1
|
Zhu M, Sumana SL, Abdullateef MM, Falayi OC, Shui Y, Zhang C, Zhu J, Su S. CRISPR/Cas9 Technology for Enhancing Desirable Traits of Fish Species in Aquaculture. Int J Mol Sci 2024; 25:9299. [PMID: 39273247 PMCID: PMC11395652 DOI: 10.3390/ijms25179299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Aquaculture, the world's fastest-growing food production sector, is critical for addressing food security concerns because of its potential to deliver high-quality, nutrient-rich supplies by 2050. This review assesses the effectiveness of CRISPR/Cas9 genome editing technology in enhancing desirable traits in fish species, including growth rates, muscle quality, disease resistance, pigmentation, and more. It also focuses on the potential effectiveness of the technology in allowing precise and targeted modifications of fish DNA to improve desirable characteristics. Many studies have reported successful applications of CRISPR/Cas9, such as knocking out reproductive genes to control reproduction and sex determination, enhancing feed conversion efficiency, and reducing off-target effects. Additionally, this technology has contributed to environmental sustainability by reducing nitrogen-rich waste and improving the nutritional composition of fish. However, the acceptance of CRISPR/Cas9 modified fish by the public and consumers is hindered by concerns regarding public perception, potential ecological impacts, and regulatory frameworks. To gain public approval and consumer confidence, clear communication about the editing process, as well as data on the safety and environmental considerations of genetically modified fish, are essential. This review paper discusses these challenges, provides possible solutions, and recommends future research on the integration of CRISPR/Cas9 into sustainable aquaculture practices, focusing on the responsible management of genetically modified fish to enable the creation of growth and disease-resistant strains. In conclusion, this review highlights the transformative potential of CRISPR/Cas9 technology in improving fish traits, while also considering the challenges and ethical considerations associated with sustainable and responsible practices in aquaculture.
Collapse
Affiliation(s)
- Minli Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Sahr Lamin Sumana
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | | | | | - Yan Shui
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Chengfeng Zhang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jian Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shengyan Su
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
2
|
Chen Q, Ma X, Wang J, Shi M, Hu G, Chen S, Zhou Q. Multi-organ transcriptomic profiles and gene-regulation network underlying vibriosis resistance in tongue sole. Sci Data 2024; 11:819. [PMID: 39048589 PMCID: PMC11269662 DOI: 10.1038/s41597-024-03651-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
Vibrio spp. are major pathogens responsible for mortality and disease in various marine aquaculture organisms. Effective disease control and genetic breeding strategies rely heavily on understanding host vibriosis resistance mechanisms. The Chinese tongue sole (Cynoglossus semilaevis) is economically vital but suffers from substantial mortalities due to vibriosis. Through continuous selective breeding, we have successfully obtained vibriosis-resistant families of this species. In this study, we conducted RNA-seq analysis on three organs, including liver, spleen and intestine from selected resistant and susceptible tongue soles. Additionally, we integrated these data with our previously published RNA-seq datasets of skin and gill, enabling the construction of organ-specific transcriptional profiles and a comprehensive gene co-expression network elucidating the differences in vibriosis resistance. Furthermore, we identified 12 modules with organ-specific functional implications. Overall, our findings provide a valuable resource for investigating the molecular basis of vibriosis resistance in fish, offering insights into target genes and pathways essential for molecular selection and genetic manipulation to enhance vibriosis resistance in fish breeding programs.
Collapse
Affiliation(s)
- Quanchao Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xinran Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Jie Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Meng Shi
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Guobin Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| | - Qian Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
3
|
Khalil SMI, Bulfon C, Galeotti M, Acutis PL, Altinok I, Kotzamanidis C, Vela AI, Fariano L, Prearo M, Colussi S, Volpatti D. Immune profiling of rainbow trout (Oncorhynchus mykiss) exposed to Lactococcus garvieae: Evidence in asymptomatic versus symptomatic or vaccinated fish. JOURNAL OF FISH DISEASES 2023; 46:731-741. [PMID: 36943008 DOI: 10.1111/jfd.13782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 06/07/2023]
Abstract
Lactococcosis, caused by the Gram-positive bacterium Lactococcus garvieae, is a major concern in rainbow trout (Oncorhynchus mykiss) farms, which are regularly affected by outbreaks especially during the summer/fall months. In these farms, unvaccinated healthy and symptomatic fish can coexist with vaccinated fish. In the present study, innate (leukogram, serum lysozyme activity, peroxidase activity, antiprotease activity, bactericidal activity, total IgM and total proteins), and specific immune parameters (serum antibodies to L. garvieae) were assessed in unvaccinated adult rainbow trout naturally exposed to the pathogen, with or without evidence of clinical signs, or subjected to vaccination. Blood was drawn from all three groups, and blood smears were prepared. Bacteria were found in the blood smears of 70% of the symptomatic fish but not in any of the asymptomatic fish. Symptomatic fish showed lower blood lymphocytes and higher thrombocytes than asymptomatic fish (p ≤ .05). Serum lysozyme and bactericidal activity did not vary substantially among groups; however, serum antiprotease and peroxidase activity were significantly lower in the unvaccinated symptomatic group than in the unvaccinated and vaccinated asymptomatic groups (p ≤ .05). Serum total proteins and total immunoglobulin (IgM) levels in vaccinated asymptomatic rainbow trout were significantly higher than in unvaccinated asymptomatic and symptomatic groups (p ≤ .05). Similarly, vaccinated asymptomatic fish produced more specific IgM against L. garvieae than unvaccinated asymptomatic and symptomatic fish (p ≤ .05). This preliminary study provides basic knowledge on the immunological relationship occurring between the rainbow trout and L. garvieae, potentially predicting health outcomes. The approach we proposed could facilitate infield diagnostics, and several non-specific immunological markers could serve as reliable indicators of the trout's innate ability to fight infection.
Collapse
Affiliation(s)
- Sarker Mohammed Ibrahim Khalil
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
- Department of Fish Health Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Chiara Bulfon
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Marco Galeotti
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Ilhan Altinok
- Aquatic Animal Health and Molecular Genetic Lab, Department of Fisheries Technology Engineering, Karadeniz Technical University, Trabzon, Turkiye
| | | | | | | | - Marino Prearo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Silvia Colussi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Donatella Volpatti
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| |
Collapse
|
4
|
Nandanpawar P, Sahoo L, Sahoo B, Murmu K, Chaudhari A, Pavan kumar A, Das P. Identification of differentially expressed genes and SNPs linked to harvest body weight of genetically improved rohu carp, Labeo rohita. Front Genet 2023; 14:1153911. [PMID: 37359361 PMCID: PMC10285081 DOI: 10.3389/fgene.2023.1153911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
In most of the aquaculture selection programs, harvest body weight has been a preferred performance trait for improvement. Molecular interplay of genes linked to higher body weight is not elucidated in major carp species. The genetically improved rohu carp with 18% average genetic gain per generation with respect to harvest body weight is a promising candidate for studying genes' underlying performance traits. In the present study, muscle transcriptome sequencing of two groups of individuals, with significant difference in breeding value, belonging to the tenth generation of rohu carp was performed using the Illumina HiSeq 2000 platform. A total of 178 million paired-end raw reads were generated to give rise to 173 million reads after quality control and trimming. The genome-guided transcriptome assembly and differential gene expression produced 11,86,119 transcripts and 451 upregulated and 181 downregulated differentially expressed genes (DEGs) between high-breeding value and low-breeding value (HB & LB) groups, respectively. Similarly, 39,158 high-quality coding SNPs were identified with the Ts/Tv ratio of 1.23. Out of a total of 17 qPCR-validated transcripts, eight were associated with cellular growth and proliferation and harbored 13 SNPs. The gene expression pattern was observed to be positively correlated with RNA-seq data for genes such as myogenic factor 6, titin isoform X11, IGF-1 like, acetyl-CoA, and thyroid receptor hormone beta. A total of 26 miRNA target interactions were also identified to be associated with significant DETs (p-value < 0.05). Genes such as Myo6, IGF-1-like, and acetyl-CoA linked to higher harvest body weight may serve as candidate genes in marker-assisted breeding and SNP array construction for genome-wide association studies and genomic selection.
Collapse
Affiliation(s)
- P. Nandanpawar
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - L. Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - B. Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - K. Murmu
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - A. Chaudhari
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - A. Pavan kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - P. Das
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| |
Collapse
|
5
|
Faggion S, Carnier P, Franch R, Babbucci M, Pascoli F, Dalla Rovere G, Caggiano M, Chavanne H, Toffan A, Bargelloni L. Viral nervous necrosis resistance in gilthead sea bream (Sparus aurata) at the larval stage: heritability and accuracy of genomic prediction with different training and testing settings. Genet Sel Evol 2023; 55:22. [PMID: 37013478 PMCID: PMC10069116 DOI: 10.1186/s12711-023-00796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The gilthead sea bream (Sparus aurata) has long been considered resistant to viral nervous necrosis (VNN), until recently, when significant mortalities caused by a reassortant nervous necrosis virus (NNV) strain were reported. Selective breeding to enhance resistance against NNV might be a preventive action. In this study, 972 sea bream larvae were subjected to a NNV challenge test and the symptomatology was recorded. All the experimental fish and their parents were genotyped using a genome-wide single nucleotide polymorphism (SNP) array consisting of over 26,000 markers. RESULTS Estimates of pedigree-based and genomic heritabilities of VNN symptomatology were consistent with each other (0.21, highest posterior density interval at 95% (HPD95%): 0.1-0.4; 0.19, HPD95%: 0.1-0.3, respectively). The genome-wide association study suggested one genomic region, i.e., in linkage group (LG) 23 that might be involved in sea bream VNN resistance, although it was far from the genome-wide significance threshold. The accuracies (r) of the predicted estimated breeding values (EBV) provided by three Bayesian genomic regression models (Bayes B, Bayes C, and Ridge Regression) were consistent and on average were equal to 0.90 when assessed in a set of cross-validation (CV) procedures. When genomic relationships between training and testing sets were minimized, accuracy decreased greatly (r = 0.53 for a validation based on genomic clustering, r = 0.12 for a validation based on a leave-one-family-out approach focused on the parents of the challenged fish). Classification of the phenotype using the genomic predictions of the phenotype or using the genomic predictions of the pedigree-based, all data included, EBV as classifiers was moderately accurate (area under the ROC curve 0.60 and 0.66, respectively). CONCLUSIONS The estimate of the heritability for VNN symptomatology indicates that it is feasible to implement selective breeding programs for increased resistance to VNN of sea bream larvae/juveniles. Exploiting genomic information offers the opportunity of developing prediction tools for VNN resistance, and genomic models can be trained on EBV using all data or phenotypes, with minimal differences in classification performance of the trait phenotype. In a long-term view, the weakening of the genomic ties between animals in the training and test sets leads to decreased genomic prediction accuracies, thus periodical update of the reference population with new data is mandatory.
Collapse
Affiliation(s)
- Sara Faggion
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy.
| | - Paolo Carnier
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| | - Rafaella Franch
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| | - Francesco Pascoli
- Division of Comparative Biomedical Sciences, OIE Reference Centre for Viral Encephalopathy and Retinopathy, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Padova, Italy
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| | - Massimo Caggiano
- Panittica Italia Società Agricola S.R.L., Strada del Procaccio, 72016, Torre Canne di Fasano, Italy
| | - Hervé Chavanne
- Panittica Italia Società Agricola S.R.L., Strada del Procaccio, 72016, Torre Canne di Fasano, Italy
| | - Anna Toffan
- Division of Comparative Biomedical Sciences, OIE Reference Centre for Viral Encephalopathy and Retinopathy, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Padova, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| |
Collapse
|
6
|
Sánchez Roncancio CO, Fonseca de Freitas RT. Supervivencia observada en tres familias de tilapia del Nilo (Oreochromis niloticus) infectadas con Streptococcus agalactiae. REVISTA DE LA FACULTAD DE MEDICINA VETERINARIA Y DE ZOOTECNIA 2022. [DOI: 10.15446/rfmvz.v69n3.103804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
La estreptococosis es una de las principales enfermedades en los peces de agua dulce que causa altas tasas de mortalidad. El objetivo de este estudio fue evaluar la respuesta en la supervivencia a la infección por Streptococcus agalactiae en tres familias de tilapia. El experimento se llevó a cabo en el Laboratorio de Enfermedades de los Peces de la Universidad Federal de Lavras. Se utilizaron peces con un peso de 93,7 ± 5,4 g de tres familias diferentes (FA, FB y FC). Se utilizaron 36 peces en cada unidad experimental, inoculados intraperitonealmente con 107 UFC/mL de Streptococcus agalactiae por peces y un grupo control por familia con 9 peces con 1 mL de caldo BHI (Infusión Cerebro Corazón) evaluados durante 15 días. No hubo mortalidad del grupo control. Se observó la presencia de exoftalmia, coloración oscura en todo el cuerpo, letargo y dilatación abdominal antes de la muerte en las tres familias evaluadas expuestas al patógeno. El estimador no paramétrico de Kaplan-Meier se utilizó para observar las curvas de supervivencia. Durante los 15 días del desafío, el tiempo promedio de supervivencia de un individuo en las familias FA, FB y FC fue de 9,4; 6,90 y 8,14 días, respectivamente. Pruebas de Log-rank y Peto & Peto para evaluar la diferencia entre las curvas de supervivencia arrojaron que no hubo diferencias significativas entre las familias evaluadas (P=0,08 y P= 0,09), respectivamente.
Collapse
|
7
|
Quezada‐Rodriguez PR, Taylor RS, Downes J, Egan F, White S, Brenan A, Rigby M, Nowak BF, Ruane NM, Wynne JW. Prevalence of epitheliocystis in freshwater Atlantic salmon reared in flow-through and recirculation aquaculture systems. JOURNAL OF FISH DISEASES 2022; 45:1721-1731. [PMID: 36017570 PMCID: PMC9805179 DOI: 10.1111/jfd.13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Epitheliocystis, an intracellular bacterial infection in the gills and skin epithelium, has been frequently reported in Atlantic salmon (Salmo salar) during freshwater production in a number of countries. This study describes the prevalence and intensity of a natural epitheliocystis infection present in the gills of two strains of Atlantic salmon reared in either a flow-through (FT) or a recirculation aquaculture system (RAS) in Ireland. Repeated sampling of gills prior to and throughout seawater transfer, histology and quantitative real-time PCR were used to determine infection prevalence and intensity. Despite no clinical gill disease, and minor histopathological changes, epitheliocystis lesions were identified in histology at all time points. Specific PCR confirmed the presence of Candidatus Clavichlamydia salmonicola in both strains and its number of copies was correlated with intensity of epitheliocystis lesions. A significant interaction between hatchery system and fish strain on the prevalence and intensity of gill epitheliocystis was found both using histological and molecular methods. Specifically, fish from FT had higher prevalence and intensity than RAS reared fish and within FT, the Irish cohort were more affected than Icelandic.
Collapse
Affiliation(s)
- Petra R. Quezada‐Rodriguez
- Livestock and AquacultureCommonwealth Scientific and Industrial Research Organisation, Agriculture and FoodHobartTasmaniaAustralia
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaLauncestonTasmaniaAustralia
| | - Richard S. Taylor
- Livestock and AquacultureCommonwealth Scientific and Industrial Research Organisation, Agriculture and FoodHobartTasmaniaAustralia
| | | | | | | | | | - Megan Rigby
- Livestock and AquacultureCommonwealth Scientific and Industrial Research Organisation, Agriculture and FoodHobartTasmaniaAustralia
| | - Barbara F. Nowak
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaLauncestonTasmaniaAustralia
| | | | - James W. Wynne
- Livestock and AquacultureCommonwealth Scientific and Industrial Research Organisation, Agriculture and FoodHobartTasmaniaAustralia
| |
Collapse
|
8
|
Ren S, Mather PB, Tang B, Hurwood DA. Insight into selective breeding for robustness based on field survival records: New genetic evaluation of survival traits in pacific white shrimp ( Penaeus vannamei) breeding line. Front Genet 2022; 13:1018568. [PMID: 36313448 PMCID: PMC9608658 DOI: 10.3389/fgene.2022.1018568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Survival can be considered a relatively 'old' trait in animal breeding, yet commonly neglected in aquaculture breeding because of the simple binary records and generally low heritability estimates. Developing routine genetic evaluation systems for survival traits however, will be important for breeding robust strains based on valuable field survival data. In the current study, linear multivariate animal model (LMA) was used for the genetic analysis of survival records from 2-year classes (BL2019 and BL2020) of pacific white shrimp (Penaeus vannamei) breeding lines with data collection of 52, 248 individuals from 481 fullsib families. During grow-out test period, 10 days intervals of survival data were considered as separate traits. Two survival definitions, binary survivability (S) and continuous survival in days (SL), were used for the genetic analysis of survival records to investigate; 1) whether adding more survival time information could improve estimation of genetic parameters; 2) the trajectory of survival heritability across time, and 3) patterns of genetic correlations of survival traits across time. Levels of heritability estimates for both S and SL were low (0.005-0.076), while heritability for survival day number was found to be similar with that of binary records at each observation time and were highly genetically correlated (r g > 0.8). Heritability estimates of body weight (BW) for BL2019 and BL2020 were 0.486 and 0.373, respectively. Trajectories of survival heritability showed a gradual increase across the grow-out test period but slowed or reached a plateau during the later grow-out test period. Genetic correlations among survival traits in the grow-out tests were moderate to high, and the closer the times were between estimates, the higher were their genetic correlations. In contrast, genetic correlations between both survival traits and body weight were low but positive. Here we provide the first report on the trajectory of heritability estimates for survival traits across grow-out stage in aquaculture. Results will be useful for developing robust improved pacific white shrimp culture strains in selective breeding programs based on field survival data.
Collapse
Affiliation(s)
- Shengjie Ren
- Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Peter B. Mather
- Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Binguo Tang
- Beijing Shuishiji Biotechnology Co., Ltd., Beijing, China
| | - David A. Hurwood
- Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Zhou Q, Chen Y, Chen Z, Wang L, Ma X, Wang J, Zhang Q, Chen S. Genomics and transcriptomics reveal new molecular mechanism of vibriosis resistance in fish. Front Immunol 2022; 13:974604. [PMID: 36304468 PMCID: PMC9592550 DOI: 10.3389/fimmu.2022.974604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Infectious diseases have caused dramatic production decline and economic loss for fish aquaculture. However, the poor understanding of fish disease resistance severely hampered disease prevention. Chinese tongue sole (Cynoglossus semilaevis) is an important economic flatfish suffering from vibriosis. Here we used genomic, transcriptomic and experimental approaches to investigate the molecular genetic mechanisms underlying fish vibriosis resistance. A genome-wide comparison revealed that the genes under selective sweeps were enriched for glycosaminoglycan (GAG) chondroitin sulfate (CS)/dermatan sulfate (DS) metabolism. Transcriptomic analyses prioritized synergic gene expression patterns in this pathway, which may lead to an increased CS/DS content in the resistant family. Further experimental evidence showed that carbohydrate sulfotransferases 12 (Chst12), a key enzyme for CS/DS biosynthesis, has a direct antibacterial activity. To the best of our knowledge, this is the first report that the chst12 gene has a bactericidal effect. In addition, CS/DS is a major component of the extracellular matrix (ECM) and the selection signatures and fine-tuned gene expressions of ECM-receptor interaction genes indicated a modification in the ECM structure with an enhancement of the barrier function. Furthermore, functional studies conducted on Col6a2, encoding a collagen gene which constitutes the ECM, pointed to that it may act as a cellular receptor for Vibrio pathogens, thus plays an important role for the Vibrio invasion. Taken together, these findings provide new insights into the molecular protective mechanism underlying vibriosis resistance in fish, which offers crucial genomic resources for the resistant germplasm breeding and infectious disease control in fish culturing.
Collapse
Affiliation(s)
- Qian Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Shandong Key Laboratory for Marine Fishery Biotechnology and Genetic Breeding, Qingdao, China
| | - Yadong Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Zhangfan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Lei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Xinran Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Jie Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Qihao Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Shandong Key Laboratory for Marine Fishery Biotechnology and Genetic Breeding, Qingdao, China
- College of Life Science, Qingdao University, Qingdao, China
- *Correspondence: Songlin Chen,
| |
Collapse
|
10
|
Meher PK, Rustgi S, Kumar A. Performance of Bayesian and BLUP alphabets for genomic prediction: analysis, comparison and results. Heredity (Edinb) 2022; 128:519-530. [PMID: 35508540 DOI: 10.1038/s41437-022-00539-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
We evaluated the performances of three BLUP and five Bayesian methods for genomic prediction by using nine actual and 54 simulated datasets. The genomic prediction accuracy was measured using Pearson's correlation coefficient between the genomic estimated breeding value (GEBV) and the observed phenotypic data using a fivefold cross-validation approach with 100 replications. The Bayesian alphabets performed better for the traits governed by a few genes/QTLs with relatively larger effects. On the contrary, the BLUP alphabets (GBLUP and CBLUP) exhibited higher genomic prediction accuracy for the traits controlled by several small-effect QTLs. Additionally, Bayesian methods performed better for the highly heritable traits and, for other traits, performed at par with the BLUP methods. Further, genomic BLUP (GBLUP) was identified as the least biased method for the GEBV estimation. Among the Bayesian methods, the Bayesian ridge regression and Bayesian LASSO were less biased than other Bayesian alphabets. Nonetheless, genomic prediction accuracy increased with an increase in trait heritability, irrespective of the sample size, marker density, and the QTL type (major/minor effect). In sum, this study provides valuable information regarding the choice of the selection method for genomic prediction in different breeding programs.
Collapse
Affiliation(s)
- Prabina Kumar Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi-12, India.
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Darlington, SC, USA.
| | - Anuj Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi-12, India
| |
Collapse
|
11
|
Fridman S, Tsairidou S, Jayasuriya N, Sobolewska H, Hamilton A, Lobos C, Houston RD, Rodger H, Bron J, Herath T. Assessment of Marine Gill Disease in Farmed Atlantic Salmon ( Salmo salar) in Chile Using a Novel Total Gross Gill Scoring System: A Case Study. Microorganisms 2021; 9:microorganisms9122605. [PMID: 34946205 PMCID: PMC8706402 DOI: 10.3390/microorganisms9122605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Gill disorders have become more prevalent and widespread in finfish aquaculture in recent years. Their aetiology is often considered to be multifactorial. Effective diagnosis, control and prevention are hindered by the lack of standardised methodologies to characterise the aetiological agents, which produce an array of clinical and pathological presentations. The aim of this study was to define a novel gross pathological scoring system suitable for field-based macroscopic assessment of complex or multifactorial gill disease in farmed Atlantic salmon, using samples derived from a gill disease outbreak in Chile. Clinical assessment of gross gill morphology was performed, and gill samples were collected for qPCR and histology. A novel total gill scoring system was developed, which assesses gross pathological changes combining both the presumptive or healed amoebic gill disease (AGD) and the presence of other types of gill lesions. This scoring system offers a standardised approach to characterise the severe proliferative pathologies in affected gills. This total gill scoring system can substantially contribute to the development of robust mitigation strategies and could be used as an indicator trait for incorporating resistance to multifactorial gill disease into breeding goals.
Collapse
Affiliation(s)
- Sophie Fridman
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK;
- Correspondence:
| | - Smaragda Tsairidou
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; (S.T.); (R.D.H.)
| | - Nilantha Jayasuriya
- Department of Animal Health, Behaviour and Welfare, Harper Adams University, Newport TF10 8NB, Shropshire, UK; (N.J.); (T.H.)
| | | | - Alastair Hamilton
- Hendrix Genetics, Villa ’de Körver’, Boxmeer, 695831 CK Spoorstraat, The Netherlands; (A.H.); (C.L.)
| | - Carlos Lobos
- Hendrix Genetics, Villa ’de Körver’, Boxmeer, 695831 CK Spoorstraat, The Netherlands; (A.H.); (C.L.)
- PHARMAQ Analytiq Spa, Bernardino, Puerto Montt 1978, Chile
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; (S.T.); (R.D.H.)
| | | | - James Bron
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK;
| | - Tharangani Herath
- Department of Animal Health, Behaviour and Welfare, Harper Adams University, Newport TF10 8NB, Shropshire, UK; (N.J.); (T.H.)
| |
Collapse
|
12
|
Koch IJ, Narum SR. An evaluation of the potential factors affecting lifetime reproductive success in salmonids. Evol Appl 2021; 14:1929-1957. [PMID: 34429740 PMCID: PMC8372082 DOI: 10.1111/eva.13263] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 01/24/2023] Open
Abstract
Lifetime reproductive success (LRS), the number of offspring produced over an organism's lifetime, is a fundamental component of Darwinian fitness. For taxa such as salmonids with multiple species of conservation concern, understanding the factors affecting LRS is critical for the development and implementation of successful conservation management practices. Here, we reviewed the published literature to synthesize factors affecting LRS in salmonids including significant effects of hatchery rearing, life history, and phenotypic variation, and behavioral and spawning interactions. Additionally, we found that LRS is affected by competitive behavior on the spawning grounds, genetic compatibility, local adaptation, and hybridization. Our review of existing literature revealed limitations of LRS studies, and we emphasize the following areas that warrant further attention in future research: (1) expanding the range of studies assessing LRS across different life-history strategies, specifically accounting for distinct reproductive and migratory phenotypes; (2) broadening the variety of species represented in salmonid fitness studies; (3) constructing multigenerational pedigrees to track long-term fitness effects; (4) conducting LRS studies that investigate the effects of aquatic stressors, such as anthropogenic effects, pathogens, environmental factors in both freshwater and marine environments, and assessing overall body condition, and (5) utilizing appropriate statistical approaches to determine the factors that explain the greatest variation in fitness and providing information regarding biological significance, power limitations, and potential sources of error in salmonid parentage studies. Overall, this review emphasizes that studies of LRS have profoundly advanced scientific understanding of salmonid fitness, but substantial challenges need to be overcome to assist with long-term recovery of these keystone species in aquatic ecosystems.
Collapse
Affiliation(s)
- Ilana J. Koch
- Columbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| |
Collapse
|
13
|
Potts RWA, Gutierrez AP, Penaloza CS, Regan T, Bean TP, Houston RD. Potential of genomic technologies to improve disease resistance in molluscan aquaculture. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200168. [PMID: 33813884 PMCID: PMC8059958 DOI: 10.1098/rstb.2020.0168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 01/04/2023] Open
Abstract
Molluscan aquaculture is a major contributor to global seafood production, but is hampered by infectious disease outbreaks that can cause serious economic losses. Selective breeding has been widely used to improve disease resistance in major agricultural and aquaculture species, and has clear potential in molluscs, albeit its commercial application remains at a formative stage. Advances in genomic technologies, especially the development of cost-efficient genomic selection, have the potential to accelerate genetic improvement. However, tailored approaches are required owing to the distinctive reproductive and life cycle characteristics of molluscan species. Transgenesis and genome editing, in particular CRISPR/Cas systems, have been successfully trialled in molluscs and may further understanding and improvement of genetic resistance to disease through targeted changes to the host genome. Whole-organism genome editing is achievable on a much greater scale compared to other farmed species, making genome-wide CRISPR screening approaches plausible. This review discusses the current state and future potential of selective breeding, genomic tools and genome editing approaches to understand and improve host resistance to infectious disease in molluscs. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Robert W. A. Potts
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Dorset DT4 8UB, UK
| | - Alejandro P. Gutierrez
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Carolina S. Penaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Tim Regan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Tim P. Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| |
Collapse
|
14
|
Ramberg S, Høyheim B, Østbye TKK, Andreassen R. A de novo Full-Length mRNA Transcriptome Generated From Hybrid-Corrected PacBio Long-Reads Improves the Transcript Annotation and Identifies Thousands of Novel Splice Variants in Atlantic Salmon. Front Genet 2021; 12:656334. [PMID: 33986770 PMCID: PMC8110904 DOI: 10.3389/fgene.2021.656334] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Atlantic salmon (Salmo salar) is a major species produced in world aquaculture and an important vertebrate model organism for studying the process of rediploidization following whole genome duplication events (Ss4R, 80 mya). The current Salmo salar transcriptome is largely generated from genome sequence based in silico predictions supported by ESTs and short-read sequencing data. However, recent progress in long-read sequencing technologies now allows for full-length transcript sequencing from single RNA-molecules. This study provides a de novo full-length mRNA transcriptome from liver, head-kidney and gill materials. A pipeline was developed based on Iso-seq sequencing of long-reads on the PacBio platform (HQ reads) followed by error-correction of the HQ reads by short-reads from the Illumina platform. The pipeline successfully processed more than 1.5 million long-reads and more than 900 million short-reads into error-corrected HQ reads. A surprisingly high percentage (32%) represented expressed interspersed repeats, while the remaining were processed into 71 461 full-length mRNAs from 23 071 loci. Each transcript was supported by several single-molecule long-read sequences and at least three short-reads, assuring a high sequence accuracy. On average, each gene was represented by three isoforms. Comparisons to the current Atlantic salmon transcripts in the RefSeq database showed that the long-read transcriptome validated 25% of all known transcripts, while the remaining full-length transcripts were novel isoforms, but few were transcripts from novel genes. A comparison to the current genome assembly indicates that the long-read transcriptome may aid in improving transcript annotation as well as provide long-read linkage information useful for improving the genome assembly. More than 80% of transcripts were assigned GO terms and thousands of transcripts were from genes or splice-variants expressed in an organ-specific manner demonstrating that hybrid error-corrected long-read transcriptomes may be applied to study genes and splice-variants expressed in certain organs or conditions (e.g., challenge materials). In conclusion, this is the single largest contribution of full-length mRNAs in Atlantic salmon. The results will be of great value to salmon genomics research, and the pipeline outlined may be applied to generate additional de novo transcriptomes in Atlantic Salmon or applied for similar projects in other species.
Collapse
Affiliation(s)
- Sigmund Ramberg
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Bjørn Høyheim
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
15
|
Moraleda CP, Robledo D, Gutiérrez AP, Del-Pozo J, Yáñez JM, Houston RD. Investigating mechanisms underlying genetic resistance to Salmon Rickettsial Syndrome in Atlantic salmon using RNA sequencing. BMC Genomics 2021; 22:156. [PMID: 33676414 PMCID: PMC7936450 DOI: 10.1186/s12864-021-07443-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/11/2021] [Indexed: 12/29/2022] Open
Abstract
Background Salmon Rickettsial Syndrome (SRS), caused by Piscirickettsia salmonis, is one of the primary causes of morbidity and mortality in Atlantic salmon aquaculture, particularly in Chile. Host resistance is a heritable trait, and functional genomic studies have highlighted genes and pathways important in the response of salmon to the bacteria. However, the functional mechanisms underpinning genetic resistance are not yet well understood. In the current study, a large population of salmon pre-smolts were challenged with P. salmonis, with mortality levels recorded and samples taken for genotyping. In parallel, head kidney and liver samples were taken from animals of the same population with high and low genomic breeding values for resistance, and used for RNA-Sequencing to compare their transcriptome profile both pre and post infection. Results A significant and moderate heritability (h2 = 0.43) was shown for the trait of binary survival. Genome-wide association analyses using 38 K imputed SNP genotypes across 2265 animals highlighted that resistance is a polygenic trait. Several thousand genes were identified as differentially expressed between controls and infected samples, and enriched pathways related to the host immune response were highlighted. In addition, several networks with significant correlation with SRS resistance breeding values were identified, suggesting their involvement in mediating genetic resistance. These included apoptosis, cytoskeletal organisation, and the inflammasome. Conclusions While resistance to SRS is a polygenic trait, this study has highlighted several relevant networks and genes that are likely to play a role in mediating genetic resistance. These genes may be future targets for functional studies, including genome editing, to further elucidate their role underpinning genetic variation in host resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07443-2.
Collapse
Affiliation(s)
- Carolina P Moraleda
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK
| | - Alejandro P Gutiérrez
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK
| | - Jorge Del-Pozo
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK
| | - José M Yáñez
- Faculty of Veterinary and Livestock Sciences, University of Chile, Santiago, Chile.
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
16
|
Piazzon MC, Naya-Català F, Perera E, Palenzuela O, Sitjà-Bobadilla A, Pérez-Sánchez J. Genetic selection for growth drives differences in intestinal microbiota composition and parasite disease resistance in gilthead sea bream. MICROBIOME 2020; 8:168. [PMID: 33228779 PMCID: PMC7686744 DOI: 10.1186/s40168-020-00922-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/09/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND The key effects of intestinal microbiota in animal health have led to an increasing interest in manipulating these bacterial populations to improve animal welfare. The aquaculture sector is no exception and in the last years, many studies have described these populations in different fish species. However, this is not an easy task, as intestinal microbiota is composed of very dynamic populations that are influenced by different factors, such as diet, environment, host age, and genetics. In the current study, we aimed to determine whether the genetic background of gilthead sea bream (Sparus aurata) influences the intestinal microbial composition, how these bacterial populations are modulated by dietary changes, and the effect of selection by growth on intestinal disease resistance. To that aim, three different groups of five families of gilthead sea bream that were selected during two generations for fast, intermediate, or slow growth (F3 generation) were kept together in the same open-flow tanks and fed a control or a well-balanced plant-based diet during 9 months. Six animals per family and dietary treatment were sacrificed and the adherent bacteria from the anterior intestinal portion were sequenced. In parallel, fish of the fast- and slow-growth groups were infected with the intestinal parasite Enteromyxum leei and the disease signs, prevalence, intensity, and parasite abundance were evaluated. RESULTS No differences were detected in alpha diversity indexes among families, and the core bacterial architecture was the prototypical composition of gilthead sea bream intestinal microbiota, indicating no dysbiosis in any of the groups. The plant-based diet significantly changed the microbiota in the intermediate- and slow-growth families, with a much lower effect on the fast-growth group. Interestingly, the smaller changes detected in the fast-growth families potentially accounted for more changes at the metabolic level when compared with the other families. Upon parasitic infection, the fast-growth group showed significantly lower disease signs and parasite intensity and abundance than the slow-growth animals. CONCLUSIONS These results show a clear genome-metagenome interaction indicating that the fast-growth families harbor a microbiota that is more flexible upon dietary changes. These animals also showed a better ability to cope with intestinal infections. Video Abstract.
Collapse
Affiliation(s)
- M. Carla Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Fernando Naya-Català
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Erick Perera
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Oswaldo Palenzuela
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| |
Collapse
|
17
|
Knap PW, Doeschl-Wilson A. Why breed disease-resilient livestock, and how? Genet Sel Evol 2020; 52:60. [PMID: 33054713 PMCID: PMC7557066 DOI: 10.1186/s12711-020-00580-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fighting and controlling epidemic and endemic diseases represents a considerable cost to livestock production. Much research is dedicated to breeding disease resilient livestock, but this is not yet a common objective in practical breeding programs. In this paper, we investigate how future breeding programs may benefit from recent research on disease resilience. MAIN BODY We define disease resilience in terms of its component traits resistance (R: the ability of a host animal to limit within-host pathogen load (PL)) and tolerance (T: the ability of an infected host to limit the damage caused by a given PL), and model the host's production performance as a reaction norm on PL, depending on R and T. Based on this, we derive equations for the economic values of resilience and its component traits. A case study on porcine respiratory and reproductive syndrome (PRRS) in pigs illustrates that the economic value of increasing production in infectious conditions through selection for R and T can be more than three times higher than by selection for production in disease-free conditions. Although this reaction norm model of resilience is helpful for quantifying its relationship to its component traits, its parameters are difficult and expensive to quantify. We consider the consequences of ignoring R and T in breeding programs that measure resilience as production in infectious conditions with unknown PL-particularly, the risk that the genetic correlation between R and T is unfavourable (antagonistic) and that a trade-off between them neutralizes the resilience improvement. We describe four approaches to avoid such antagonisms: (1) by producing sufficient PL records to estimate this correlation and check for antagonisms-if found, continue routine PL recording, and if not found, shift to cheaper proxies for PL; (2) by selection on quantitative trait loci (QTL) known to influence both R and T in favourable ways; (3) by rapidly modifying towards near-complete resistance or tolerance, (4) by re-defining resilience as the animal's capacity to resist (or recover from) the perturbation caused by an infection, measured as temporal deviations of production traits in within-host longitudinal data series. CONCLUSIONS All four alternatives offer promising options for genetic improvement of disease resilience, and most rely on technological and methodological developments and innovation in automated data generation.
Collapse
Affiliation(s)
| | - Andrea Doeschl-Wilson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Estate, Edinburgh, EH25 9RG Scotland, UK
| |
Collapse
|
18
|
Semple SL, Dixon B. Salmonid Antibacterial Immunity: An Aquaculture Perspective. BIOLOGY 2020; 9:E331. [PMID: 33050557 PMCID: PMC7599743 DOI: 10.3390/biology9100331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
The aquaculture industry is continuously threatened by infectious diseases, including those of bacterial origin. Regardless of the disease burden, aquaculture is already the main method for producing fish protein, having displaced capture fisheries. One attractive sector within this industry is the culture of salmonids, which are (a) uniquely under pressure due to overfishing and (b) the most valuable finfish per unit of weight. There are still knowledge gaps in the understanding of fish immunity, leading to vaccines that are not as effective as in terrestrial species, thus a common method to combat bacterial disease outbreaks is the use of antibiotics. Though effective, this method increases both the prevalence and risk of generating antibiotic-resistant bacteria. To facilitate vaccine design and/or alternative treatment efforts, a deeper understanding of the teleost immune system is essential. This review highlights the current state of teleost antibacterial immunity in the context of salmonid aquaculture. Additionally, the success of current techniques/methods used to combat bacterial diseases in salmonid aquaculture will be addressed. Filling the immunology knowledge gaps highlighted here will assist in reducing aquaculture losses in the future.
Collapse
Affiliation(s)
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
19
|
Gratacap RL, Jin YH, Mantsopoulou M, Houston RD. Efficient Genome Editing in Multiple Salmonid Cell Lines Using Ribonucleoprotein Complexes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:717-724. [PMID: 32946000 PMCID: PMC7520412 DOI: 10.1007/s10126-020-09995-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Infectious and parasitic diseases have major negative economic and animal welfare impacts on aquaculture of salmonid species. Improved knowledge of the functional basis of host response and genetic resistance to these diseases is key to developing preventative and treatment options. Cell lines provide valuable models to study infectious diseases in salmonids, and genome editing using CRISPR/Cas systems provides an exciting avenue to evaluate the function of specific genes in those systems. While CRISPR/Cas editing has been successfully performed in a Chinook salmon cell line (CHSE-214), there are no reports to date of editing of cell lines derived from the most commercially relevant salmonid species Atlantic salmon and rainbow trout, which are difficult to transduce and therefore edit using lentivirus-mediated methods. In the current study, a method of genome editing of salmonid cell lines using ribonucleoprotein (RNP) complexes was optimised and tested in the most commonly used salmonid fish cell lines: Atlantic salmon (SHK-1 and ASK cell lines), rainbow trout (RTG-2) and Chinook salmon (CHSE-214). Electroporation of RNP based on either Cas9 or Cas12a was efficient at targeted editing of all the tested lines (typically > 90% cells edited), and the choice of enzyme expands the number of potential target sites for editing within the genomes of these species. These optimised protocols will facilitate functional genetic studies in salmonid cell lines, which are widely used as model systems for infectious diseases in aquaculture.
Collapse
Affiliation(s)
- Remi L Gratacap
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Marina Mantsopoulou
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK.
| |
Collapse
|
20
|
Mastrochirico-Filho VA, Borges CHS, Freitas MV, Ariede RB, Pilarski F, Utsunomia R, Carvalheiro R, Gutierrez AP, Peñaloza C, Yáñez JM, Houston RD, Hashimoto DT. Development of a SNP linkage map and genome-wide association study for resistance to Aeromonas hydrophila in pacu (Piaractus mesopotamicus). BMC Genomics 2020; 21:672. [PMID: 32993504 PMCID: PMC7526211 DOI: 10.1186/s12864-020-07090-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pacu (Piaractus mesopotamicus) is one of the most important Neotropical aquaculture species from South America. Disease outbreaks caused by Aeromonas hydrophila infection have been considered significant contributors to the declining levels of pacu production. The current implementation of genomic selection for disease resistance has been adopted as a powerful strategy for improvement in fish species. This study aimed to investigate the genetic architecture of resistance to A. hydrophila in pacu via Genome-Wide Association Study (GWAS), the identification of suggestive Quantitative Trait Loci (QTLs) and putative genes associated with this trait. The genetic data were obtained from 381 juvenile individuals belonging to 14 full-sibling families. An experimental challenge was performed to gain access to the levels of genetic variation for resistance against the bacteria using the following trait definitions: binary test survival (TS) and time of death (TD). RESULTS The analyses of genetic parameters estimated moderate heritability (h2) for both resistance traits: 0.20 (± 0.09) for TS and 0.35 (± 0.15) for TD. A linkage map for pacu was developed to enable the GWAS, resulting in 27 linkage groups (LGs) with 17,453 mapped Single Nucleotide Polymorphisms (SNPs). The length of the LGs varied from 79.95 (LG14) to 137.01 (LG1) cM, with a total map length of 2755.60 cM. GWAS identified 22 putative QTLs associated to A. hydrophila resistance. They were distributed into 17 LGs, and were considered suggestive genomic regions explaining > 1% of the additive genetic variance (AGV) for the trait. Several candidate genes related to immune response were located close to the suggestive QTLs, such as tbk1, trim16, Il12rb2 and lyz2. CONCLUSION This study describes the development of the first medium density linkage map for pacu, which will be used as a framework to study relevant traits to the production of this species. In addition, the resistance to A. hydrophila was found to be moderately heritable but with a polygenic architecture suggesting that genomic selection, instead of marker assisted selection, might be useful for efficiently improving resistance to one of the most problematic diseases that affects the South American aquaculture.
Collapse
Affiliation(s)
- Vito A Mastrochirico-Filho
- São Paulo State University (Unesp), Aquaculture Center of Unesp, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Carolina H S Borges
- São Paulo State University (Unesp), Aquaculture Center of Unesp, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Milena V Freitas
- São Paulo State University (Unesp), Aquaculture Center of Unesp, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Raquel B Ariede
- São Paulo State University (Unesp), Aquaculture Center of Unesp, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Fabiana Pilarski
- São Paulo State University (Unesp), Aquaculture Center of Unesp, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Ricardo Utsunomia
- Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brazil
| | - Roberto Carvalheiro
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
- National Council for Scientific and Technological Development (CNPq), Brasília, DF, 71605-001, Brazil
| | - Alejandro P Gutierrez
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, UK
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Diogo T Hashimoto
- São Paulo State University (Unesp), Aquaculture Center of Unesp, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
21
|
Boison S, Ding J, Leder E, Gjerde B, Bergtun PH, Norris A, Baranski M, Robinson N. QTLs Associated with Resistance to Cardiomyopathy Syndrome in Atlantic Salmon. J Hered 2020; 110:727-737. [PMID: 31287894 PMCID: PMC6785937 DOI: 10.1093/jhered/esz042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/01/2019] [Indexed: 11/24/2022] Open
Abstract
Cardiomyopathy syndrome (CMS) caused by piscine myocarditis virus is a major disease affecting the Norwegian Atlantic salmon industry. Three different populations of Atlantic salmon from the Mowi breeding program were used in this study. The first 2 populations (population 1 and 2) were naturally infected in a field outbreak, while the third population (population 3) went through a controlled challenged test. The aim of the study was to estimate the heritability, the genetic correlation between populations and perform genome-wide association analysis for resistance to this disease. Survival data from population 1 and 2 and heart atrium histology score data from population 3 was analyzed. A total of 571, 4312, and 901 fish from population 1, 2, and 3, respectively were genotyped with a noncommercial 55,735 Affymetrix marker panel. Genomic heritability ranged from 0.12 to 0.46 and the highest estimate was obtained from the challenge test dataset. The genetic correlation between populations was moderate (0.51–0.61). Two chromosomal regions (SSA27 and SSA12) contained single nucleotide polymorphisms associated with resistance to CMS. The highest association signal (P = 6.9751 × 10−27) was found on chromosome 27. Four genes with functional roles affecting viral resistance (magi1, pi4kb, bnip2, and ha1f) were found to map closely to the identified quantitative trait loci (QTLs). In conclusion, genetic variation for resistance to CMS was observed in all 3 populations. Two important quantitative trait loci were detected which together explain half of the total genetic variance, suggesting strong potential application for marker-assisted selection and genomic predictions to improve CMS resistance.
Collapse
Affiliation(s)
- Solomon Boison
- Department of Breeding and Genetics, Nofima AS, Osloveien, Ås, Norway.,Mowi Genetics AS, Sandviken, Bergen, Norway
| | - Jingwen Ding
- Department of Aquaculture, Norwegian University of Life Sciences, Ås, Norway
| | - Erica Leder
- Department of Breeding and Genetics, Nofima AS, Osloveien, Ås, Norway
| | - Bjarne Gjerde
- Department of Breeding and Genetics, Nofima AS, Osloveien, Ås, Norway
| | - Per Helge Bergtun
- Department of Breeding and Genetics, Nofima AS, Osloveien, Ås, Norway.,Mowi Genetics AS, Sandviken, Bergen, Norway
| | - Ashie Norris
- Department of Breeding and Genetics, Nofima AS, Osloveien, Ås, Norway.,Mowi Genetics AS, Sandviken, Bergen, Norway
| | - Matthew Baranski
- Department of Breeding and Genetics, Nofima AS, Osloveien, Ås, Norway.,Mowi Genetics AS, Sandviken, Bergen, Norway
| | - Nicholas Robinson
- Sustainable Aquaculture Laboratory - Temperate and Tropical (SALTT), School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
22
|
Gratacap RL, Regan T, Dehler CE, Martin SAM, Boudinot P, Collet B, Houston RD. Efficient CRISPR/Cas9 genome editing in a salmonid fish cell line using a lentivirus delivery system. BMC Biotechnol 2020; 20:35. [PMID: 32576161 PMCID: PMC7310381 DOI: 10.1186/s12896-020-00626-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 06/10/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Genome editing is transforming bioscience research, but its application to non-model organisms, such as farmed animal species, requires optimisation. Salmonids are the most important aquaculture species by value, and improving genetic resistance to infectious disease is a major goal. However, use of genome editing to evaluate putative disease resistance genes in cell lines, and the use of genome-wide CRISPR screens is currently limited by a lack of available tools and techniques. RESULTS In the current study, we developed an optimised protocol using lentivirus transduction for efficient integration of constructs into the genome of a Chinook salmon (Oncorhynchus tshwaytcha) cell line (CHSE-214). As proof-of-principle, two target genes were edited with high efficiency in an EGFP-Cas9 stable CHSE cell line; specifically, the exogenous, integrated EGFP and the endogenous RIG-I locus. Finally, the effective use of antibiotic selection to enrich the successfully edited targeted population was demonstrated. CONCLUSIONS The optimised lentiviral-mediated CRISPR method reported here increases possibilities for efficient genome editing in salmonid cells, in particular for future applications of genome-wide CRISPR screens for disease resistance.
Collapse
Affiliation(s)
- Remi L Gratacap
- The Roslin Institute, University of Edinburgh, Easter Bush campus, Midlothian, UK.
| | - Tim Regan
- The Roslin Institute, University of Edinburgh, Easter Bush campus, Midlothian, UK
| | - Carola E Dehler
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Samuel A M Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Pierre Boudinot
- Virologie et Immunologie Moleculaires, Institut National de Recherche Agronomique (INRA), Universite Paris-Saclay, Jouy-en-Josas, France
| | - Bertrand Collet
- Virologie et Immunologie Moleculaires, Institut National de Recherche Agronomique (INRA), Universite Paris-Saclay, Jouy-en-Josas, France
| | - Ross D Houston
- The Roslin Institute, University of Edinburgh, Easter Bush campus, Midlothian, UK.
| |
Collapse
|
23
|
Vieira Ventura R, Fonseca E Silva F, Manuel Yáñez J, Brito LF. Opportunities and challenges of phenomics applied to livestock and aquaculture breeding in South America. Anim Front 2020; 10:45-52. [PMID: 32368412 PMCID: PMC7189274 DOI: 10.1093/af/vfaa008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ricardo Vieira Ventura
- Department of Animal Nutrition and Production, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), Pirassununga, SP, Brazil
| | | | - José Manuel Yáñez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa, La Pintana, Santiago, Chile
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| |
Collapse
|
24
|
Yáñez JM, Yoshida G, Barria A, Palma-Véjares R, Travisany D, Díaz D, Cáceres G, Cádiz MI, López ME, Lhorente JP, Jedlicki A, Soto J, Salas D, Maass A. High-Throughput Single Nucleotide Polymorphism (SNP) Discovery and Validation Through Whole-Genome Resequencing in Nile Tilapia (Oreochromis niloticus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:109-117. [PMID: 31938972 DOI: 10.1007/s10126-019-09935-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Nile tilapia (Oreochromis niloticus) is the second most important farmed fish in the world and a sustainable source of protein for human consumption. Several genetic improvement programs have been established for this species in the world. Currently, the estimation of genetic merit of breeders is typically based on genealogical and phenotypic information. Genome-wide information can be exploited to efficiently incorporate traits that are difficult to measure into the breeding goal. Thus, single nucleotide polymorphisms (SNPs) are required to investigate phenotype-genotype associations and determine the genomic basis of economically important traits. We performed de novo SNP discovery in three different populations of farmed Nile tilapia. A total of 29.9 million non-redundant SNPs were identified through Illumina (HiSeq 2500) whole-genome resequencing of 326 individual samples. After applying several filtering steps, including removing SNP based on genotype and site quality, presence of Mendelian errors, and non-unique position in the genome, a total of 50,000 high-quality SNPs were selected for the development of a custom Illumina BeadChip SNP panel. These SNPs were highly informative in the three populations analyzed showing between 43,869 (94%) and 46,139 (99%) SNPs in Hardy-Weinberg Equilibrium; 37,843 (76%) and 45,171(90%) SNPs with a minor allele frequency (MAF) higher than 0.05; and 43,450 (87%) and 46,570 (93%) SNPs with a MAF higher than 0.01. The 50K SNP panel developed in the current work will be useful for the dissection of economically relevant traits, enhancing breeding programs through genomic selection, as well as supporting genetic studies in farmed populations of Nile tilapia using dense genome-wide information.
Collapse
Affiliation(s)
- José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.
- Núcleo Milenio INVASAL, Concepción, Chile.
| | - Grazyella Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Benchmark Genetics Chile, Puerto Montt, Chile
| | - Agustín Barria
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Ricardo Palma-Véjares
- Centro para la Regulación del Genoma, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Dante Travisany
- Centro para la Regulación del Genoma, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Diego Díaz
- Centro para la Regulación del Genoma, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Giovanna Cáceres
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María I Cádiz
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María E López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Ana Jedlicki
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - José Soto
- Grupo Acuacorporacion, Internacional (GACI), Cañas, Costa Rica
| | - Diego Salas
- Grupo Acuacorporacion, Internacional (GACI), Cañas, Costa Rica
| | - Alejandro Maass
- Centro para la Regulación del Genoma, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| |
Collapse
|
25
|
Janssen K, Bijma P. The economic value of R 0 for selective breeding against microparasitic diseases. Genet Sel Evol 2020; 52:3. [PMID: 32005099 PMCID: PMC6993466 DOI: 10.1186/s12711-020-0526-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background Microparasitic diseases are caused by bacteria and viruses. Genetic improvement of resistance to microparasitic diseases in breeding programs is desirable and should aim at reducing the basic reproduction ratio \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{R}}_{0}$$\end{document}R0. Recently, we developed a method to derive the economic value of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{R}}_{0}$$\end{document}R0 for macroparasitic diseases. In epidemiological models for microparasitic diseases, an animal’s disease status is treated as infected or not infected, resulting in a definition of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{R}}_{0}$$\end{document}R0 that differs from that for macroparasitic diseases. Here, we extend the method for the derivation of the economic value of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{R}}_{0}$$\end{document}R0 to microparasitic diseases. Methods When \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{R}}_{0} \le 1$$\end{document}R0≤1, the economic value of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{R}}_{0}$$\end{document}R0 is zero because the disease is very rare. When \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{R}}_{0}$$\end{document}R0. is higher than 1, genetic improvement of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{R}}_{0}$$\end{document}R0 can reduce expenditures on vaccination if vaccination induces herd immunity, or it can reduce production losses due to disease. When vaccination is used to achieve herd immunity, expenditures are proportional to the critical vaccination coverage, which decreases with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{R}}_{0}$$\end{document}R0. The effect of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{R}}_{0}$$\end{document}R0 on losses is considered separately for epidemic and endemic disease. Losses for epidemic diseases are proportional to the probability and size of major epidemics. Losses for endemic diseases are proportional to the infected fraction of the population at the endemic equilibrium. Results When genetic improvement reduces expenditures on vaccination, expenditures decrease with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{R}}_{0}$$\end{document}R0 at an increasing rate. When genetic improvement reduces losses in epidemic or endemic diseases, losses decrease with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{R}}_{0}$$\end{document}R0 at an increasing rate. Hence, in all cases, the economic value of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{R}}_{0}$$\end{document}R0 increases as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{R}}_{0}$$\end{document}R0 decreases towards 1. Discussion \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{R}}_{0}$$\end{document}R0 and its economic value are more informative for potential benefits of genetic improvement than heritability estimates for survival after a disease challenge. In livestock, the potential for genetic improvement is small for epidemic microparasitic diseases, where disease control measures limit possibilities for phenotyping. This is not an issue in aquaculture, where controlled challenge tests are performed in dedicated facilities. If genetic evaluations include infectivity, genetic gain in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{R}}_{0}$$\end{document}R0 can be accelerated but this would require different testing designs. Conclusions When \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{R}}_{0} \le 1$$\end{document}R0≤1, its economic value is zero. The economic value of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{R}}_{0}$$\end{document}R0 is highest at low values of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{R}}_{0}$$\end{document}R0 and approaches zero at high values of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{R}}_{0}$$\end{document}R0.
Collapse
Affiliation(s)
- Kasper Janssen
- Animal Breeding and Genomics, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Piter Bijma
- Animal Breeding and Genomics, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
26
|
Tadmor-Levi R, Doron-Faigenboim A, Marcos-Hadad E, Petit J, Hulata G, Forlenza M, Wiegertjes GF, David L. Different transcriptional response between susceptible and resistant common carp (Cyprinus carpio) fish hints on the mechanism of CyHV-3 disease resistance. BMC Genomics 2019; 20:1019. [PMID: 31878870 PMCID: PMC6933926 DOI: 10.1186/s12864-019-6391-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023] Open
Abstract
Background Infectious disease outbreaks form major setbacks to aquaculture production and to further development of this important sector. Cyprinid herpes virus-3 (CyHV-3) is a dsDNA virus widely hampering production of common carp (Cyprinus carpio), one of the most farmed fish species worldwide. Genetically disease resistant strains are highly sought after as a sustainable solution to this problem. To study the genetic basis and cellular pathways underlying disease resistance, RNA-Seq was used to characterize transcriptional responses of susceptible and resistant fish at day 4 after CyHV-3 infection. Results In susceptible fish, over four times more differentially expressed genes were up-regulated between day 0 and 4 compared to resistant fish. Susceptible and resistant fish responded distinctively to infection as only 55 (9%) of the up-regulated genes were shared by these two fish types. Susceptible fish elicited a typical anti-viral response, involving interferon and interferon responsive genes, earlier than resistant fish did. Furthermore, chemokine profiles indicated that the two fish types elicited different cellular immunity responses. A comparative phylogenetic approach assisted in chemokine copies annotation pointing to different orthologous copies common to bony-fishes and even carp-specific paralogs that were differentially regulated and contributed to the different response of these two fish types. Susceptible fish up-regulated more ccl19 chemokines, which attract T-cells and macrophages, the anti-viral role of which is established, whereas resistant fish up-regulated more cxcl8/il8 chemokines, which attract neutrophils, the antiviral role of which is unfamiliar. Conclusions Taken together, by pointing out transcriptional differences between susceptible and resistant fish in response to CyHV-3 infection, this study unraveled possible genes and pathways that take part in disease resistance mechanisms in fish and thus, enhances our understanding of fish immunogenetics and supports the development of sustainable and safe aquaculture.
Collapse
Affiliation(s)
- Roni Tadmor-Levi
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,National Natural History Collections and Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Evgeniya Marcos-Hadad
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jules Petit
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands.,Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, Netherlands
| | - Gideon Hulata
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Maria Forlenza
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Geert F Wiegertjes
- Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, Netherlands
| | - Lior David
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
27
|
Single-Step Genome-Wide Association Study for Resistance to Piscirickettsia salmonis in Rainbow Trout ( Oncorhynchus mykiss). G3-GENES GENOMES GENETICS 2019; 9:3833-3841. [PMID: 31690599 PMCID: PMC6829148 DOI: 10.1534/g3.119.400204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
One of the main pathogens affecting rainbow trout (Oncorhynchus mykiss) farming is the facultative intracellular bacteria Piscirickettsia salmonis Current treatments, such as antibiotics and vaccines, have not had the expected effectiveness in field conditions. Genetic improvement by means of selection for resistance is proposed as a viable alternative for control. Genomic information can be used to identify the genomic regions associated with resistance and enhance the genetic evaluation methods to speed up the genetic improvement for the trait. The objectives of this study were to i) identify the genomic regions associated with resistance to P. salmonis; and ii) identify candidate genes associated with the trait in rainbow trout. We experimentally challenged 2,130 rainbow trout with P. salmonis and genotyped them with a 57 K single nucleotide polymorphism (SNP) array. Resistance to P. salmonis was defined as time to death (TD) and as binary survival (BS). Significant heritabilities were estimated for TD and BS (0.48 ± 0.04 and 0.34 ± 0.04, respectively). A total of 2,047 fish and 26,068 SNPs passed quality control for samples and genotypes. Using a single-step genome wide association analysis (ssGWAS) we identified four genomic regions explaining over 1% of the genetic variance for TD and three for BS. Interestingly, the same genomic region located on Omy27 was found to explain the highest proportion of genetic variance for both traits (2.4 and 1.5% for TD and BS, respectively). The identified SNP in this region is located within an exon of a gene related with actin cytoskeletal organization, a protein exploited by P. salmonis during infection. Other important candidate genes identified are related with innate immune response and oxidative stress. The moderate heritability values estimated in the present study show it is possible to improve resistance to P. salmonis through artificial selection in the rainbow trout population studied here. Furthermore, our results suggest a polygenic genetic architecture for the trait and provide novel insights into the candidate genes underpinning resistance to P. salmonis in O. mykiss.
Collapse
|
28
|
Yoshida GM, Lhorente JP, Correa K, Soto J, Salas D, Yáñez JM. Genome-Wide Association Study and Cost-Efficient Genomic Predictions for Growth and Fillet Yield in Nile Tilapia ( Oreochromis niloticus). G3 (BETHESDA, MD.) 2019; 9:2597-2607. [PMID: 31171566 PMCID: PMC6686944 DOI: 10.1534/g3.119.400116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022]
Abstract
Fillet yield (FY) and harvest weight (HW) are economically important traits in Nile tilapia production. Genetic improvement of these traits, especially for FY, are lacking, due to the absence of efficient methods to measure the traits without sacrificing fish and the use of information from relatives to selection. However, genomic information could be used by genomic selection to improve traits that are difficult to measure directly in selection candidates, as in the case of FY. The objectives of this study were: (i) to perform genome-wide association studies (GWAS) to dissect the genetic architecture of FY and HW, (ii) to evaluate the accuracy of genotype imputation and (iii) to assess the accuracy of genomic selection using true and imputed low-density (LD) single nucleotide polymorphism (SNP) panels to determine a cost-effective strategy for practical implementation of genomic information in tilapia breeding programs. The data set consisted of 5,866 phenotyped animals and 1,238 genotyped animals (108 parents and 1,130 offspring) using a 50K SNP panel. The GWAS were performed using all genotyped and phenotyped animals. The genotyped imputation was performed from LD panels (LD0.5K, LD1K and LD3K) to high-density panel (HD), using information from parents and 20% of offspring in the reference set and the remaining 80% in the validation set. In addition, we tested the accuracy of genomic selection using true and imputed genotypes comparing the accuracy obtained from pedigree-based best linear unbiased prediction (PBLUP) and genomic predictions. The results from GWAS supports evidence of the polygenic nature of FY and HW. The accuracy of imputation ranged from 0.90 to 0.98 for LD0.5K and LD3K, respectively. The accuracy of genomic prediction outperformed the estimated breeding value from PBLUP. The use of imputation for genomic selection resulted in an increased relative accuracy independent of the trait and LD panel analyzed. The present results suggest that genotype imputation could be a cost-effective strategy for genomic selection in Nile tilapia breeding programs.
Collapse
Affiliation(s)
- Grazyella M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, 8820808 Chile
- Benchmark Genetics Chile, Puerto Montt, Chile, and
| | | | | | - Jose Soto
- Grupo Acuacorporacion Internacional (GACI), Cañas, Costa Rica
| | - Diego Salas
- Grupo Acuacorporacion Internacional (GACI), Cañas, Costa Rica
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, 8820808 Chile,
| |
Collapse
|
29
|
Silva RMO, Evenhuis JP, Vallejo RL, Gao G, Martin KE, Leeds TD, Palti Y, Lourenco DAL. Whole-genome mapping of quantitative trait loci and accuracy of genomic predictions for resistance to columnaris disease in two rainbow trout breeding populations. Genet Sel Evol 2019; 51:42. [PMID: 31387519 PMCID: PMC6683352 DOI: 10.1186/s12711-019-0484-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/30/2019] [Indexed: 01/09/2023] Open
Abstract
Background Columnaris disease (CD) is an emerging problem for the rainbow trout aquaculture industry in the US. The objectives of this study were to: (1) identify common genomic regions that explain a large proportion of the additive genetic variance for resistance to CD in two rainbow trout (Oncorhynchus mykiss) populations; and (2) estimate the gains in prediction accuracy when genomic information is used to evaluate the genetic potential of survival to columnaris infection in each population. Methods Two aquaculture populations were investigated: the National Center for Cool and Cold Water Aquaculture (NCCCWA) odd-year line and the Troutlodge, Inc., May odd-year (TLUM) nucleus breeding population. Fish that survived to 21 days post-immersion challenge were recorded as resistant. Single nucleotide polymorphism (SNP) genotypes were available for 1185 and 1137 fish from NCCCWA and TLUM, respectively. SNP effects and variances were estimated using the weighted single-step genomic best linear unbiased prediction (BLUP) for genome-wide association. Genomic regions that explained more than 1% of the additive genetic variance were considered to be associated with resistance to CD. Predictive ability was calculated in a fivefold cross-validation scheme and using a linear regression method. Results Validation on adjusted phenotypes provided a prediction accuracy close to zero, due to the binary nature of the trait. Using breeding values computed from the complete data as benchmark improved prediction accuracy of genomic models by about 40% compared to the pedigree-based BLUP. Fourteen windows located on six chromosomes were associated with resistance to CD in the NCCCWA population, of which two windows on chromosome Omy 17 jointly explained more than 10% of the additive genetic variance. Twenty-six windows located on 13 chromosomes were associated with resistance to CD in the TLUM population. Only four associated genomic regions overlapped with quantitative trait loci (QTL) between both populations. Conclusions Our results suggest that genome-wide selection for resistance to CD in rainbow trout has greater potential than selection for a few target genomic regions that were found to be associated to resistance to CD due to the polygenic architecture of this trait, and because the QTL associated with resistance to CD are not sufficiently informative for selection decisions across populations. Electronic supplementary material The online version of this article (10.1186/s12711-019-0484-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafael M O Silva
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, 11861 Leetown Road, Leetown, WV, 25430, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, 425 River Road, Athens, GA, 30602, USA.,Zoetis, Sao Paulo, Sao Paulo, 04711-130, Brazil
| | - Jason P Evenhuis
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, 11861 Leetown Road, Leetown, WV, 25430, USA
| | - Roger L Vallejo
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, 11861 Leetown Road, Leetown, WV, 25430, USA
| | - Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, 11861 Leetown Road, Leetown, WV, 25430, USA
| | - Kyle E Martin
- Troutloged, Inc., P.O. Box 1290, Sumner, WA, 98390, USA
| | - Tim D Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, 11861 Leetown Road, Leetown, WV, 25430, USA
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, 11861 Leetown Road, Leetown, WV, 25430, USA.
| | - Daniela A L Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, 425 River Road, Athens, GA, 30602, USA
| |
Collapse
|
30
|
Mohindra V, Dangi T, Chowdhury LM, Jena JK. Tissue specific alpha-2-Macroglobulin (A2M) splice isoform diversity in Hilsa shad, Tenualosa ilisha (Hamilton, 1822). PLoS One 2019; 14:e0216144. [PMID: 31335900 PMCID: PMC6650032 DOI: 10.1371/journal.pone.0216144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
The present study, for the first time, reported twelve A2M isoforms in Tenualosa ilisha, through SMRT sequencing. Hilsa shad, T. ilisha, an anadromous fish, faces environmental stresses and is thus prone to diseases. Here, expression profiles of different A2M isoforms in four tissues were studied in T. ilisha, for the tissue specific diversity of A2M. Large scale high quality full length transcripts (>0.99% accuracy) were obtained from liver, ovary, testes and gill transcriptomes, through Iso-sequencing on PacBio RSII. A total of 12 isoforms, with complete putatative proteins, were detected in three tissues (7 isoforms in liver, 4 in ovary and 1 in testes). Complete structure of A2M mRNA was predicted from these isoforms, containing 4680 bp sequence, 35 exons and 1508 amino acids. With Homo sapiens A2M as reference, six functional domains (A2M_N,A2M_N2, A2M, Thiol-ester_cl, Complement and Receptor domain), along with a bait region, were predicted in A2M consensus protein. A total of 35 splice sites were identified in T. ilisha A2M consensus transcript, with highest frequency (55.7%) of GT-AG splice sites, as compared to that of Homo sapiens. Liver showed longest isoform (X1) consisting of all domains, while smallest (X10) was found in ovary with one Receptor domain. Present study predicted five putative markers (I-212, I-269, A-472, S-567 and Y-906) for EUS disease resistance in A2M protein, which were present in MG2 domains (A2M_N and A2M_N2), by comparing with that of resistant and susceptible/unknown response species. These markers classified fishes into two groups, resistant and susceptible response. Potential markers, predicted in T. ilisha, placed it to be EUS susceptible category. Putative markers reported in A2M protein may serve as molecular markers in diagnosis of EUS disease resistance/susceptibility in fishes and may have a potential for inclusion in the marker panel for pilot studies. Further, challenging studies are required to confirm the role of particular A2M isoforms and markers identified in immune protection against EUS disease.
Collapse
Affiliation(s)
- Vindhya Mohindra
- ICAR-National Bureau of Fish Genetic Resources (ICAR-NBFGR), Lucknow, India
- * E-mail: ,
| | - Tanushree Dangi
- ICAR-National Bureau of Fish Genetic Resources (ICAR-NBFGR), Lucknow, India
| | | | - J. K. Jena
- Indian Council of Agricultural Research (ICAR), Krishi Anusandhan Bhawan—II, New Delhi, India
| |
Collapse
|
31
|
Palaiokostas C, Vesely T, Kocour M, Prchal M, Pokorova D, Piackova V, Pojezdal L, Houston RD. Optimizing Genomic Prediction of Host Resistance to Koi Herpesvirus Disease in Carp. Front Genet 2019; 10:543. [PMID: 31249593 PMCID: PMC6582704 DOI: 10.3389/fgene.2019.00543] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/22/2019] [Indexed: 01/09/2023] Open
Abstract
Genomic selection (GS) is increasingly applied in breeding programs of major aquaculture species, enabling improved prediction accuracy and genetic gain compared to pedigree-based approaches. Koi Herpesvirus disease (KHVD) is notifiable by the World Organization for Animal Health and the European Union, causing major economic losses to carp production. GS has potential to breed carp with improved resistance to KHVD, thereby contributing to disease control. In the current study, Restriction-site Associated DNA sequencing (RAD-seq) was applied on a population of 1,425 common carp juveniles which had been challenged with Koi herpes virus, followed by sampling of survivors and mortalities. GS was tested on a wide range of scenarios by varying both SNP densities and the genetic relationships between training and validation sets. The accuracy of correctly identifying KHVD resistant animals using GS was between 8 and 18% higher than pedigree best linear unbiased predictor (pBLUP) depending on the tested scenario. Furthermore, minor decreases in prediction accuracy were observed with decreased SNP density. However, the genetic relationship between the training and validation sets was a key factor in the efficacy of genomic prediction of KHVD resistance in carp, with substantially lower prediction accuracy when the relationships between the training and validation sets did not contain close relatives.
Collapse
Affiliation(s)
- Christos Palaiokostas
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, The University of Edinburgh, Midlothian, United Kingdom
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Martin Kocour
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia České Budějovice, Vodňany, Czechia
| | - Martin Prchal
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia České Budějovice, Vodňany, Czechia
| | | | - Veronika Piackova
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia České Budějovice, Vodňany, Czechia
| | | | - Ross D. Houston
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, The University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
32
|
Silva RMO, Evenhuis JP, Vallejo RL, Tsuruta S, Wiens GD, Martin KE, Parsons JE, Palti Y, Lourenco DAL, Leeds TD. Variance and covariance estimates for resistance to bacterial cold water disease and columnaris disease in two rainbow trout breeding populations1. J Anim Sci 2019; 97:1124-1132. [PMID: 30576516 DOI: 10.1093/jas/sky478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/19/2018] [Indexed: 11/13/2022] Open
Abstract
Family-based selective breeding can be an effective strategy for controlling diseases in aquaculture. This study aimed to estimate (co)variance components for resistance to bacterial cold water disease (BCWD) and columnaris disease (CD) in two unrelated rainbow trout nucleus breeding populations: the USDA, ARS, National Center for Cool and Cold Water Aquaculture odd-year line (ARS-Fp-R), which has been subjected to five generations of selection for improved resistance to BCWD, and the Troutlodge, Inc., May-spawning odd-year line (TLUM), which has been selected for improved growth performance but not for disease resistance. A total of 46,805 and 27,821 pedigree records were available from both populations, respectively. Between 44 and 138 families per generation and population were evaluated under controlled BCWD and CD challenges, providing 32,311 and 17,861 phenotypic records for BCWD resistance, and 13,603 and 9,413 for CD resistance, in the ARS-Fp-R and TLUM populations, respectively. A two-trait animal threshold model assuming an underlying normal distribution for the binary survival phenotypes was used to estimate (co)variance components separately for each population. Resistance to BCWD (h2 = 0.27 ± 0.04 and 0.43 ± 0.08) and CD (h2 = 0.23 ± 0.07 and 0.34 ± 0.09) was moderately heritable in the ARS-Fp-R and TLUM populations, respectively. The genetic correlation between the resistance to BCWD and CD was favorably positive in the ARS-Fp-R (0.40 ± 0.17) and TLUM (0.39 ± 0.18) populations. These findings suggest that both disease resistance traits can be improved simultaneously even if genetic selection pressure is applied to only one of the two traits.
Collapse
Affiliation(s)
- Rafael M O Silva
- Animal and Dairy Science Department, University of Georgia, Athens, GA
| | - Jason P Evenhuis
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV
| | - Roger L Vallejo
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV
| | - Shogo Tsuruta
- Animal and Dairy Science Department, University of Georgia, Athens, GA
| | - Gregory D Wiens
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV
| | | | | | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV
| | | | - Timothy D Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV
| |
Collapse
|
33
|
Multiple interacting QTLs affect disease challenge survival in common carp (Cyprinus carpio). Heredity (Edinb) 2019; 123:565-578. [PMID: 31036952 DOI: 10.1038/s41437-019-0224-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/20/2019] [Accepted: 04/12/2019] [Indexed: 11/08/2022] Open
Abstract
With the steady growth of the human population, food security becomes a prime challenge. Aquaculture is the fastest growing sector providing proteins from an animal source, but outbreaks of infectious diseases repeatedly hamper the production and further development of this sector. Breeding of disease-resistant strains is a desired sustainable solution to this problem. Cyprinid herpes virus-3 (CyHV-3) is a dsDNA virus damaging production of common carp, an important food and ornamental fish. Previously, we have demonstrated successful introgression of CyHV-3 resistance from a feral strain to commercial strains. Here, we used genotyping by sequencing to identify two novel quantitative trait loci (QTLs) for disease survival that map to different linkage groups than two other QTLs that we previously identified. Effects of these four QTLs were validated and further studied in 14 families with various levels of disease resistance. CyHV-3 survival was found to be a quantitative trait conditioned by mild additive QTL effects and by intricate dominant allelic and epistatic QTL-QTL interactions. Both rare feral alleles and alleles common to feral and cultured strains contributed to survival. This and other advantages of feral alleles introgression were demonstrated. These QTLs, which affected survival of individuals within families, had no significant effect on variation in cumulative family % survival, suggesting that more between family variation remains to be explored. Unraveling the underlying genetics of survival is important for enhancing the breeding of resistant strains and our knowledge of disease resistance mechanisms.
Collapse
|
34
|
Anacleto O, Cabaleiro S, Villanueva B, Saura M, Houston RD, Woolliams JA, Doeschl-Wilson AB. Genetic differences in host infectivity affect disease spread and survival in epidemics. Sci Rep 2019; 9:4924. [PMID: 30894567 PMCID: PMC6426847 DOI: 10.1038/s41598-019-40567-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 02/12/2019] [Indexed: 12/17/2022] Open
Abstract
Survival during an epidemic is partly determined by host genetics. While quantitative genetic studies typically consider survival as an indicator for disease resistance (an individual's propensity to avoid becoming infected or diseased), mortality rates of populations undergoing an epidemic are also affected by endurance (the propensity of diseased individual to survive the infection) and infectivity (i.e. the propensity of an infected individual to transmit disease). Few studies have demonstrated genetic variation in disease endurance, and no study has demonstrated genetic variation in host infectivity, despite strong evidence for considerable phenotypic variation in this trait. Here we propose an experimental design and statistical models for estimating genetic diversity in all three host traits. Using an infection model in fish we provide, for the first time, direct evidence for genetic variation in host infectivity, in addition to variation in resistance and endurance. We also demonstrate how genetic differences in these three traits contribute to survival. Our results imply that animals can evolve different disease response types affecting epidemic survival rates, with important implications for understanding and controlling epidemics.
Collapse
Affiliation(s)
- Osvaldo Anacleto
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
- Institute of Mathematical and Computer Sciences, University of São Paulo, São Carlos, Brazil.
| | - Santiago Cabaleiro
- Centro Tecnológico del Cluster de la Acuicultura (CETGA), A Coruña, Spain
| | | | - María Saura
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - John A Woolliams
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Andrea B Doeschl-Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
35
|
Houston RD, Macqueen DJ. Atlantic salmon (Salmo salar L.) genetics in the 21st century: taking leaps forward in aquaculture and biological understanding. Anim Genet 2019; 50:3-14. [PMID: 30426521 PMCID: PMC6492011 DOI: 10.1111/age.12748] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 12/17/2022]
Abstract
Atlantic salmon (Salmo salar L.) is among the most iconic and economically important fish species and was the first member of Salmonidae to have a high-quality reference genome assembly published. Advances in genomics have become increasingly central to the genetic improvement of farmed Atlantic salmon as well as conservation of wild salmon stocks. The salmon genome has also been pivotal in shaping our understanding of the evolutionary and functional consequences arising from an ancestral whole-genome duplication event characterising all Salmonidae members. Here, we provide a review of the current status of Atlantic salmon genetics and genomics, focussed on progress made from genome-wide research aimed at improving aquaculture production and enhancing understanding of salmonid ecology, physiology and evolution. We present our views on the future direction of salmon genomics, including the role of emerging technologies (e.g. genome editing) in elucidating genetic features that underpin functional variation in traits of commercial and evolutionary importance.
Collapse
Affiliation(s)
- R. D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianEH25 9RGUK
| | - D. J. Macqueen
- School of Biological SciencesUniversity of AberdeenAberdeenAB24 2TZUK
| |
Collapse
|
36
|
Zenger KR, Khatkar MS, Jones DB, Khalilisamani N, Jerry DR, Raadsma HW. Genomic Selection in Aquaculture: Application, Limitations and Opportunities With Special Reference to Marine Shrimp and Pearl Oysters. Front Genet 2019; 9:693. [PMID: 30728827 PMCID: PMC6351666 DOI: 10.3389/fgene.2018.00693] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/11/2018] [Indexed: 11/20/2022] Open
Abstract
Within aquaculture industries, selection based on genomic information (genomic selection) has the profound potential to change genetic improvement programs and production systems. Genomic selection exploits the use of realized genomic relationships among individuals and information from genome-wide markers in close linkage disequilibrium with genes of biological and economic importance. We discuss the technical advances, practical requirements, and commercial applications that have made genomic selection feasible in a range of aquaculture industries, with a particular focus on molluscs (pearl oysters, Pinctada maxima) and marine shrimp (Litopenaeus vannamei and Penaeus monodon). The use of low-cost genome sequencing has enabled cost-effective genotyping on a large scale and is of particular value for species without a reference genome or access to commercial genotyping arrays. We highlight the pitfalls and offer the solutions to the genotyping by sequencing approach and the building of appropriate genetic resources to undertake genomic selection from first-hand experience. We describe the potential to capture large-scale commercial phenotypes based on image analysis and artificial intelligence through machine learning, as inputs for calculation of genomic breeding values. The application of genomic selection over traditional aquatic breeding programs offers significant advantages through being able to accurately predict complex polygenic traits including disease resistance; increasing rates of genetic gain; minimizing inbreeding; and negating potential limiting effects of genotype by environment interactions. Further practical advantages of genomic selection through the use of large-scale communal mating and rearing systems are highlighted, as well as presenting rate-limiting steps that impact on attaining maximum benefits from adopting genomic selection. Genomic selection is now at the tipping point where commercial applications can be readily adopted and offer significant short- and long-term solutions to sustainable and profitable aquaculture industries.
Collapse
Affiliation(s)
- Kyall R Zenger
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia.,ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
| | - Mehar S Khatkar
- ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia.,Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - David B Jones
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Nima Khalilisamani
- ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia.,Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Dean R Jerry
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia.,ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia.,Tropical Futures Institute, James Cook University Singapore, Singapore, Singapore
| | - Herman W Raadsma
- ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia.,Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| |
Collapse
|
37
|
Kuehn R, Stoeckle BC, Young M, Popp L, Taeubert JE, Pfaffl MW, Geist J. Identification of a piscine reovirus-related pathogen in proliferative darkening syndrome (PDS) infected brown trout (Salmo trutta fario) using a next-generation technology detection pipeline. PLoS One 2018; 13:e0206164. [PMID: 30346982 PMCID: PMC6197672 DOI: 10.1371/journal.pone.0206164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/08/2018] [Indexed: 01/02/2023] Open
Abstract
The proliferative darkening syndrome (PDS) is an annually recurring disease that causes species-specific die-off of brown trout (Salmo trutta fario) with a mortality rate of near 100% in pre-alpine rivers of central Europe. So far the etiology and causation of this disease is still unclear. The objective of this study was to identify the cause of PDS using a next-generation technology detection pipeline. Following the hypothesis that PDS is caused by an infectious agent, brown trout specimens were exposed to water from a heavily affected pre-alpine river with annual occurrence of the disease. Specimens were sampled over the entire time period from potential infection through death. Transcriptomic analysis (microarray) and RT-qPCR of brown trout liver tissue evidenced strong gene expression response of immune-associated genes. Messenger RNA of specimens with synchronous immune expression profiles were ultra-deep sequenced using next-generation sequencing technology (NGS). Bioinformatic processing of generated reads and gap-filling Sanger re-sequencing of the identified pathogen genome revealed strong evidence that a piscine-related reovirus is the causative organism of PDS. The identified pathogen is phylogenetically closely related to the family of piscine reoviruses (PRV) which are considered as the causation of different fish diseases in Atlantic and Pacific salmonid species such as Salmo salar and Onchorhynchus kisutch. This study also highlights that the approach of first screening immune responses along a timeline in order to identify synchronously affected stages in different specimens which subsequently were ultra-deep sequenced is an effective approach in pathogen detection. In particular, the identification of specimens with synchronous molecular immune response patterns combined with NGS sequencing and gap-filling re-sequencing resulted in the successful pathogen detection of PDS.
Collapse
Affiliation(s)
- Ralph Kuehn
- Unit of Molecular Zoology, Department of Zoology, Technical University of Munich, Freising, Germany.,Department of Fish, Wildlife and Conservation Ecology, New Mexico State University, Las Cruces, NM, United States of America
| | - Bernhard C Stoeckle
- Unit of Molecular Zoology, Department of Zoology, Technical University of Munich, Freising, Germany.,Aquatic Systems Biology Unit, Department of Ecology and Ecosystem Management, Technical University of Munich, Freising, Germany
| | - Marc Young
- Unit of Molecular Zoology, Department of Zoology, Technical University of Munich, Freising, Germany
| | - Lisa Popp
- Unit of Molecular Zoology, Department of Zoology, Technical University of Munich, Freising, Germany
| | - Jens-Eike Taeubert
- Fachberatung für Fischerei Niederbayern, Bezirk Niederbayern, Landshut, Germany
| | - Michael W Pfaffl
- Department of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
| | - Juergen Geist
- Aquatic Systems Biology Unit, Department of Ecology and Ecosystem Management, Technical University of Munich, Freising, Germany
| |
Collapse
|
38
|
Robledo D, Gutiérrez AP, Barría A, Yáñez JM, Houston RD. Gene Expression Response to Sea Lice in Atlantic Salmon Skin: RNA Sequencing Comparison Between Resistant and Susceptible Animals. Front Genet 2018; 9:287. [PMID: 30123239 PMCID: PMC6086009 DOI: 10.3389/fgene.2018.00287] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/11/2018] [Indexed: 12/27/2022] Open
Abstract
Sea lice are parasitic copepods that cause large economic losses to salmon aquaculture worldwide. Frequent chemotherapeutic treatments are typically required to control this parasite, and alternative measures such as breeding for improved host resistance are desirable. Insight into the host-parasite interaction and mechanisms of host resistance can lead to improvements in selective breeding, and potentially novel treatment targets. In this study, RNA sequencing was used to study the skin transcriptome of Atlantic salmon (Salmo salar) parasitized with sea lice (Caligus rogercresseyi). The overall aims were to compare the transcriptomic profile of skin at louse attachment sites and "healthy" skin, and to assess differences in gene expression response between animals with varying levels of resistance to the parasite. Atlantic salmon pre-smolts were challenged with C. rogercresseyi, growth and lice count measurements were taken for each fish. 21 animals were selected and RNA-Seq was performed on skin from a louse attachment site, and skin distal to attachment sites for each animal. These animals were classified into family-balanced groups according to the traits of resistance (high vs. low lice count), and growth during infestation. Overall comparison of skin from louse attachment sites vs. healthy skin showed that 4,355 genes were differentially expressed, indicating local up-regulation of several immune pathways and activation of tissue repair mechanisms. Comparison between resistant and susceptible animals highlighted expression differences in several immune response and pattern recognition genes, and also myogenic and iron availability factors. Components of the pathways involved in differential response to sea lice may be targets for studies aimed at improved or novel treatment strategies, or to prioritize candidate functional polymorphisms to enhance genomic selection for host resistance in commercial salmon breeding programs.
Collapse
Affiliation(s)
- Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Alejandro P. Gutiérrez
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Agustín Barría
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Aquainnovo S.A., Puerto Montt, Chile
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
39
|
Robledo D, Palaiokostas C, Bargelloni L, Martínez P, Houston R. Applications of genotyping by sequencing in aquaculture breeding and genetics. REVIEWS IN AQUACULTURE 2018; 10:670-682. [PMID: 30220910 PMCID: PMC6128402 DOI: 10.1111/raq.12193] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/27/2016] [Indexed: 05/18/2023]
Abstract
Selective breeding is increasingly recognized as a key component of sustainable production of aquaculture species. The uptake of genomic technology in aquaculture breeding has traditionally lagged behind terrestrial farmed animals. However, the rapid development and application of sequencing technologies has allowed aquaculture to narrow the gap, leading to substantial genomic resources for all major aquaculture species. While high-density single-nucleotide polymorphism (SNP) arrays for some species have been developed recently, direct genotyping by sequencing (GBS) techniques have underpinned many of the advances in aquaculture genetics and breeding to date. In particular, restriction-site associated DNA sequencing (RAD-Seq) and subsequent variations have been extensively applied to generate population-level SNP genotype data. These GBS techniques are not dependent on prior genomic information such as a reference genome assembly for the species of interest. As such, they have been widely utilized by researchers and companies focussing on nonmodel aquaculture species with relatively small research communities. Applications of RAD-Seq techniques have included generation of genetic linkage maps, performing genome-wide association studies, improvements of reference genome assemblies and, more recently, genomic selection for traits of interest to aquaculture like growth, sex determination or disease resistance. In this review, we briefly discuss the history of GBS, the nuances of the various GBS techniques, bioinformatics approaches and application of these techniques to various aquaculture species.
Collapse
Affiliation(s)
- Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Christos Palaiokostas
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroPadovaItaly
| | - Paulino Martínez
- Department of ZoologyGenetics and Physical AnthropologyFaculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Ross Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| |
Collapse
|
40
|
Shi H, Zhou T, Wang X, Yang Y, Wu C, Liu S, Bao L, Li N, Yuan Z, Jin Y, Tan S, Wang W, Zhong X, Qin G, Geng X, Gao D, Dunham R, Liu Z. Genome-wide association analysis of intra-specific QTL associated with the resistance for enteric septicemia of catfish. Mol Genet Genomics 2018; 293:1365-1378. [PMID: 29967962 DOI: 10.1007/s00438-018-1463-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
Disease resistance is one of the most important traits for aquaculture industry. For catfish industry, enteric septicemia of catfish (ESC), caused by the bacterial pathogen Edwardsiella ictaluri, is the most severe disease, causing enormous economic losses every year. In this study, we used three channel catfish families with 900 individuals (300 fish per family) and the 690K catfish SNP array, and conducted a genome-wide association study to detect the quantitative trait loci (QTL) associated with ESC resistance. Three significant QTL, with two of located on LG1 and one on LG26, and three suggestive QTL located on LG1, LG3, and LG21, respectively, were identified to be associated with ESC resistance. With a well-assembled- and -annotated reference genome sequence, genes around the involved QTL regions were identified. Among these genes, 37 genes had known functions in immunity, which may be involved in ESC resistance. Notably, nlrc3 and nlrp12 identified here were also found in QTL regions of ESC resistance in the channel catfish × blue catfish interspecific hybrid system, suggesting this QTL was operating within both intra-specific channel catfish populations and interspecific hybrid backcross populations. Many of the genes of the Class I MHC pathway, for mediated antigen processing and presentation, were found in the QTL regions. The positional correlation found in this study and the expressional correlation found in previous studies indicated that Class I MHC pathway was significantly associated with ESC resistance. This study validated one QTL previously identified using the second and fourth generation of the interspecific hybrid backcross progenies, and identified five additional QTL among channel catfish families. Taken together, it appears that there are only a few major QTL for ESC disease resistance, making marker-assisted selection an effective approach for genetic improvements of ESC resistance.
Collapse
Affiliation(s)
- Huitong Shi
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Chenglong Wu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaoxiao Zhong
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Guyu Qin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xin Geng
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
41
|
Teleosts Genomics: Progress and Prospects in Disease Prevention and Control. Int J Mol Sci 2018; 19:ijms19041083. [PMID: 29617353 PMCID: PMC5979277 DOI: 10.3390/ijms19041083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/11/2018] [Accepted: 03/29/2018] [Indexed: 12/26/2022] Open
Abstract
Genome wide studies based on conventional molecular tools and upcoming omics technologies are beginning to gain functional applications in the control and prevention of diseases in teleosts fish. Herein, we provide insights into current progress and prospects in the use genomics studies for the control and prevention of fish diseases. Metagenomics has emerged to be an important tool used to identify emerging infectious diseases for the timely design of rational disease control strategies, determining microbial compositions in different aquatic environments used for fish farming and the use of host microbiota to monitor the health status of fish. Expounding the use of antimicrobial peptides (AMPs) as therapeutic agents against different pathogens as well as elucidating their role in tissue regeneration is another vital aspect of genomics studies that had taken precedent in recent years. In vaccine development, prospects made include the identification of highly immunogenic proteins for use in recombinant vaccine designs as well as identifying gene signatures that correlate with protective immunity for use as benchmarks in optimizing vaccine efficacy. Progress in quantitative trait loci (QTL) mapping is beginning to yield considerable success in identifying resistant traits against some of the highly infectious diseases that have previously ravaged the aquaculture industry. Altogether, the synopsis put forth shows that genomics studies are beginning to yield positive contribution in the prevention and control of fish diseases in aquaculture.
Collapse
|
42
|
Barría A, Christensen KA, Yoshida GM, Correa K, Jedlicki A, Lhorente JP, Davidson WS, Yáñez JM. Genomic Predictions and Genome-Wide Association Study of Resistance Against Piscirickettsia salmonis in Coho Salmon ( Oncorhynchus kisutch) Using ddRAD Sequencing. G3 (BETHESDA, MD.) 2018; 8:1183-1194. [PMID: 29440129 PMCID: PMC5873909 DOI: 10.1534/g3.118.200053] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/01/2018] [Indexed: 01/15/2023]
Abstract
Piscirickettsia salmonis is one of the main infectious diseases affecting coho salmon (Oncorhynchus kisutch) farming, and current treatments have been ineffective for the control of this disease. Genetic improvement for P. salmonis resistance has been proposed as a feasible alternative for the control of this infectious disease in farmed fish. Genotyping by sequencing (GBS) strategies allow genotyping of hundreds of individuals with thousands of single nucleotide polymorphisms (SNPs), which can be used to perform genome wide association studies (GWAS) and predict genetic values using genome-wide information. We used double-digest restriction-site associated DNA (ddRAD) sequencing to dissect the genetic architecture of resistance against P. salmonis in a farmed coho salmon population and to identify molecular markers associated with the trait. We also evaluated genomic selection (GS) models in order to determine the potential to accelerate the genetic improvement of this trait by means of using genome-wide molecular information. A total of 764 individuals from 33 full-sib families (17 highly resistant and 16 highly susceptible) were experimentally challenged against P. salmonis and their genotypes were assayed using ddRAD sequencing. A total of 9,389 SNPs markers were identified in the population. These markers were used to test genomic selection models and compare different GWAS methodologies for resistance measured as day of death (DD) and binary survival (BIN). Genomic selection models showed higher accuracies than the traditional pedigree-based best linear unbiased prediction (PBLUP) method, for both DD and BIN. The models showed an improvement of up to 95% and 155% respectively over PBLUP. One SNP related with B-cell development was identified as a potential functional candidate associated with resistance to P. salmonis defined as DD.
Collapse
Affiliation(s)
- Agustín Barría
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
- Doctorado en Acuicultura, Programa Cooperativo Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, 8820808 Chile
| | - Kris A Christensen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Grazyella M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
- Animal Science Department, Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Ciências Agrárias e Veterinárias, Campus Jaboticabal, Jaboticabal 14884-900, Brazil
| | - Katharina Correa
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
- Aquainnovo S.A., Puerto Montt 5503032, Chile
| | - Ana Jedlicki
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
| | | | - William S Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
- Aquainnovo S.A., Puerto Montt 5503032, Chile
- Núcleo Milenio INVASAL, Concepción 4070386, Chile
| |
Collapse
|
43
|
Robledo D, Matika O, Hamilton A, Houston RD. Genome-Wide Association and Genomic Selection for Resistance to Amoebic Gill Disease in Atlantic Salmon. G3 (BETHESDA, MD.) 2018; 8:1195-1203. [PMID: 29420190 PMCID: PMC5873910 DOI: 10.1534/g3.118.200075] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/01/2018] [Indexed: 11/18/2022]
Abstract
Amoebic gill disease (AGD) is one of the largest threats to salmon aquaculture, causing serious economic and animal welfare burden. Treatments can be expensive and environmentally damaging, hence the need for alternative strategies. Breeding for disease resistance can contribute to prevention and control of AGD, providing long-term cumulative benefits in selected stocks. The use of genomic selection can expedite selection for disease resistance due to improved accuracy compared to pedigree-based approaches. The aim of this work was to quantify and characterize genetic variation in AGD resistance in salmon, the genetic architecture of the trait, and the potential of genomic selection to contribute to disease control. An AGD challenge was performed in ∼1,500 Atlantic salmon, using gill damage and amoebic load as indicator traits for host resistance. Both traits are heritable (h2 ∼0.25-0.30) and show high positive correlation, indicating they may be good measurements of host resistance to AGD. While the genetic architecture of resistance appeared to be largely polygenic in nature, two regions on chromosome 18 showed suggestive association with both AGD resistance traits. Using a cross-validation approach, genomic prediction accuracy was up to 18% higher than that obtained using pedigree, and a reduction in marker density to ∼2,000 SNPs was sufficient to obtain accuracies similar to those obtained using the whole dataset. This study indicates that resistance to AGD is a suitable trait for genomic selection, and the addition of this trait to Atlantic salmon breeding programs can lead to more resistant stocks.
Collapse
Affiliation(s)
- Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies and
| | - Oswald Matika
- The Roslin Institute and Royal (Dick) School of Veterinary Studies and
| | - Alastair Hamilton
- Landcatch Natural Selection Ltd., Roslin Innovation Centre, University of Edinburgh, EH25 9RG Midlothian, United Kingdom,and
- Hendrix Genetics Aquaculture BV/ Netherlands, Villa 'de Körver', Spoorstraat 69, 5831 CK Boxmeer, The Netherlands
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies and
| |
Collapse
|
44
|
Jorge PH, Mastrochirico-Filho VA, Hata ME, Mendes NJ, Ariede RB, de Freitas MV, Vera M, Porto-Foresti F, Hashimoto DT. Genetic Characterization of the Fish Piaractus brachypomus by Microsatellites Derived from Transcriptome Sequencing. Front Genet 2018. [PMID: 29520294 PMCID: PMC5827183 DOI: 10.3389/fgene.2018.00046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The pirapitinga, Piaractus brachypomus (Characiformes, Serrasalmidae), is a fish from the Amazon basin and is considered to be one of the main native species used in aquaculture production in South America. The objectives of this study were: (1) to perform liver transcriptome sequencing of pirapitinga through NGS and then validate a set of microsatellite markers for this species; and (2) to use polymorphic microsatellites for analysis of genetic variability in farmed stocks. The transcriptome sequencing was carried out through the Roche/454 technology, which resulted in 3,696 non-redundant contigs. Of this total, 2,568 contigs had similarity in the non-redundant (nr) protein database (Genbank) and 2,075 sequences were characterized in the categories of Gene Ontology (GO). After the validation process of 30 microsatellite loci, eight markers showed polymorphism. The analysis of these polymorphic markers in farmed stocks revealed that fish farms from North Brazil had a higher genetic diversity than fish farms from Southeast Brazil. AMOVA demonstrated that the highest proportion of variation was presented within the populations. However, when comparing different groups (1: Wild; 2: North fish farms; 3: Southeast fish farms), a considerable variation between the groups was observed. The FST values showed the occurrence of genetic structure among the broodstocks from different regions of Brazil. The transcriptome sequencing in pirapitinga provided important genetic resources for biological studies in this non-model species, and microsatellite data can be used as the framework for the genetic management of breeding stocks in Brazil, which might provide a basis for a genetic pre-breeding programme.
Collapse
Affiliation(s)
- Paulo H Jorge
- Aquaculture Center of Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo State University, Jaboticabal, Brazil
| | - Vito A Mastrochirico-Filho
- Aquaculture Center of Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo State University, Jaboticabal, Brazil
| | - Milene E Hata
- Aquaculture Center of Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo State University, Jaboticabal, Brazil
| | - Natália J Mendes
- Aquaculture Center of Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo State University, Jaboticabal, Brazil
| | - Raquel B Ariede
- Aquaculture Center of Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo State University, Jaboticabal, Brazil
| | - Milena Vieira de Freitas
- Aquaculture Center of Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo State University, Jaboticabal, Brazil
| | - Manuel Vera
- Veterinary Faculty, University of Santiago de Compostela, Lugo, Spain
| | | | - Diogo T Hashimoto
- Aquaculture Center of Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo State University, Jaboticabal, Brazil
| |
Collapse
|
45
|
Genomic Prediction Accuracy for Resistance Against Piscirickettsia salmonis in Farmed Rainbow Trout. G3-GENES GENOMES GENETICS 2018; 8:719-726. [PMID: 29255117 PMCID: PMC5919750 DOI: 10.1534/g3.117.300499] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Salmonid rickettsial syndrome (SRS), caused by the intracellular bacterium Piscirickettsia salmonis, is one of the main diseases affecting rainbow trout (Oncorhynchus mykiss) farming. To accelerate genetic progress, genomic selection methods can be used as an effective approach to control the disease. The aims of this study were: (i) to compare the accuracy of estimated breeding values using pedigree-based best linear unbiased prediction (PBLUP) with genomic BLUP (GBLUP), single-step GBLUP (ssGBLUP), Bayes C, and Bayesian Lasso (LASSO); and (ii) to test the accuracy of genomic prediction and PBLUP using different marker densities (0.5, 3, 10, 20, and 27 K) for resistance against P. salmonis in rainbow trout. Phenotypes were recorded as number of days to death (DD) and binary survival (BS) from 2416 fish challenged with P. salmonis. A total of 1934 fish were genotyped using a 57 K single-nucleotide polymorphism (SNP) array. All genomic prediction methods achieved higher accuracies than PBLUP. The relative increase in accuracy for different genomic models ranged from 28 to 41% for both DD and BS at 27 K SNP. Between different genomic models, the highest relative increase in accuracy was obtained with Bayes C (∼40%), where 3 K SNP was enough to achieve a similar accuracy to that of the 27 K SNP for both traits. For resistance against P. salmonis in rainbow trout, we showed that genomic predictions using GBLUP, ssGBLUP, Bayes C, and LASSO can increase accuracy compared with PBLUP. Moreover, it is possible to use relatively low-density SNP panels for genomic prediction without compromising accuracy predictions for resistance against P. salmonis in rainbow trout.
Collapse
|
46
|
Ariede RB, Freitas MV, Hata ME, Mastrochirico-Filho VA, Pilarski F, Batlouni SR, Porto-Foresti F, Hashimoto DT. Microsatellites Associated with Growth Performance and Analysis of Resistance to Aeromonas hydrophila in Tambaqui Colossoma macropomum. Front Genet 2018; 9:3. [PMID: 29403527 PMCID: PMC5778134 DOI: 10.3389/fgene.2018.00003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/04/2018] [Indexed: 01/28/2023] Open
Abstract
Tambaqui, Colossoma macropomum, is the main native fish species produced in Brazil, and is an important species for genetic improvement in aquaculture. In addition, breeding studies on this species can be optimized with the use of molecular markers associated with productive phenotypes. The objective of the present study was to test the performance of growth traits and resistance to the bacteria, Aeromonas hydrophila, in association with microsatellite markers in C. macropomum. In this study, three full-sib families were subjected to bacterial challenge and morphometric growth assessments. Tambaqui families subjected to the bacterial challenge differed significantly in death time and mortality rate. There was, however, no association between resistance to bacteria and microsatellite markers. In relation to growth traits, we observed a marker/phenotype association in two microsatellites. The marker in the 6b isoform x5 gene (TNCRC6b) was associated with length, whereas an anonymous marker was associated with height. The present study highlighted the evaluation of molecular markers associated with growth traits, and can serve as the basis for future marker-assisted selection (MAS) of tambaqui.
Collapse
Affiliation(s)
- Raquel B Ariede
- Aquaculture Center of Unesp, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Milena V Freitas
- Aquaculture Center of Unesp, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Milene E Hata
- Aquaculture Center of Unesp, São Paulo State University (Unesp), Jaboticabal, Brazil
| | | | - Fabiana Pilarski
- Aquaculture Center of Unesp, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Sergio R Batlouni
- Aquaculture Center of Unesp, São Paulo State University (Unesp), Jaboticabal, Brazil
| | | | - Diogo T Hashimoto
- Aquaculture Center of Unesp, São Paulo State University (Unesp), Jaboticabal, Brazil
| |
Collapse
|
47
|
Sutherland BJG, Rico C, Audet C, Bernatchez L. Sex Chromosome Evolution, Heterochiasmy, and Physiological QTL in the Salmonid Brook Charr Salvelinus fontinalis. G3 (BETHESDA, MD.) 2017; 7:2749-2762. [PMID: 28626004 PMCID: PMC5555479 DOI: 10.1534/g3.117.040915] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Whole-genome duplication (WGD) can have large impacts on genome evolution, and much remains unknown about these impacts. This includes the mechanisms of coping with a duplicated sex determination system and whether this has an impact on increasing the diversity of sex determination mechanisms. Other impacts include sexual conflict, where alleles having different optimums in each sex can result in sequestration of genes into nonrecombining sex chromosomes. Sex chromosome development itself may involve sex-specific recombination rate (i.e., heterochiasmy), which is also poorly understood. The family Salmonidae is a model system for these phenomena, having undergone autotetraploidization and subsequent rediploidization in most of the genome at the base of the lineage. The salmonid master sex determining gene is known, and many species have nonhomologous sex chromosomes, putatively due to transposition of this gene. In this study, we identify the sex chromosome of Brook Charr Salvelinus fontinalis and compare sex chromosome identities across the lineage (eight species and four genera). Although nonhomology is frequent, homologous sex chromosomes and other consistencies are present in distantly related species, indicating probable convergence on specific sex and neo-sex chromosomes. We also characterize strong heterochiasmy with 2.7-fold more crossovers in maternal than paternal haplotypes with paternal crossovers biased to chromosome ends. When considering only rediploidized chromosomes, the overall heterochiasmy trend remains, although with only 1.9-fold more recombination in the female than the male. Y chromosome crossovers are restricted to a single end of the chromosome, and this chromosome contains a large interspecific inversion, although its status between males and females remains unknown. Finally, we identify quantitative trait loci (QTL) for 21 unique growth, reproductive, and stress-related phenotypes to improve knowledge of the genetic architecture of these traits important to aquaculture and evolution.
Collapse
Affiliation(s)
- Ben J G Sutherland
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Ciro Rico
- School of Marine Studies, Molecular Diagnostics Laboratory, University of the South Pacific, Suva, Fiji
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), 41092 Sevilla, Spain
| | - Céline Audet
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Quebec G5L 3A1, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
48
|
Sutherland BJ, Covello JM, Friend SE, Poley JD, Koczka KW, Purcell SL, MacLeod TL, Donovan BR, Pino J, González-Vecino JL, Gonzalez J, Troncoso J, Koop BF, Wadsworth SL, Fast MD. Host–parasite transcriptomics during immunostimulant-enhanced rejection of salmon lice (Lepeophtheirus salmonis) by Atlantic salmon (Salmo salar). Facets (Ott) 2017. [DOI: 10.1139/facets-2017-0020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Salmon lice ( Lepeophtheirus salmonis) are important ectoparasites of wild and farmed salmonids and cause major losses to the salmon farming industry throughout the Northern Hemisphere. With the emergence of resistance to several commonly used parasiticides, novel control strategies and integration of multiple treatment options are needed, including host immunostimulation. Here, we investigate the effects of a functional feed containing a peptidoglycan and nucleotide formulation on L. salmonis infection of Atlantic salmon ( Salmo salar) by characterizing lice infection levels, the expression of several host immune genes, and the parasite transcriptomic response to the immunostimulated host. Although initial infection intensities were low, the low dose (LD) immunostimulant diet reduced the total lice burden by 50% relative to controls. Immunostimulant fed hosts up-regulated interleukin-1β in the skin and spleen. This gene has been implicated in successful responses of several salmonid species to salmon lice but is typically not observed in Atlantic salmon, suggesting a favorable influence on the immune response. Lice infecting LD immunostimulated salmon overexpressed genes putatively involved in parasite immunity, including carboxylesterases, and underexpressed genes putatively involved in feeding (e.g., proteases). These lice response genes further improve the characterization of the transcriptome of the non-model parasite by identifying genes potentially involved in evading host immunity.
Collapse
Affiliation(s)
- Ben J.G. Sutherland
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Jennifer M. Covello
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Sarah E. Friend
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| | - Jordan D. Poley
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Kim W. Koczka
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Sara L. Purcell
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Tara L. MacLeod
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Bridget R. Donovan
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Jorge Pino
- EWOS/Cargill Innovation Center—Colaco, Colaco KM5, Puerto Montt, Chile
| | | | - Javier Gonzalez
- EWOS/Cargill Innovation Center—Colaco, Colaco KM5, Puerto Montt, Chile
| | - Jose Troncoso
- EWOS/Cargill Innovation Center—Colaco, Colaco KM5, Puerto Montt, Chile
| | - Ben F. Koop
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | | | - Mark D. Fast
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| |
Collapse
|
49
|
Genotype Imputation To Improve the Cost-Efficiency of Genomic Selection in Farmed Atlantic Salmon. G3-GENES GENOMES GENETICS 2017; 7:1377-1383. [PMID: 28250015 PMCID: PMC5386885 DOI: 10.1534/g3.117.040717] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genomic selection uses genome-wide marker information to predict breeding values for traits of economic interest, and is more accurate than pedigree-based methods. The development of high density SNP arrays for Atlantic salmon has enabled genomic selection in selective breeding programs, alongside high-resolution association mapping of the genetic basis of complex traits. However, in sibling testing schemes typical of salmon breeding programs, trait records are available on many thousands of fish with close relationships to the selection candidates. Therefore, routine high density SNP genotyping may be prohibitively expensive. One means to reducing genotyping cost is the use of genotype imputation, where selected key animals (e.g., breeding program parents) are genotyped at high density, and the majority of individuals (e.g., performance tested fish and selection candidates) are genotyped at much lower density, followed by imputation to high density. The main objectives of the current study were to assess the feasibility and accuracy of genotype imputation in the context of a salmon breeding program. The specific aims were: (i) to measure the accuracy of genotype imputation using medium (25 K) and high (78 K) density mapped SNP panels, by masking varying proportions of the genotypes and assessing the correlation between the imputed genotypes and the true genotypes; and (ii) to assess the efficacy of imputed genotype data in genomic prediction of key performance traits (sea lice resistance and body weight). Imputation accuracies of up to 0.90 were observed using the simple two-generation pedigree dataset, and moderately high accuracy (0.83) was possible even with very low density SNP data (∼250 SNPs). The performance of genomic prediction using imputed genotype data was comparable to using true genotype data, and both were superior to pedigree-based prediction. These results demonstrate that the genotype imputation approach used in this study can provide a cost-effective method for generating robust genome-wide SNP data for genomic prediction in Atlantic salmon. Genotype imputation approaches are likely to form a critical component of cost-efficient genomic selection programs to improve economically important traits in aquaculture.
Collapse
|
50
|
Tadmor-Levi R, Asoulin E, Hulata G, David L. Studying the Genetics of Resistance to CyHV-3 Disease Using Introgression from Feral to Cultured Common Carp Strains. Front Genet 2017; 8:24. [PMID: 28344591 PMCID: PMC5344895 DOI: 10.3389/fgene.2017.00024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/16/2017] [Indexed: 11/13/2022] Open
Abstract
Sustainability and further development of aquaculture production are constantly challenged by outbreaks of fish diseases, which are difficult to prevent or control. Developing fish strains that are genetically resistant to a disease is a cost-effective and a sustainable solution to address this challenge. To do so, heritable genetic variation in disease resistance should be identified and combined together with other desirable production traits. Aquaculture of common carp has suffered substantial losses from the infectious disease caused by the cyprinid herpes virus type 3 (CyHV-3) virus and the global spread of outbreaks indicates that many cultured strains are susceptible. In this research, CyHV-3 resistance from the feral strain “Amur Sassan” was successfully introgressed into two susceptible cultured strains up to the first backcross (BC1) generation. Variation in resistance of families from F1 and BC1 generations was significantly greater compared to that among families of any of the susceptible parental lines, a good starting point for a family selection program. Considerable additive genetic variation was found for CyHV-3 resistance. This phenotype was transferable between generations with contributions to resistance from both the resistant feral and the susceptible cultured strains. Reduced scale coverage (mirror phenotype) is desirable and common in cultured strains, but so far, cultured mirror carp strains were found to be susceptible. Here, using BC1 families ranging from susceptible to resistant, no differences in resistance levels between fully scaled and mirror full-sib groups were found, indicating that CyHV-3 resistance was successfully combined with the desirable mirror phenotype. In addition, the CyHV-3 viral load in tissues throughout the infection of susceptible and resistant fish was followed. Although resistant fish get infected, viral loads in tissues of these fish are significantly lesser than in those of susceptible fish, allowing them to survive the disease. Taken together, in this study we have laid the foundation for breeding CyHV-3-resistant strains and started to address the mechanisms underlying the phenotypic differences in resistance to this disease.
Collapse
Affiliation(s)
- Roni Tadmor-Levi
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot, Israel
| | - Efrat Asoulin
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot, Israel
| | - Gideon Hulata
- Institute of Animal Science, Agricultural Research Organization, Volcani Center Rishon LeZion, Israel
| | - Lior David
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot, Israel
| |
Collapse
|