, UK
- European Synchrotron Radiation Facility, Grenoble, France
| | - Lionel Hautier
- Institut des Sciences de l'Évolution, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
- Mammal Section, Life Sciences, Vertebrate Division, The Natural History Museum, London, UK
| | - Jeremy E Martin
- CNRS UMR 5276, Université Claude Bernard Lyon 1, ENS de Lyon, Laboratoire de Géologie de Lyon-Terre, Planètes, Environnement, Villeurbanne, France
| |
Collapse
|
2
|
Mondanaro A, Di Febbraro M, Castiglione S, Belfiore AM, Girardi G, Melchionna M, Serio C, Esposito A, Raia P. Modelling reveals the effect of climate and land use change on Madagascar's chameleons fauna. Commun Biol 2024; 7:889. [PMID: 39034315 PMCID: PMC11271463 DOI: 10.1038/s42003-024-06597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024] Open
Abstract
The global biodiversity crisis is generated by the combined effects of human-induced climate change and land conversion. Madagascar is one of the World's most renewed hotspots of biodiversity. Yet, its rich variety of plant and animal species is threatened by deforestation and climate change. Predicting the future of Madagascar's chameleons, in particular, is complicated by their ecological rarity, making it hard to tell which factor is the most menacing to their survival. By applying an extension of the ENphylo species distribution model algorithm to work with extremely rare species, we find that Madagascar chameleons will face intense species loss in the north-western sector of the island. Land conversion by humans will drive most of the loss, and will intersect in a complex, nonlinear manner with climate change. We find that some 30% of the Madagascar's chameleons may lose in the future nearly all their habitats, critically jeopardizing their chance for survival.
Collapse
Affiliation(s)
| | - Mirko Di Febbraro
- EnviXLab, Department of Biosciences and Territory, University of Molise, 86090, Pesche, (Isernia), Italy
| | | | - Arianna Morena Belfiore
- EnviXLab, Department of Biosciences and Territory, University of Molise, 86090, Pesche, (Isernia), Italy
| | - Giorgia Girardi
- DiSTAR, University of Naples Federico II, 80126, Naples, Italy
| | | | - Carmela Serio
- DiSTAR, University of Naples Federico II, 80126, Naples, Italy
| | | | - Pasquale Raia
- DiSTAR, University of Naples Federico II, 80126, Naples, Italy.
| |
Collapse
|
3
|
Cutmarked bone of drought-tolerant extinct megafauna deposited with traces of fire, human foraging, and introduced animals in SW Madagascar. Sci Rep 2022; 12:18504. [PMID: 36414654 PMCID: PMC9681754 DOI: 10.1038/s41598-022-22980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022] Open
Abstract
People could have hunted Madagascar's megafauna to extinction, particularly when introduced taxa and drought exacerbated the effects of predation. However, such explanations are difficult to test due to the scarcity of individual sites with unambiguous traces of humans, introduced taxa, and endemic megaherbivores. We excavated three coastal ponds in arid SW Madagascar and present a unique combination of traces of human activity (modified pygmy hippo bone, processed estuarine shell and fish bone, and charcoal), along with bones of extinct megafauna (giant tortoises, pygmy hippos, and elephant birds), extirpated fauna (e.g., crocodiles), and introduced vertebrates (e.g., zebu cattle). The disappearance of megafauna from the study sites at ~ 1000 years ago followed a relatively arid interval and closely coincides with increasingly frequent traces of human foraging, fire, and pastoralism. Our analyses fail to document drought-associated extirpation or multiple millennia of megafauna hunting and suggest that a late combination of hunting, forest clearance, and pastoralism drove extirpations.
Collapse
|