1
|
Kelly G, Plesser E, Bdolach E, Arroyave M, Belausov E, Doron‐Faigenboim A, Rozen A, Zemach H, Zach YY, Goldenberg L, Arad T, Yaniv Y, Sade N, Sherman A, Eyal Y, Carmi N. In planta genome editing in citrus facilitated by co-expression of CRISPR/Cas and developmental regulators. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70155. [PMID: 40275470 PMCID: PMC12022391 DOI: 10.1111/tpj.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025]
Abstract
Recent advances in the field of genome editing offer a promising avenue for targeted trait improvements in fruit trees. However, the predominant method taken for genome editing in citrus (and other fruit trees) involves the time-consuming tissue culture approach, thereby prolonging the overall citrus breeding process and subjecting it to the drawbacks associated with somaclonal variation. In this study, we introduce an in planta approach for genome editing in soil-grown citrus plants via direct transformation of young seedlings. Our editing system, abbreviated here as IPGEC (in planta genome editing in citrus), is designed to transiently co-express three key gene groups in citrus tissue via Agrobacterium tumefaciens: (i) a genome-editing catalytic group, (ii) a shoot induction and regeneration group, and (iii) a T-DNA enhanced delivery group. This integrated system significantly improves de novo shoot induction and regeneration efficiency of edited tissue. By incorporating single-guides RNA's (sgRNA's) targeting the carotenoid biosynthetic gene PHYTOENE DESATURASE (CsPDS), the IPGEC system effectively produced mutated albino shoots, confirming its ability to generate homozygous/biallelic genome-edited plants. By using high throughput screening, we provide evidence that transgene-free genome-edited plants could be obtained following the IPGEC approach. Our findings further suggest that the efficiency of specific developmental regulators in inducing transformation and regeneration rates may be cultivar-specific and therefore needs to be optimized per cultivar. Finally, targeted breeding for specific trait improvements in already successful cultivars is likely to revolutionize fruit tree breeding and will pave the way for accelerating the development of high-quality citrus cultivars.
Collapse
Affiliation(s)
- Gilor Kelly
- Institute of Plant SciencesAgricultural Research Organization, The Volcani CenterRishon LeZion7505101Israel
| | - Elena Plesser
- Institute of Plant SciencesAgricultural Research Organization, The Volcani CenterRishon LeZion7505101Israel
| | - Eyal Bdolach
- Institute of Plant SciencesAgricultural Research Organization, The Volcani CenterRishon LeZion7505101Israel
| | - Maria Arroyave
- Institute of Plant SciencesAgricultural Research Organization, The Volcani CenterRishon LeZion7505101Israel
| | - Eduard Belausov
- Institute of Plant SciencesAgricultural Research Organization, The Volcani CenterRishon LeZion7505101Israel
| | - Adi Doron‐Faigenboim
- Institute of Plant SciencesAgricultural Research Organization, The Volcani CenterRishon LeZion7505101Israel
| | - Ada Rozen
- Institute of Plant SciencesAgricultural Research Organization, The Volcani CenterRishon LeZion7505101Israel
| | - Hanita Zemach
- Institute of Plant SciencesAgricultural Research Organization, The Volcani CenterRishon LeZion7505101Israel
| | - Yair Yehoshua Zach
- School of Plant Science and Food SecurityTel Aviv UniversityTel AvivIsrael
| | - Livnat Goldenberg
- Institute of Plant SciencesAgricultural Research Organization, The Volcani CenterRishon LeZion7505101Israel
| | - Tal Arad
- Institute of Plant SciencesAgricultural Research Organization, The Volcani CenterRishon LeZion7505101Israel
| | - Yossi Yaniv
- Institute of Plant SciencesAgricultural Research Organization, The Volcani CenterRishon LeZion7505101Israel
| | - Nir Sade
- School of Plant Science and Food SecurityTel Aviv UniversityTel AvivIsrael
| | - Amir Sherman
- Institute of Plant SciencesAgricultural Research Organization, The Volcani CenterRishon LeZion7505101Israel
| | - Yoram Eyal
- Institute of Plant SciencesAgricultural Research Organization, The Volcani CenterRishon LeZion7505101Israel
| | - Nir Carmi
- Institute of Plant SciencesAgricultural Research Organization, The Volcani CenterRishon LeZion7505101Israel
| |
Collapse
|
2
|
Han X, Deng Z, Liu H, Ji X. Current Advancement and Future Prospects in Simplified Transformation-Based Plant Genome Editing. PLANTS (BASEL, SWITZERLAND) 2025; 14:889. [PMID: 40265805 PMCID: PMC11944944 DOI: 10.3390/plants14060889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
Recent years have witnessed remarkable progress in plant biology, driven largely by the rapid evolution of CRISPR/Cas-based genome editing (GE) technologies. These tools, including versatile CRISPR/Cas systems and their derivatives, such as base editors and prime editors, have significantly enhanced the universality, efficiency, and convenience of plant functional genomics, genetics, and molecular breeding. However, traditional genetic transformation methods are essential for obtaining GE plants. These methods depend on tissue culture procedures, which are time-consuming, labor-intensive, genotype-dependent, and challenging to regenerate. Here, we systematically outline current advancements in simplifying plant GE, focusing on the optimization of tissue culture process through developmental regulators, the development of in planta transformation methods, and the establishment of nanomaterial- and viral vector-based delivery platforms. We also discuss critical challenges and future directions for achieving genotype-independent, tissue culture-free plant GE.
Collapse
Affiliation(s)
| | | | - Huiyun Liu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (X.H.); (Z.D.)
| | - Xiang Ji
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (X.H.); (Z.D.)
| |
Collapse
|
3
|
Magon G, De Rosa V, Martina M, Falchi R, Acquadro A, Barcaccia G, Portis E, Vannozzi A, De Paoli E. Boosting grapevine breeding for climate-smart viticulture: from genetic resources to predictive genomics. FRONTIERS IN PLANT SCIENCE 2023; 14:1293186. [PMID: 38148866 PMCID: PMC10750425 DOI: 10.3389/fpls.2023.1293186] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
The multifaceted nature of climate change is increasing the urgency to select resilient grapevine varieties, or generate new, fitter cultivars, to withstand a multitude of new challenging conditions. The attainment of this goal is hindered by the limiting pace of traditional breeding approaches, which require decades to result in new selections. On the other hand, marker-assisted breeding has proved useful when it comes to traits governed by one or few genes with great effects on the phenotype, but its efficacy is still restricted for complex traits controlled by many loci. On these premises, innovative strategies are emerging which could help guide selection, taking advantage of the genetic diversity within the Vitis genus in its entirety. Multiple germplasm collections are also available as a source of genetic material for the introgression of alleles of interest via adapted and pioneering transformation protocols, which present themselves as promising tools for future applications on a notably recalcitrant species such as grapevine. Genome editing intersects both these strategies, not only by being an alternative to obtain focused changes in a relatively rapid way, but also by supporting a fine-tuning of new genotypes developed with other methods. A review on the state of the art concerning the available genetic resources and the possibilities of use of innovative techniques in aid of selection is presented here to support the production of climate-smart grapevine genotypes.
Collapse
Affiliation(s)
- Gabriele Magon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padova, Agripolis, Viale dell’Università 16, Legnaro, Italy
| | - Valeria De Rosa
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze, 206, Udine, Italy
| | - Matteo Martina
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Largo P. Braccini 2, Grugliasco, Italy
| | - Rachele Falchi
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze, 206, Udine, Italy
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Largo P. Braccini 2, Grugliasco, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padova, Agripolis, Viale dell’Università 16, Legnaro, Italy
| | - Ezio Portis
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Largo P. Braccini 2, Grugliasco, Italy
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padova, Agripolis, Viale dell’Università 16, Legnaro, Italy
| | - Emanuele De Paoli
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze, 206, Udine, Italy
| |
Collapse
|
4
|
Curtin S, Qi Y, Peres LEP, Fernie AR, Zsögön A. Pathways to de novo domestication of crop wild relatives. PLANT PHYSIOLOGY 2022; 188:1746-1756. [PMID: 34850221 PMCID: PMC8968405 DOI: 10.1093/plphys/kiab554] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/03/2021] [Indexed: 05/24/2023]
Abstract
Growing knowledge about crop domestication, combined with increasingly powerful gene-editing toolkits, sets the stage for the continual domestication of crop wild relatives and other lesser-known plant species.
Collapse
Affiliation(s)
- Shaun Curtin
- United States Department of Agriculture, Plant Science Research Unit, St. Paul, Minnesota 55108, USA
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, Minnesota 55108, USA
- Center for Genome Engineering, University of Minnesota, St. Paul, Minnesota 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, São Paulo, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
5
|
Jo J, Kim Y, Kim GW, Kwon JK, Kang BC. Development of a Panel of Genotyping-in-Thousands by Sequencing in Capsicum. FRONTIERS IN PLANT SCIENCE 2021; 12:769473. [PMID: 34764974 PMCID: PMC8576353 DOI: 10.3389/fpls.2021.769473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/07/2021] [Indexed: 05/05/2023]
Abstract
Genotyping by sequencing (GBS) enables genotyping of multiple loci at low cost. However, the single nucleotide polymorphisms (SNPs) revealed by GBS tend to be randomly distributed between individuals, limiting their direct comparisons without applying the various filter options to obtain a comparable dataset of SNPs. Here, we developed a panel of a multiplex targeted sequencing method, genotyping-in-thousands by sequencing (GT-seq), to genotype SNPs in Capsicum spp. Previously developed Fluidigm® SNP markers were converted to GT-seq markers and combined with new GT-seq markers developed using SNP information obtained through GBS. We then optimized multiplex PCR conditions: we obtained the highest genotyping rate when the first PCR consisted of 25 cycles. In addition, we determined that 101 primer pairs performed best when amplifying target sequences of 79 bp. We minimized interference of multiplex PCR by primer dimer formation using the PrimerPooler program. Using our GT-seq pipeline on Illumina Miseq and Nextseq platforms, we genotyped up to 1,500 (Miseq) and 1,300 (Nextseq) samples for the optimum panel size of 100 loci. To allow the genotyping of Capsicum species, we designed 332 informative GT-seq markers from Fluidigm SNP markers and GBS-derived SNPs. This study illustrates the first application of GT-seq in crop plants. The GT-seq marker set developed here will be a useful tool for molecular breeding of peppers in the future.
Collapse
|