1
|
Milner AR, Johnson AC, Attipoe EM, Wu W, Challagundla L, Garrett MR. Methylseq, single-nuclei RNAseq, and discovery proteomics identify pathways associated with nephron-deficit CKD in the HSRA rat model. Am J Physiol Renal Physiol 2025; 328:F470-F488. [PMID: 39982494 DOI: 10.1152/ajprenal.00258.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/01/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025] Open
Abstract
Low nephron numbers are associated with an increased risk of developing chronic kidney disease (CKD) and hypertension, which are significant global health problems. To investigate the impact of nephron deficiency, our laboratory developed a novel inbred rat model (HSRA rat). In this model, ∼75% of offspring are born with a single kidney (HSRA-S), compared with two-kidney littermates (HSRA-C). HSRA-S rats show impaired kidney development, resulting in ∼20% fewer nephrons. Our previous data and current findings demonstrate that nephron deficit (failure of one kidney to form and altered development in the remaining kidney) predisposes HSRA-S to CKD late in life (with increased proteinuria by 18 mo of age in HSRA-S = 51 ± 3.4 vs. HSRA-C = 8 ± 1.5 mg/24 h). To understand early molecular mechanisms contributing to the increased predisposition to CKD, Methylseq using reduced representation bisulfite sequencing, single-nuclei (sn)RNAseq, and discovery proteomics were performed in kidneys of 4-wk-old HSRA rats. Methylation analysis revealed a small number of differences, including five differentially methylated cytosines and six differentially methylated regions between groups. The snRNAseq analysis identified differentially expressed genes in most kidney cell types, with several hundred genes dysregulated depending on the analysis method (Seurat vs. DESeq2). Notably, many genes are involved in kidney development. Discovery proteomic analysis identified 366 differentially expressed proteins. A key finding was dysregulation of Deptor/DEPTOR and Amdhd2/AMDHD2 across omics layers, suggesting a potential role in compensatory mechanisms or the genetic basis of altered kidney development. Further understanding of these mechanisms may guide interventions to preserve nephron health and slow kidney disease progression.NEW & NOTEWORTHY The HSRA rat is a novel model of nephron deficiency and provides a unique opportunity to study the association between nephron number and chronic kidney disease (CKD). Previous work characterized the impact of age, hypertension, and diabetes on the development of CKD in HSRA animals. This study examined early changes in epigenetics, cell-type specific transcriptome, and proteomic changes in the kidney that likely predispose the model to CKD with age.
Collapse
Affiliation(s)
- Andrew R Milner
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Ashley C Johnson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Esinam M Attipoe
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Wenjie Wu
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lavanya Challagundla
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Michael R Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, Mississippi, United States
- Department of Pediatrics (Genetics), University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
2
|
Gaggi G, Hausman C, Cho S, Badalamenti BC, Trinh BQ, Di Ruscio A, Ummarino S. LncRNAs Ride the Storm of Epigenetic Marks. Genes (Basel) 2025; 16:313. [PMID: 40149464 PMCID: PMC11942515 DOI: 10.3390/genes16030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Advancements in genome sequencing technologies have uncovered the multifaceted roles of long non-coding RNAs (lncRNAs) in human cells. Recent discoveries have identified lncRNAs as major players in gene regulatory pathways, highlighting their pivotal role in human cell growth and development. Their dysregulation is implicated in the onset of genetic disorders and age-related diseases, including cancer. Specifically, they have been found to orchestrate molecular mechanisms impacting epigenetics, including DNA methylation and hydroxymethylation, histone modifications, and chromatin remodeling, thereby significantly influencing gene expression. This review provides an overview of the current knowledge on lncRNA-mediated epigenetic regulation of gene expression, emphasizing the biomedical implications of lncRNAs in the development of different types of cancers and genetic diseases.
Collapse
Affiliation(s)
- Giulia Gaggi
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- UdA-TechLab, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Clinton Hausman
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Soomin Cho
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Brianna C. Badalamenti
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Bon Q. Trinh
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
- Molecular Genetics & Epigenetics Program, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Annalisa Di Ruscio
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Simone Ummarino
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
3
|
Li Q, Huang CC, Huang S, Tian Y, Huang J, Bitaraf A, Dong X, Nevalainen MT, Patel M, Wong J, Zhang J, Manley BJ, Park JY, Kohli M, Gore EM, Kilari D, Wang L. 5-hydroxymethylcytosine sequencing of plasma cell-free DNA identifies epigenomic features in prostate cancer patients receiving androgen deprivation therapies. COMMUNICATIONS MEDICINE 2025; 5:61. [PMID: 40038525 PMCID: PMC11880319 DOI: 10.1038/s43856-025-00783-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND We evaluated whether 5hmC signatures in cell-free DNA (cfDNA) are associated with treatment failure to androgen-deprivation therapies (ADT) among men with hormone-naive prostate cancer. METHODS We collected a total of 139 serial plasma samples from 55 prostate cancer patients receiving ADT at 3 time points including baseline (before initiating ADT, n = 55); 3 months (after initiating ADT, n = 55); and disease progression (n = 15) within 24 months or 24 months if no progression was detected (n = 14). We used selective chemical labeling sequencing to quantify 5hmC abundance across the genome and Kaplan-Meier analysis to assess survival association. RESULTS Here we show a significant 5hmC difference in 1642 of 23433 genes between patients with and without progression (false discovery rate [FDR] < 0.1) in baseline plasma samples. Patients with progression demonstrate significant 5hmC enrichments in multiple hallmark gene sets, with androgen responses as the top enriched gene-set (FDR = 1.19E-13). We further show a significant association between high activity scores in these gene sets and poor progression-free survival (P < 0.05), even after adjusting for circulating tumor DNA fraction and prostate-specific antigen values. Additionally, our longitudinal analysis shows that the high activity score is significantly reduced after 3 months of initiating ADT (P = 0.0004) but returns to higher levels when the disease progresses (P = 0.0317). CONCLUSIONS 5hmC-based activity scores from gene-sets involved in AR responses show great potential in assessing treatment resistance, monitoring disease progression, and identifying patients who would benefit from upfront treatment intensification. However, further studies are needed to validate these findings.
Collapse
Affiliation(s)
- Qianxia Li
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chiang-Ching Huang
- Department of Biostatics, Joseph J. Zilber College of Public Health, University of Wisconsin, Milwaukee, WI, USA
| | - Shane Huang
- Department of Biostatics, University of Wisconsin, Madison, WI, USA
| | - Yijun Tian
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jinyong Huang
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Amirreza Bitaraf
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Xiaowei Dong
- Department of Biostatics, Joseph J. Zilber College of Public Health, University of Wisconsin, Milwaukee, WI, USA
| | - Marja T Nevalainen
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Manishkumar Patel
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jodie Wong
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jingsong Zhang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Brandon J Manley
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jong Y Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Manish Kohli
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Center, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth M Gore
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Deepak Kilari
- Division of Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Liang Wang
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
4
|
Margalit S, Tulpová Z, Michaeli Y, Zur T, Deek J, Louzoun-Zada S, Nifker G, Grunwald A, Scher Y, Schütz L, Weinhold E, Gnatek Y, Omer D, Dekel B, Friedman E, Ebenstein Y. Optical genome and epigenome mapping of clear cell renal cell carcinoma. NAR Cancer 2025; 7:zcaf008. [PMID: 40061565 PMCID: PMC11886815 DOI: 10.1093/narcan/zcaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
Cancer cells display complex genomic aberrations that include large-scale genetic rearrangements and epigenetic modulation that are not easily captured by short-read sequencing. This study presents a novel approach for simultaneous profiling of long-range genetic and epigenetic changes in matched cancer samples, focusing on clear cell renal cell carcinoma (ccRCC). ccRCC is a common kidney cancer subtype frequently characterized by a 3p deletion and the inactivation of the von Hippel-Lindau (VHL) gene. We performed integrated genetic, cytogenetic, and epigenetic analyses on paired tumor and adjacent nontumorous tissue samples. Optical genome mapping identified genomic aberrations as structural and copy number variations, complementing exome-sequencing findings. Single-molecule methylome and hydroxymethylome mapping revealed a significant global reduction in 5hmC level in both sample pairs, and a correlation between both epigenetic signals and gene expression was observed. The single-molecule epigenetic analysis identified numerous differentially modified regions, some implicated in ccRCC pathogenesis, including the genes VHL, PRCC, and PBRM1. Notably, pathways related to metabolism and cancer development were significantly enriched among these differential regions. This study demonstrates the feasibility of integrating optical genome and epigenome mapping for comprehensive characterization of matched tumor and adjacent tissue, uncovering both established and novel somatic aberrations.
Collapse
Affiliation(s)
- Sapir Margalit
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Zuzana Tulpová
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Institute of Experimental Botany of the Czech Academy of Sciences, 77900, Olomouc, Czech Republic
| | - Yael Michaeli
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Tahir Detinis Zur
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Jasline Deek
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Sivan Louzoun-Zada
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Gil Nifker
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Assaf Grunwald
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yuval Scher
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Leonie Schütz
- Institute of Organic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
| | - Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
- Pediatric Nephrology Unit, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, 6997801 Tel Aviv, Israel
| | - Eitan Friedman
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, 6997801 Tel Aviv, Israel
- The Susanne Levy Gertner Oncogenetics Unit, The Danek Gertner Institute of Human Genetics, Sheba Medical Center, 52621 Ramat Gan, Israel
| | - Yuval Ebenstein
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
5
|
Margalit S, Tulpová Z, Detinis Zur T, Michaeli Y, Deek J, Nifker G, Haldar R, Gnatek Y, Omer D, Dekel B, Baris Feldman H, Grunwald A, Ebenstein Y. Long-read structural and epigenetic profiling of a kidney tumor-matched sample with nanopore sequencing and optical genome mapping. NAR Genom Bioinform 2025; 7:lqae190. [PMID: 39781516 PMCID: PMC11704781 DOI: 10.1093/nargab/lqae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
Carcinogenesis often involves significant alterations in the cancer genome, marked by large structural variants (SVs) and copy number variations (CNVs) that are difficult to capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect such aberrations, but they are limited in resolution and do not cover features smaller than several hundred kilobases. Optical genome mapping (OGM) and nanopore sequencing [Oxford Nanopore Technologies (ONT)] bridge this resolution gap and offer enhanced performance for cytogenetic applications. Additionally, both methods can capture epigenetic information as they profile native, individual DNA molecules. We compared the effectiveness of the two methods in characterizing the structural, copy number and epigenetic landscape of a clear cell renal cell carcinoma tumor. Both methods provided comparable results for basic karyotyping and CNVs, but differed in their ability to detect SVs of different sizes and types. ONT outperformed OGM in detecting small SVs, while OGM excelled in detecting larger SVs, including translocations. Differences were also observed among various ONT SV callers. Additionally, both methods provided insights into the tumor's methylome and hydroxymethylome. While ONT was superior in methylation calling, hydroxymethylation reports can be further optimized. Our findings underscore the importance of carefully selecting the most appropriate platform based on specific research questions.
Collapse
Affiliation(s)
- Sapir Margalit
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Zuzana Tulpová
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Tahir Detinis Zur
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yael Michaeli
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Jasline Deek
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Gil Nifker
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Rita Haldar
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
| | - Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
- Pediatric Nephrology Unit, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Hagit Baris Feldman
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Assaf Grunwald
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yuval Ebenstein
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
6
|
Fang R, Vallius T, Zhang A, Van Cura D, Alicandri F, Fischer G, Draper E, Xu S, Pelletier R, Wang J, Mandinova A, Katsyv I, Sorger PK, Murphy GF, Lian CG. PRAME Expression in Melanoma is Negatively Regulated by TET2-Mediated DNA Hydroxymethylation. J Transl Med 2025; 105:104123. [PMID: 40024557 DOI: 10.1016/j.labinv.2025.104123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/12/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025] Open
Abstract
Preferentially expressed Antigen in Melanoma (PRAME) and Ten-Eleven Translocation (TET) dioxygenase-mediated 5-hydroxymethylcytosine (5hmC) are emerging melanoma biomarkers. We observed an inverse correlation between PRAME expression and 5hmC levels in benign nevi, melanoma in situ, primary invasive melanoma, and metastatic melanomas via immunohistochemistry and multiplex immunofluorescence: nevi exhibited high 5hmC and low PRAME, whereas melanomas showed the opposite pattern. Single-cell multiplex imaging of melanoma precursors revealed that diminished 5hmC coincides with PRAME upregulation in premalignant cells. Analysis of The Cancer Genome Atlas and Genotype-Tissue Expression databases confirmed a negative relationship between TET2 and PRAME messenger RNA expression in melanoma. Additionally, 5hmC levels were reduced at the PRAME 5' promoter in melanoma compared with nevi, suggesting a role for 5hmC in PRAME transcription. Restoring 5hmC levels via TET2 overexpression notably reduced PRAME expression in melanoma cell lines. These findings establish a function of TET2-mediated DNA hydroxymethylation in regulating PRAME expression and demonstrate epigenetic reprogramming as pivotal in melanoma tumorigenesis.
Collapse
Affiliation(s)
- Rui Fang
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tuulia Vallius
- Laboratory of Systems Pharmacology, Harvard Medical School, Harvard Program in Therapeutic Science, Boston, Massachusetts; Ludwig Center at Harvard Medical School, Boston, Massachusetts
| | - Arianna Zhang
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Devon Van Cura
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Francisco Alicandri
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Grant Fischer
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Draper
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shuyun Xu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Roxanne Pelletier
- Laboratory of Systems Pharmacology, Harvard Medical School, Harvard Program in Therapeutic Science, Boston, Massachusetts; Ludwig Center at Harvard Medical School, Boston, Massachusetts
| | - Justina Wang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts; Broad Institute of Harvard and MIT, Cambridge, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Igor Katsyv
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Harvard Program in Therapeutic Science, Boston, Massachusetts; Ludwig Center at Harvard Medical School, Boston, Massachusetts; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts.
| | - George F Murphy
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Christine G Lian
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
7
|
Hernández-Núñez I, Urman A, Zhang X, Jacobs W, Hoffman C, Rebba S, Harding EG, Li Q, Mao F, Cani AK, Chen S, Dawlaty MM, Rao RC, Ruzycki PA, Edwards JR, Clark BS. Active DNA demethylation is upstream of rod-photoreceptor fate determination and required for retinal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636318. [PMID: 39975078 PMCID: PMC11838574 DOI: 10.1101/2025.02.03.636318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Retinal cell fate specification from multipotent retinal progenitors is governed by dynamic changes in chromatin structure and gene expression. Methylation at cytosines in DNA (5mC) is actively regulated for proper control of gene expression and chromatin architecture. Numerous genes display active DNA demethylation across retinal development; a process that requires oxidation of 5mC to 5-hydroxymethylcytosine (5hmC) and is controlled by the ten-eleven translocation methylcytosine dioxygenase (TET) enzymes. Using an allelic series of conditional TET enzyme mutants, we determine that DNA demethylation is required upstream of NRL and NR2E3 expression for the establishment of rod-photoreceptor fate. Using histological, behavioral, transcriptomic, and base-pair resolution DNA methylation analyses, we establish that inhibition of active DNA demethylation results in global changes in gene expression and methylation patterns that prevent photoreceptor precursors from adopting a rod-photoreceptor fate, instead producing a retina in which all photoreceptors specify as cones. Our results establish the TET enzymes and DNA demethylation as critical regulators of retinal development and cell fate specification, elucidating a novel mechanism required for the specification of rod-photoreceptors.
Collapse
Affiliation(s)
- Ismael Hernández-Núñez
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Alaina Urman
- Center for Pharmacogenetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaodong Zhang
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - William Jacobs
- Center for Pharmacogenetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Christy Hoffman
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Sohini Rebba
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Ellen G Harding
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Qiang Li
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Fengbiao Mao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Andi K Cani
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Shiming Chen
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meelad M Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Department of Genetics, and Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajesh C Rao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department and Center of Computational Medicine and Bioinformatics, Comprehensive Cancer Center, A. Alfred Taubman Medical Research Institute, Center for RNA Biomedicine, Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Division of Ophthalmology, Surgery Section, VA Ann Arbor Health System, Ann Arbor, MI, USA
| | - Philip A Ruzycki
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - John R Edwards
- Center for Pharmacogenetics, Washington University School of Medicine, St. Louis, MO, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Clark
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
8
|
Ruiz E, Leprieur F, Sposito G, Lüthi M, Schmidlin M, Panfili J, Pellissier L, Albouy C. Environmental DNA Epigenetics Accurately Predicts the Age of Cultured Fish Larvae. Ecol Evol 2025; 15:e70645. [PMID: 39944907 PMCID: PMC11821287 DOI: 10.1002/ece3.70645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 02/19/2025] Open
Abstract
While acquiring age information is crucial for efficient stock management and biodiversity conservation, traditional aging methods fail to offer a universal, non-invasive, and precise way of estimating a wild animal's age. DNA methylation from tissue DNA (tDNA) was recently proposed as a method to overcome these issues and showed more accurate results than telomere-length-based age assessments. Here, we used environmental DNA (eDNA) for the first time as a template for age estimation, focusing on the larval phase (10-24 days post-hatch) of cultured Dicentrarchus labrax (seabass), a species of major economic and conservation interest. Using third-generation sequencing, we were able to directly detect various modification types (e.g., cytosine and adenosine methylation in all contexts) across the whole genome using amplification-free nanopore sequencing. However, aging sites were only present in the mitogenome, which could be a specific feature of eDNA methylation or the consequence of better DNA protection within mitochondria. By considering qualitative and quantitative information about aging sites according to an objective model selection framework, our epigenetic clock reached a cross-validated accuracy of 2.6 days (Median Absolute Error). Such performances are higher than those of previous clocks, notably for adult seabass even when scaling MAE to the age range, which could be linked to a more dynamic epigenome during early life stages. Overall, our pilot study proposes new methods to determine the potential of eDNA for simultaneous age and biodiversity assessments, although robust validation of our preliminary results along with methodological developments are needed before field applications can be envisaged.
Collapse
Affiliation(s)
- Eliot Ruiz
- MARBEC, Univ Montpellier, IRD, IFREMER, CNRSMontpellierFrance
| | - Fabien Leprieur
- MARBEC, Univ Montpellier, IRD, IFREMER, CNRSMontpellierFrance
| | - Gérard Sposito
- Mediterranean Coastal Environment StationUniversity of MontpellierSèteFrance
| | - Martina Lüthi
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial EcosystemsETH ZürichZürichSwitzerland
- Land Change Science Research UnitSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Michel Schmidlin
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial EcosystemsETH ZürichZürichSwitzerland
- Land Change Science Research UnitSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Jacques Panfili
- MARBEC, Univ Montpellier, IRD, IFREMER, CNRSMontpellierFrance
| | - Loïc Pellissier
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial EcosystemsETH ZürichZürichSwitzerland
- Land Change Science Research UnitSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Camille Albouy
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial EcosystemsETH ZürichZürichSwitzerland
- Land Change Science Research UnitSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| |
Collapse
|
9
|
Gillespie CA, Chowdhury A, Quinn KA, Jenkins MW, Rollins AM, Watanabe M, Ford SM. Fundamentals of DNA methylation in development. Pediatr Res 2024:10.1038/s41390-024-03674-7. [PMID: 39658604 DOI: 10.1038/s41390-024-03674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 12/12/2024]
Abstract
DNA methyation is critical to regulation of gene expression especially during developmentally dynamic changes. A large proportion occurs at CpG (a cytosine followed by a guanine nucleotide) sites and impacts gene expression based on location, timing and level of DNA methylation. The spectrum of effects produced by DNA methylation ranges from inhibition to enhancement of gene expression. Here basic terms and concepts in the study of DNA methylation are introduced. In addition, some of the commonly used techniques to assay DNA methylation are explained. New methods that allow the precise addition and removal of DNA methylation at specific sites will likely enhance our understanding of DNA methylation in development and may even lead to long-lasting therapeutic strategies to cure diseases. IMPACT: Fundamentals of DNA methylation including its significance are made accessible to a broad audience. Common assays for detecting DNA methylation are explained succinctly. Developmental patterns of DNA methylation detected in commonly used animal models are discussed and explained. Novel methodologies to investigate consequences of DNA methylation and demethylation are introduced.
Collapse
Affiliation(s)
- Caitlyn A Gillespie
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Amrin Chowdhury
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Katie A Quinn
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Michael W Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Stephanie M Ford
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Divisions of Neonatology and Pediatric Cardiology, UH Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Mortillo M, Kennedy EG, Hermetz KM, Burt AA, Marsit CJ. Epigenetic landscape of 5-hydroxymethylcytosine and associations with gene expression in placenta. Epigenetics 2024; 19:2326869. [PMID: 38507502 PMCID: PMC10956631 DOI: 10.1080/15592294.2024.2326869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
5-hydroxymethylcystosine (5hmC), is an intermediate product in the DNA demethylation pathway, but may act as a functional epigenetic modification. We have conducted the largest study of site-specific 5hmC in placenta to date using parallel bisulphite and oxidative bisulphite modification with array-based assessment. Incorporating parallel RNA-sequencing data allowed us to assess associations between 5hmC and gene expression, using expression quantitative trait hydroxymethylation (eQTHM) analysis. We identified ~ 47,000 loci with consistently elevated (systematic) 5hmC proportions. Systematic 5hmC was significantly depleted (p < 0.0001) at CpG islands (CGI), and enriched (p < 0.0001) in 'open sea' regions (CpG >4 kb from CGI). 5hmC was most and least abundant at CpGs in enhancers and active transcription start sites (TSS), respectively (p < 0.05). We identified 499 significant (empirical-p <0.05) eQTHMs within 1 MB of the assayed gene. At most (75.4%) eQTHMs, the proportion of 5hmC was positively correlated with transcript abundance. eQTHMs were significantly enriched among enhancer CpGs and depleted among CpGs in active TSS (p < 0.05 for both). Finally, we identified 107 differentially hydroxymethylated regions (DHMRs, p < 0.05) across 100 genes. Our study provides insight into placental distribution of 5hmC, and sheds light on the functional capacity of this epigenetic modification in placenta.
Collapse
Affiliation(s)
- Michael Mortillo
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elizabeth G. Kennedy
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen M. Hermetz
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amber A. Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
11
|
Stein RA, Gomaa FE, Raparla P, Riber L. Now and then in eukaryotic DNA methylation. Physiol Genomics 2024; 56:741-763. [PMID: 39250426 DOI: 10.1152/physiolgenomics.00091.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
Since the mid-1970s, increasingly innovative methods to detect DNA methylation provided detailed information about its distribution, functions, and dynamics. As a result, new concepts were formulated and older ones were revised, transforming our understanding of the associated biology and catalyzing unprecedented advances in biomedical research, drug development, anthropology, and evolutionary biology. In this review, we discuss a few of the most notable advances, which are intimately intertwined with the study of DNA methylation, with a particular emphasis on the past three decades. Examples of these strides include elucidating the intricacies of 5-methylcytosine (5-mC) oxidation, which are at the core of the reversibility of this epigenetic modification; the three-dimensional structural characterization of eukaryotic DNA methyltransferases, which offered insights into the mechanisms that explain several disease-associated mutations; a more in-depth understanding of DNA methylation in development and disease; the possibility to learn about the biology of extinct species; the development of epigenetic clocks and their use to interrogate aging and disease; and the emergence of epigenetic biomarkers and therapies.
Collapse
Affiliation(s)
- Richard A Stein
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Faris E Gomaa
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Pranaya Raparla
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
12
|
Kamei N, Day K, Guo W, Haus DL, Nguyen HX, Scarfone VM, Booher K, Jia XY, Cummings BJ, Anderson AJ. Injured inflammatory environment overrides the TET2 shaped epigenetic landscape of pluripotent stem cell derived human neural stem cells. Sci Rep 2024; 14:25186. [PMID: 39448736 PMCID: PMC11502794 DOI: 10.1038/s41598-024-75689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Spinal cord injury creates an inflammatory microenvironment that regulates the capacity of transplanted human Neural Stem Cells (hNSC) to migrate, differentiate, and repair injury. Despite similarities in gene expression and markers detected by immunostaining, hNSC populations exhibit heterogeneous therapeutic potential. This heterogeneity derives in part from the epigenetic landscape in the hNSC genome, specifically methylation (5mC) and hydroxymethylation (5hmC) state, which may affect the response of transplanted hNSC in the injury microenvironment and thereby modulate repair capacity. We demonstrate a significant up-regulation of methylcytosine dioxygenase 2 gene (TET2) expression in undifferentiated hNSC derived from human embryonic stem cells (hES-NSC), and report that this is associated with hES-NSC competence for differentiation marker expression. TET2 protein catalyzes active demethylation and TET2 upregulation could be a signature of pluripotent exit, while shaping the epigenetic landscape in hES-NSC. We determine that the inflammatory environment overrides epigenetic programming in vitro and in vivo by directly modulating TET2 expression levels in hES-NSC to change cell fate. We also report the effect of cell fate and microenvironment on differential methylation 5mC/5hmC balance. Understanding how the activity of epigenetic modifiers changes within the transplantation niche in vivo is crucial for assessment of hES-NSC behavior for potential clinical applications.
Collapse
Affiliation(s)
- Noriko Kamei
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA.
- Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697-4475, USA.
| | - Kenneth Day
- Zymo Research Corp, 17062 Murphy Ave, Irvine, CA, 92614, USA
- Vidium Animal Health, 7201 E Henkel Way Suite210, Scottsdale, AZ, 85255, USA
| | - Wei Guo
- Zymo Research Corp, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Daniel L Haus
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA
| | - Hal X Nguyen
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA
| | - Vanessa M Scarfone
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA
| | - Keith Booher
- Zymo Research Corp, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Xi-Yu Jia
- Zymo Research Corp, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Brian J Cummings
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA.
| | - Aileen J Anderson
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA.
| |
Collapse
|
13
|
Hsu FM, Horton P. MethylSeqLogo: DNA methylation smart sequence logos. BMC Bioinformatics 2024; 25:326. [PMID: 39385066 PMCID: PMC11462690 DOI: 10.1186/s12859-024-05896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/08/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Some transcription factors, MYC for example, bind sites of potentially methylated DNA. This may increase binding specificity as such sites are (1) highly under-represented in the genome, and (2) offer additional, tissue specific information in the form of hypo- or hyper-methylation. Fortunately, bisulfite sequencing data can be used to investigate this phenomenon. METHOD We developed MethylSeqLogo, an extension of sequence logos which includes new elements to indicate DNA methylation and under-represented dimers in each position of a set binding sites. Our method displays information from both DNA strands, and takes into account the sequence context (CpG or other) and genome region (promoter versus whole genome) appropriate to properly assess the expected background dimer frequency and level of methylation. MethylSeqLogo preserves sequence logo semantics-the relative height of nucleotides within a column represents their proportion in the binding sites, while the absolute height of each column represents information (relative entropy) and the height of all columns added together represents total information RESULTS: We present figures illustrating the utility of using MethylSeqLogo to summarize data from several CpG binding transcription factors. The logos show that unmethylated CpG binding sites are a feature of transcription factors such as MYC and ZBTB33, while some other CpG binding transcription factors, such as CEBPB, appear methylation neutral. CONCLUSIONS Our software enables users to explore bisulfite and ChIP sequencing data sets-and in the process obtain publication quality figures.
Collapse
Affiliation(s)
- Fei-Man Hsu
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, USA
| | - Paul Horton
- Department of Computer Science and Information Engineering, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan.
| |
Collapse
|
14
|
Bahabry R, Hauser RM, Sánchez RG, Jago SS, Ianov L, Stuckey RJ, Parrish RR, Ver Hoef L, Lubin FD. Alterations in DNA 5-hydroxymethylation patterns in the hippocampus of an experimental model of chronic epilepsy. Neurobiol Dis 2024; 200:106638. [PMID: 39142613 DOI: 10.1016/j.nbd.2024.106638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024] Open
Abstract
Temporal lobe epilepsy (TLE) is a type of focal epilepsy characterized by spontaneous recurrent seizures originating from the hippocampus. The epigenetic reprogramming hypothesis of epileptogenesis suggests that the development of TLE is associated with alterations in gene transcription changes resulting in a hyperexcitable network in TLE. DNA 5-methylcytosine (5-mC) is an epigenetic mechanism that has been associated with chronic epilepsy. However, the contribution of 5-hydroxymethylcytosine (5-hmC), a product of 5-mC demethylation by the Ten-Eleven Translocation (TET) family proteins in chronic TLE is poorly understood. 5-hmC is abundant in the brain and acts as a stable epigenetic mark altering gene expression through several mechanisms. Here, we found that the levels of bulk DNA 5-hmC but not 5-mC were significantly reduced in the hippocampus of human TLE patients and in the kainic acid (KA) TLE rat model. Using 5-hmC hMeDIP-sequencing, we characterized 5-hmC distribution across the genome and found bidirectional regulation of 5-hmC at intergenic regions within gene bodies. We found that hypohydroxymethylated 5-hmC intergenic regions were associated with several epilepsy-related genes, including Gal, SV2, and Kcnj11 and hyperdroxymethylation 5-hmC intergenic regions were associated with Gad65, TLR4, and Bdnf gene expression. Mechanistically, Tet1 knockdown in the hippocampus was sufficient to decrease 5-hmC levels and increase seizure susceptibility following KA administration. In contrast, Tet1 overexpression in the hippocampus resulted in increased 5-hmC levels associated with improved seizure resiliency in response to KA. These findings suggest an important role for 5-hmC as an epigenetic regulator of epilepsy that can be manipulated to influence seizure outcomes.
Collapse
Affiliation(s)
- Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Rebecca M Hauser
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Richard G Sánchez
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Silvienne Sint Jago
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Lara Ianov
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Remy J Stuckey
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - R Ryley Parrish
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, United States of America.
| | - Lawrence Ver Hoef
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
15
|
Wang R, Liao G, Tang DD. TET1 Regulates Nestin Expression and Human Airway Smooth Muscle Proliferation. Am J Respir Cell Mol Biol 2024; 71:420-429. [PMID: 38861343 PMCID: PMC11450309 DOI: 10.1165/rcmb.2024-0139oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024] Open
Abstract
Asthma is characterized by aberrant airway smooth muscle (ASM) proliferation, which increases the thickness of the ASM layer within the airway wall and exacerbates airway obstruction during asthma attacks. The mechanisms that drive ASM proliferation in asthma are not entirely elucidated. Ten-eleven translocation methylcytosine dioxygenase (TET) is an enzyme that participates in the regulation of DNA methylation by catalyzing the hydroxylation of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC). The generation of 5-hmC disinhibits the gene silencing effect of 5-mC. In this study, TET1 activity and protein were enhanced in asthmatic human ASM cell cultures. Moreover, the concentration of 5-hmC was higher in asthmatic ASM cells than in nonasthmatic ASM cells. Knockdown (KD) of TET1, but not TET2, reduced the concentration of 5-hmC in asthmatic cells. Because the cytoskeletal protein nestin controls cell proliferation by modulating mTOR, we evaluated the effects of TET1 KD on this pathway. TET1 KD reduced nestin expression in ASM cells. In addition, TET1 inhibition alleviated the platelet-derived growth factor-induced phosphorylation of p70S6K, 4E-BP, S6, and Akt. TET1 inhibition also attenuated the proliferation of ASM cells. Taken together, these results suggest that TET1 drives ASM proliferation via the nestin-mTOR axis.
Collapse
Affiliation(s)
- Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
16
|
Li JJN, Liu G, Lok BH. Cell-Free DNA Hydroxymethylation in Cancer: Current and Emerging Detection Methods and Clinical Applications. Genes (Basel) 2024; 15:1160. [PMID: 39336751 PMCID: PMC11430939 DOI: 10.3390/genes15091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
In the era of precision oncology, identifying abnormal genetic and epigenetic alterations has transformed the way cancer is diagnosed, managed, and treated. 5-hydroxymethylcytosine (5hmC) is an emerging epigenetic modification formed through the oxidation of 5-methylcytosine (5mC) by ten-eleven translocase (TET) enzymes. DNA hydroxymethylation exhibits tissue- and cancer-specific patterns and is essential in DNA demethylation and gene regulation. Recent advancements in 5hmC detection methods and the discovery of 5hmC in cell-free DNA (cfDNA) have highlighted the potential for cell-free 5hmC as a cancer biomarker. This review explores the current and emerging techniques and applications of DNA hydroxymethylation in cancer, particularly in the context of cfDNA.
Collapse
Affiliation(s)
- Janice J N Li
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
| | - Geoffrey Liu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
17
|
Kazeminia S, Eirin A. Role of mitochondria in endogenous renal repair. Clin Sci (Lond) 2024; 138:963-973. [PMID: 39076039 PMCID: PMC11410300 DOI: 10.1042/cs20231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Renal tubules have potential to regenerate and repair after mild-to-moderate injury. Proliferation of tubular epithelial cells represents the initial step of this reparative process. Although for many years, it was believed that proliferating cells originated from a pre-existing intra-tubular stem cell population, there is now consensus that surviving tubular epithelial cells acquire progenitor properties to regenerate the damaged kidney. Scattered tubular-like cells (STCs) are dedifferentiated adult renal tubular epithelial cells that arise upon injury and contribute to renal self-healing and recovery by replacing lost neighboring tubular epithelial cells. These cells are characterized by the co-expression of the stem cell surface markers CD133 and CD24, as well as mesenchymal and kidney injury markers. Previous studies have shown that exogenous delivery of STCs ameliorates renal injury and dysfunction in murine models of acute kidney injury, underscoring the regenerative potential of this endogenous repair system. Although STCs contain fewer mitochondria than their surrounding terminally differentiated tubular epithelial cells, these organelles modulate several important cellular functions, and their integrity and function are critical to preserve the reparative capacity of STCs. Recent data suggest that the microenviroment induced by cardiovascular risk factors, such as obesity, hypertension, and renal ischemia may compromise STC mitochondrial integrity and function, limiting the capacity of these cells to repair injured renal tubules. This review summarizes current knowledge of the contribution of STCs to kidney repair and discusses recent insight into the key role of mitochondria in modulating STC function and their vulnerability in the setting of cardiovascular disease.
Collapse
Affiliation(s)
- Sara Kazeminia
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, U.S.A
| | - Alfonso Eirin
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, U.S.A
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, U.S.A
| |
Collapse
|
18
|
Fang R, Vallius T, Zhang A, Van Cura D, Alicandri F, Fischer G, Draper E, Xu S, Pelletier R, Katsyv I, Sorger PK, Murphy GF, Lian CG. PRAME expression in melanoma is negatively regulated by TET2-mediated DNA hydroxymethylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605293. [PMID: 39091741 PMCID: PMC11291125 DOI: 10.1101/2024.07.26.605293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Preferentially Expressed Antigen in Melanoma (PRAME) and Ten-Eleven Translocation (TET) dioxygenase-mediated 5-hydroxymethylcytosine (5hmC) are emerging melanoma biomarkers. We observed an inverse correlation between PRAME expression and 5hmC levels in benign nevi, melanoma in situ, primary invasive melanoma, and metastatic melanomas via immunohistochemistry and multiplex immunofluorescence: nevi exhibited high 5hmC and low PRAME, whereas melanomas showed the opposite pattern. Single-cell multiplex imaging of melanoma precursors revealed that diminished 5hmC coincides with PRAME upregulation in premalignant cells. Analysis of TCGA and GTEx databases confirmed a negative relationship between TET2 and PRAME mRNA expression in melanoma. Additionally, 5hmC levels were reduced at the PRAME 5' promoter in melanoma compared to nevi, suggesting a role for 5hmC in PRAME transcription. Restoring 5hmC levels via TET2 overexpression notably reduced PRAME expression in melanoma cell lines. These findings establish a function of TET2-mediated DNA hydroxymethylation in regulating PRAME expression and demonstrate epigenetic reprogramming as pivotal in melanoma tumorigenesis. Teaser Melanoma biomarker PRAME expression is negatively regulated epigenetically by TET2-mediated DNA hydroxymethylation.
Collapse
Affiliation(s)
- Rui Fang
- Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston MA 02115
| | - Tuulia Vallius
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston MA 02115 Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115
- Ludwig Cancer Center at Harvard, Boston, MA 02115
| | - Arianna Zhang
- Department of Dermatology, Brigham and Women's Hospital; Harvard Medical School, Boston MA 02115
| | - Devon Van Cura
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138
| | - Francisco Alicandri
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston MA 02115
| | - Grant Fischer
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston MA 02115
| | - Elizabeth Draper
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston MA 02115
| | - Shuyun Xu
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston MA 02115
| | - Roxanne Pelletier
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston MA 02115 Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115
- Ludwig Cancer Center at Harvard, Boston, MA 02115
| | - Igor Katsyv
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston MA 02115
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston MA 02115 Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115
- Ludwig Cancer Center at Harvard, Boston, MA 02115
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115
| | - George F Murphy
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston MA 02115
| | - Christine G Lian
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston MA 02115
| |
Collapse
|
19
|
Angelin M, Gopinath P, Raghavan V, Thara R, Ahmad F, Munirajan AK, Sudesh R. Global DNA and RNA Methylation Signature in Response to Antipsychotic Treatment in First-Episode Schizophrenia Patients. Neuropsychiatr Dis Treat 2024; 20:1435-1444. [PMID: 39049939 PMCID: PMC11268744 DOI: 10.2147/ndt.s466502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Background Schizophrenia is a heterogeneous chronic psychiatric disorder influenced by genetic and environmental factors. Environmental factors can alter epigenetic marks, which regulate gene expression and cause an array of systemic changes. Several studies have demonstrated the association of epigenetic modulations in schizophrenia, which can influence clinical course, symptoms, and even treatment. Based on this, we have examined the global DNA methylation patterns, namely the 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC); and the global RNA modification N6-methyladenosine (m6A) RNA methylation status in peripheral blood cells. First-Episode Psychosis (FEP) patients who were diagnosed with Schizophrenia (SCZ) and undergoing treatment were stratified as Treatment-Responsive (TR) and Treatment-Non-Responsive (TNR). Age- and sex-matched healthy subjects served as controls. Results The methylation pattern of 5mC and 5hmC showed significant increases in patients in comparison to controls. Further, when patients were classified based on their response to treatment, there was a statistically significant increase in methylation patterns in the treatment non-responder group. 5fC and m6A levels did not show any statistical significance across the groups. Further, gender-based stratification did not yield any significant difference for the markers. Conclusion The study highlights the increased global methylation pattern in SCZ patients and a significant difference between the TR versus TNR groups. Global 5mC and 5hmC epigenetic marks suggest their potential roles in schizophrenia pathology, and also in the treatment response to antipsychotics. Since not many studies were available on the treatment response, further validation and the use of more sensitive techniques to study methylation status could unravel the potential of these epigenetic modifications as biomarkers for SCZ as well as distinguishing the antipsychotic treatment response in patients.
Collapse
Affiliation(s)
- Mary Angelin
- Department of Genetics, University of Madras, Dr ALM PG Institute of Basic Medical Sciences, Taramani Campus, Chennai, Tamil Nadu, 600 113, India
| | - Padmavathi Gopinath
- Department of Genetics, University of Madras, Dr ALM PG Institute of Basic Medical Sciences, Taramani Campus, Chennai, Tamil Nadu, 600 113, India
| | - Vijaya Raghavan
- Department of Genetics, University of Madras, Dr ALM PG Institute of Basic Medical Sciences, Taramani Campus, Chennai, Tamil Nadu, 600 113, India
- Schizophrenia Research Foundation, Chennai, Tamil Nadu, 600 101, India
| | - Rangaswamy Thara
- Schizophrenia Research Foundation, Chennai, Tamil Nadu, 600 101, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Arasamabattu Kannan Munirajan
- Department of Genetics, University of Madras, Dr ALM PG Institute of Basic Medical Sciences, Taramani Campus, Chennai, Tamil Nadu, 600 113, India
| | - Ravi Sudesh
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
20
|
Huang D, Shang W, Xu M, Wan Q, Zhang J, Tang X, Shen Y, Wang Y, Yu Y. Genome-Wide Methylation Analysis Reveals a KCNK3-Prominent Causal Cascade on Hypertension. Circ Res 2024; 135:e76-e93. [PMID: 38841840 DOI: 10.1161/circresaha.124.324455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Despite advances in understanding hypertension's genetic structure, how noncoding genetic variants influence it remains unclear. Studying their interaction with DNA methylation is crucial to deciphering this complex disease's genetic mechanisms. METHODS We investigated the genetic and epigenetic interplay in hypertension using whole-genome bisulfite sequencing. Methylation profiling in 918 males revealed allele-specific methylation and methylation quantitative trait loci. We engineered rs1275988T/C mutant mice using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9), bred them for homozygosity, and subjected them to a high-salt diet. Telemetry captured their cardiovascular metrics. Protein-DNA interactions were elucidated using DNA pull-downs, mass spectrometry, and Western blots. A wire myograph assessed vascular function, and analysis of the Kcnk3 gene methylation highlighted the mutation's role in hypertension. RESULTS We discovered that DNA methylation-associated genetic effects, especially in non-cytosine-phosphate-guanine (non-CpG) island and noncoding distal regulatory regions, significantly contribute to hypertension predisposition. We identified distinct methylation quantitative trait locus patterns in the hypertensive population and observed that the onset of hypertension is influenced by the transmission of genetic effects through the demethylation process. By evidence-driven prioritization and in vivo experiments, we unearthed rs1275988 in a cell type-specific enhancer as a notable hypertension causal variant, intensifying hypertension through the modulation of local DNA methylation and consequential alterations in Kcnk3 gene expression and vascular remodeling. When exposed to a high-salt diet, mice with the rs1275988C/C genotype exhibited exacerbated hypertension and significant vascular remodeling, underscored by increased aortic wall thickness. The C allele of rs1275988 was associated with elevated DNA methylation levels, driving down the expression of the Kcnk3 gene by attenuating Nr2f2 (nuclear receptor subfamily 2 group F member 2) binding at the enhancer locus. CONCLUSIONS Our research reveals new insights into the complex interplay between genetic variations and DNA methylation in hypertension. We underscore hypomethylation's potential in hypertension onset and identify rs1275988 as a causal variant in vascular remodeling. This work advances our understanding of hypertension's molecular mechanisms and encourages personalized health care strategies.
Collapse
Affiliation(s)
- Dandan Huang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, China (D.H., W.S., M.X., Y.S., Y.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi, China (D.H.)
| | - Wenlong Shang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, China (D.H., W.S., M.X., Y.S., Y.Y.)
| | - Mengtong Xu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, China (D.H., W.S., M.X., Y.S., Y.Y.)
| | - Qiangyou Wan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine (Q.W.)
| | - Jin Zhang
- Department of Cardiovascular Medicine, Research Center for Hypertension Management and Prevention in Community, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., X.T., Y.W.)
| | - Xiaofeng Tang
- Department of Cardiovascular Medicine, Research Center for Hypertension Management and Prevention in Community, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., X.T., Y.W.)
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, China (D.H., W.S., M.X., Y.S., Y.Y.)
| | - Yan Wang
- Department of Cardiovascular Medicine, Research Center for Hypertension Management and Prevention in Community, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., X.T., Y.W.)
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, China (D.H., W.S., M.X., Y.S., Y.Y.)
| |
Collapse
|
21
|
Margalit S, Tulpová Z, Detinis Zur T, Michaeli Y, Deek J, Nifker G, Haldar R, Gnatek Y, Omer D, Dekel B, Feldman HB, Grunwald A, Ebenstein Y. Long-Read Structural and Epigenetic Profiling of a Kidney Tumor-Matched Sample with Nanopore Sequencing and Optical Genome Mapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.587463. [PMID: 38915648 PMCID: PMC11195078 DOI: 10.1101/2024.03.31.587463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Carcinogenesis often involves significant alterations in the cancer genome architecture, marked by large structural and copy number variations (SVs and CNVs) that are difficult to capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect such aberrations, but they are limited in resolution and do not cover features smaller than several hundred kilobases. Optical genome mapping and nanopore sequencing are attractive technologies that bridge this resolution gap and offer enhanced performance for cytogenetic applications. These methods profile native, individual DNA molecules, thus capturing epigenetic information. We applied both techniques to characterize a clear cell renal cell carcinoma (ccRCC) tumor's structural and copy number landscape, highlighting the relative strengths of each method in the context of variant size and average read length. Additionally, we assessed their utility for methylome and hydroxymethylome profiling, emphasizing differences in epigenetic analysis applicability.
Collapse
Affiliation(s)
- Sapir Margalit
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Zuzana Tulpová
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Tahir Detinis Zur
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yael Michaeli
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Jasline Deek
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Gil Nifker
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Rita Haldar
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
| | - Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
- Pediatric Nephrology Unit, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Hagit Baris Feldman
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Assaf Grunwald
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yuval Ebenstein
- Department of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
22
|
Lai L, Matías-García PR, Kretschmer A, Gieger C, Wilson R, Linseisen J, Peters A, Waldenberger M. Smoking-Induced DNA Hydroxymethylation Signature Is Less Pronounced than True DNA Methylation: The Population-Based KORA Fit Cohort. Biomolecules 2024; 14:662. [PMID: 38927065 PMCID: PMC11201877 DOI: 10.3390/biom14060662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Despite extensive research on 5-methylcytosine (5mC) in relation to smoking, there has been limited exploration into the interaction between smoking and 5-hydroxymethylcytosine (5hmC). In this study, total DNA methylation (5mC+5hmC), true DNA methylation (5mC) and hydroxymethylation (5hmC) levels were profiled utilizing conventional bisulphite (BS) and oxidative bisulphite (oxBS) treatment, measured with the Illumina Infinium Methylation EPIC BeadChip. An epigenome-wide association study (EWAS) of 5mC+5hmC methylation revealed a total of 38,575 differentially methylated positions (DMPs) and 2023 differentially methylated regions (DMRs) associated with current smoking, along with 82 DMPs and 76 DMRs associated with former smoking (FDR-adjusted p < 0.05). Additionally, a focused examination of 5mC identified 33 DMPs linked to current smoking and 1 DMP associated with former smoking (FDR-adjusted p < 0.05). In the 5hmC category, eight DMPs related to current smoking and two DMPs tied to former smoking were identified, each meeting a suggestive threshold (p < 1 × 10-5). The substantial number of recognized DMPs, including 5mC+5hmC (7069/38,575, 2/82), 5mC (0/33, 1/1), and 5hmC (2/8, 0/2), have not been previously reported. Our findings corroborated previously established methylation positions and revealed novel candidates linked to tobacco smoking. Moreover, the identification of hydroxymethylated CpG sites with suggestive links provides avenues for future research.
Collapse
Affiliation(s)
- Liye Lai
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (P.R.M.-G.); (C.G.); (R.W.); (A.P.)
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Pettenkofer School of Public Health, Faculty of Medicine, Ludwig Maximilians University, 81377 Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany;
| | - Pamela R. Matías-García
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (P.R.M.-G.); (C.G.); (R.W.); (A.P.)
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany;
| | - Anja Kretschmer
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany;
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (P.R.M.-G.); (C.G.); (R.W.); (A.P.)
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany;
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (P.R.M.-G.); (C.G.); (R.W.); (A.P.)
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany;
| | - Jakob Linseisen
- Epidemiology, Faculty of Medicine, University Hospital of Augsburg, University of Augsburg, 86156 Augsburg, Germany;
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (P.R.M.-G.); (C.G.); (R.W.); (A.P.)
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Pettenkofer School of Public Health, Faculty of Medicine, Ludwig Maximilians University, 81377 Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany;
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 81377 Munich, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (P.R.M.-G.); (C.G.); (R.W.); (A.P.)
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany;
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 81377 Munich, Germany
| |
Collapse
|
23
|
Chade AR, Sitz R, Kelty TJ, McCarthy E, Tharp DL, Rector RS, Eirin A. Chronic kidney disease and left ventricular diastolic dysfunction (CKD-LVDD) alter cardiac expression of mitochondria-related genes in swine. Transl Res 2024; 267:67-78. [PMID: 38262578 PMCID: PMC11001533 DOI: 10.1016/j.trsl.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024]
Abstract
Cardiovascular disease and heart failure doubles in patients with chronic kidney disease (CKD), but the underlying mechanisms remain obscure. Mitochondria are central to maintaining cellular respiration and modulating cardiomyocyte function. We took advantage of our novel swine model of CKD and left ventricular diastolic dysfunction (CKD-LVDD) to investigate the expression of mitochondria-related genes and potential mechanisms regulating their expression. CKD-LVDD and normal control pigs (n=6/group, 3 males/3 females) were studied for 14 weeks. Renal and cardiac hemodynamics were quantified by multidetector-CT, echocardiography, and pressure-volume loop studies, respectively. Mitochondrial morphology (electron microscopy) and function (Oroboros) were assessed ex vivo. In randomly selected pigs (n=3/group), cardiac mRNA-, MeDIP-, and miRNA-sequencing (seq) were performed to identify mitochondria-related genes and study their pre- and post -transcriptional regulation. CKD-LVDD exhibited cardiac mitochondrial structural abnormalities and elevated mitochondrial H2O2 emission but preserved mitochondrial function. Cardiac mRNA-seq identified 862 mitochondria-related genes, of which 69 were upregulated and 33 downregulated (fold-change ≥2, false discovery rate≤0.05). Functional analysis showed that upregulated genes were primarily implicated in processes associated with oxidative stress, whereas those downregulated mainly participated in respiration and ATP synthesis. Integrated mRNA/miRNA/MeDIP-seq analysis showed that upregulated genes were modulated predominantly by miRNAs, whereas those downregulated were by miRNA and epigenetic mechanisms. CKD-LVDD alters cardiac expression of mitochondria-related genes, associated with mitochondrial structural damage but preserved respiratory function, possibly reflecting intrinsic compensatory mechanisms. Our findings may guide the development of early interventions at stages of cardiac dysfunction in which mitochondrial injury could be prevented, and the development of LVDD ameliorated.
Collapse
Affiliation(s)
- Alejandro R Chade
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, USA; Department of Medicine, University of Missouri, Columbia, USA; NextGen Precision Health, University of Missouri, Columbia, USA.
| | - Rhys Sitz
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, USA; NextGen Precision Health, University of Missouri, Columbia, USA
| | - Taylor J Kelty
- NextGen Precision Health, University of Missouri, Columbia, USA; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, USA
| | - Elizabeth McCarthy
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, USA; NextGen Precision Health, University of Missouri, Columbia, USA
| | - Darla L Tharp
- NextGen Precision Health, University of Missouri, Columbia, USA; Department of Biomedical Sciences, University of Missouri, Columbia, USA
| | - R Scott Rector
- NextGen Precision Health, University of Missouri, Columbia, USA; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, USA; Research Service, Harry S Truman Memorial Veterans Medical Center, University of Missouri, Columbia, USA; Division of Gastroenterology and Hepatology, University of Missouri, Columbia, USA
| | - Alfonso Eirin
- The Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA; Department of Cardiovascular Diseases Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
24
|
Lee MK, Azizgolshani N, Zhang Z, Perreard L, Kolling FW, Nguyen LN, Zanazzi GJ, Salas LA, Christensen BC. Associations in cell type-specific hydroxymethylation and transcriptional alterations of pediatric central nervous system tumors. Nat Commun 2024; 15:3635. [PMID: 38688903 PMCID: PMC11061294 DOI: 10.1038/s41467-024-47943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Although intratumoral heterogeneity has been established in pediatric central nervous system tumors, epigenomic alterations at the cell type level have largely remained unresolved. To identify cell type-specific alterations to cytosine modifications in pediatric central nervous system tumors, we utilize a multi-omic approach that integrated bulk DNA cytosine modification data (methylation and hydroxymethylation) with both bulk and single-cell RNA-sequencing data. We demonstrate a large reduction in the scope of significantly differentially modified cytosines in tumors when accounting for tumor cell type composition. In the progenitor-like cell types of tumors, we identify a preponderance differential Cytosine-phosphate-Guanine site hydroxymethylation rather than methylation. Genes with differential hydroxymethylation, like histone deacetylase 4 and insulin-like growth factor 1 receptor, are associated with cell type-specific changes in gene expression in tumors. Our results highlight the importance of epigenomic alterations in the progenitor-like cell types and its role in cell type-specific transcriptional regulation in pediatric central nervous system tumors.
Collapse
Affiliation(s)
- Min Kyung Lee
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| | - Nasim Azizgolshani
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Surgery, Columbia University Medical Center, New York, NY, USA
| | - Ze Zhang
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Laurent Perreard
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Fred W Kolling
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Lananh N Nguyen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - George J Zanazzi
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
25
|
Haidar L, Georgescu M, Drăghici GA, Bănățean-Dunea I, Nica DV, Șerb AF. DNA Methylation Machinery in Gastropod Mollusks. Life (Basel) 2024; 14:537. [PMID: 38672807 PMCID: PMC11050768 DOI: 10.3390/life14040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
The role of DNA methylation in mollusks is just beginning to be understood. This review synthesizes current knowledge on this potent molecular hallmark of epigenetic control in gastropods-the largest class of mollusks and ubiquitous inhabitants of diverse habitats. Their DNA methylation machinery shows a high degree of conservation in CG maintenance methylation mechanisms, driven mainly by DNMT1 homologues, and the presence of MBD2 and MBD2/3 proteins as DNA methylation readers. The mosaic-like DNA methylation landscape occurs mainly in a CG context and is primarily confined to gene bodies and housekeeping genes. DNA methylation emerges as a critical regulator of reproduction, development, and adaptation, with tissue-specific patterns being observed in gonadal structures. Its dynamics also serve as an important regulatory mechanism underlying learning and memory processes. DNA methylation can be affected by various environmental stimuli, including as pathogens and abiotic stresses, potentially impacting phenotypic variation and population diversity. Overall, the features of DNA methylation in gastropods are complex, being an essential part of their epigenome. However, comprehensive studies integrating developmental stages, tissues, and environmental conditions, functional annotation of methylated regions, and integrated genomic-epigenomic analyses are lacking. Addressing these knowledge gaps will advance our understanding of gastropod biology, ecology, and evolution.
Collapse
Affiliation(s)
- Laura Haidar
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania;
- Center of Immuno-Physiology and Biotechnologies (CIFBIOTEH), “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Marius Georgescu
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania;
- Center of Immuno-Physiology and Biotechnologies (CIFBIOTEH), “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - George Andrei Drăghici
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania
| | - Ioan Bănățean-Dunea
- Biology and Plant Protection Department, Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului 119, 300645 Timișoara, Romania;
| | - Dragoș Vasile Nica
- The National Institute of Research—Development for Machines and Installations Designed for Agriculture and Food Industry (INMA), Bulevardul Ion Ionescu de la Brad 6, 077190 București, Romania
| | - Alina-Florina Șerb
- Department of Biochemistry and Pharmacology, Biochemistry Discipline, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania;
| |
Collapse
|
26
|
Xiong X, Chen H, Zhang Q, Liu Y, Xu C. Uncovering the roles of DNA hemi-methylation in transcriptional regulation using MspJI-assisted hemi-methylation sequencing. Nucleic Acids Res 2024; 52:e24. [PMID: 38261991 PMCID: PMC10954476 DOI: 10.1093/nar/gkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
Hemi-methylated cytosine dyads widely occur on mammalian genomic DNA, and can be stably inherited across cell divisions, serving as potential epigenetic marks. Previous identification of hemi-methylation relied on harsh bisulfite treatment, leading to extensive DNA degradation and loss of methylation information. Here we introduce Mhemi-seq, a bisulfite-free strategy, to efficiently resolve methylation status of cytosine dyads into unmethylation, strand-specific hemi-methylation, or full-methylation. Mhemi-seq reproduces methylomes from bisulfite-based sequencing (BS-seq & hpBS-seq), including the asymmetric hemi-methylation enrichment flanking CTCF motifs. By avoiding base conversion, Mhemi-seq resolves allele-specific methylation and associated imprinted gene expression more efficiently than BS-seq. Furthermore, we reveal an inhibitory role of hemi-methylation in gene expression and transcription factor (TF)-DNA binding, and some displays a similar extent of inhibition as full-methylation. Finally, we uncover new hemi-methylation patterns within Alu retrotransposon elements. Collectively, Mhemi-seq can accelerate the identification of DNA hemi-methylation and facilitate its integration into the chromatin environment for future studies.
Collapse
Affiliation(s)
- Xiong Xiong
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Hengye Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Qifan Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangying Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenhuan Xu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Skardžiūtė K, Kvederavičiūtė K, Pečiulienė I, Narmontė M, Gibas P, Ličytė J, Klimašauskas S, Kriukienė E. One-pot trimodal mapping of unmethylated, hydroxymethylated, and open chromatin sites unveils distinctive 5hmC roles at dynamic chromatin loci. Cell Chem Biol 2024; 31:607-621.e9. [PMID: 38154461 PMCID: PMC10962225 DOI: 10.1016/j.chembiol.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
We present a method, named Mx-TOP, for profiling of three epigenetic regulatory layers-chromatin accessibility, general DNA modification, and DNA hydroxymethylation-from a single library. The approach is based on chemo-enzymatic covalent tagging of unmodified CG sites and hydroxymethylated cytosine (5hmC) along with GC sites in chromatin, which are then mapped using tag-selective base-resolution TOP-seq sequencing. Our in-depth validation of the approach revealed its sensitivity and informativity in evaluating chromatin accessibility and DNA modification interactions that drive transcriptional regulation. We employed the technology in a study of chromatin and DNA demethylation dynamics during in vitro neuronal differentiation. The study highlighted the involvement of gene body 5hmC in modulating an extensive decoupling between promoter accessibility and transcription. The importance of 5hmC in chromatin remodeling was further demonstrated by the observed resistance of the developmentally acquired open loci to the global 5hmC erasure in neuronal progenitors.
Collapse
Affiliation(s)
- Kotryna Skardžiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Kotryna Kvederavičiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Inga Pečiulienė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Milda Narmontė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Povilas Gibas
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Janina Ličytė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Saulius Klimašauskas
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Edita Kriukienė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania.
| |
Collapse
|
28
|
Kriukienė E, Tomkuvienė M, Klimašauskas S. 5-Hydroxymethylcytosine: the many faces of the sixth base of mammalian DNA. Chem Soc Rev 2024; 53:2264-2283. [PMID: 38205583 DOI: 10.1039/d3cs00858d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Epigenetic phenomena play a central role in cell regulatory processes and are important factors for understanding complex human disease. One of the best understood epigenetic mechanisms is DNA methylation. In the mammalian genome, cytosines (C) in CpG dinucleotides were long known to undergo methylation at the 5-position of the pyrimidine ring (mC). Later it was found that mC can be oxidized to 5-hydroxymethylcytosine (hmC) or even further to 5-formylcytosine (fC) and to 5-carboxylcytosine (caC) by the action of 2-oxoglutarate-dependent dioxygenases of the TET family. These findings unveiled a long elusive mechanism of active DNA demethylation and bolstered a wave of studies in the area of epigenetic regulation in mammals. This review is dedicated to critical assessment of recent data on biochemical and chemical aspects of the formation and conversion of hmC in DNA, analytical techniques used for detection and mapping of this nucleobase in mammalian genomes as well as epigenetic roles of hmC in DNA replication, transcription, cell differentiation and human disease.
Collapse
Affiliation(s)
- Edita Kriukienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Miglė Tomkuvienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
29
|
Canberk S, Gonçalves J, Rios E, Povoa AA, Tastekin E, Sobrinho-Simões M, Uguz A, Aydin O, Ince U, Soares P, Máximo V. The Role of 5-Hydroxymethylcytosine as a Potential Epigenetic Biomarker in a Large Series of Thyroid Neoplasms. Endocr Pathol 2024; 35:25-39. [PMID: 38285158 PMCID: PMC10944390 DOI: 10.1007/s12022-024-09800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 01/30/2024]
Abstract
Cytosine modifications at the 5-carbon position play a critical role in gene expression regulation and have been implicated in cancer development. 5-Hydroxymethylcytosine (5hmC), arising from 5-methylcytosine (5-mC) oxidation, has shown promise as a potential malignancy marker due to its depletion in various human cancers. However, its significance in thyroid tumors remains underexplored, primarily due to limited data. In our study, we evaluated 5hmC expression levels by immunohistochemistry in a cohort of 318 thyroid tumors. Our analysis revealed significant correlations between 5hmC staining extension scores and nodule size, vascular invasion, and oncocytic morphology. Nuclear 5hmC staining intensity demonstrated associations with focality, capsule status, extrathyroidal extension, vascular invasion, and oncocytic morphology. Follicular/oncocytic adenomas exhibited higher 5hmC expression than uncertain malignant potential (UMP) or noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP), as well as malignant neoplasms, including papillary thyroid carcinomas (PTCs), oncocytic carcinomas (OCAs), follicular thyroid carcinomas (FTCs), and invasive encapsulated follicular variants of PTC (IEFV-PTC). TERT promoter mutation cases showed notably lower values for the 5hmC expression, while RAS (H, N, or K) mutations, particularly HRAS mutations, were associated with higher 5hmC expression. Additionally, we identified, for the first time, a significant link between 5hmC expression and oncocytic morphology. However, despite the merits of these discoveries, we acknowledge that 5hmC currently cannot segregate minimally invasive from widely invasive tumors, although 5hmC levels were lower in wi-FPTCs. Further research is needed to explore the potential clinical implications of 5hmC in thyroid tumors.
Collapse
Affiliation(s)
- Sule Canberk
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - João Gonçalves
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Elisabete Rios
- Department of Pathology, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Antónia A Povoa
- Department of General Surgery, Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/E), 4434-502, Vila Nova de Gaia, Portugal
| | - Ebru Tastekin
- Medical Faculty, Department of Pathology, Trakya University, Edirne, Turkey
| | - Manuel Sobrinho-Simões
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Aysun Uguz
- Medical Faculty, Department of Pathology, Çukurova University, Adana, Turkey
| | - Ozlem Aydin
- Department of Pathology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Umit Ince
- Department of Pathology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Valdemar Máximo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.
- Department of Pathology, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
30
|
Yang K, Wei R, Liu Q, Tao Y, Wu Z, Yang L, Wang QH, Wang H, Pan Z. Specific inhibition of TET1 in the spinal dorsal horn alleviates inflammatory pain in mice by regulating synaptic plasticity. Neuropharmacology 2024; 244:109799. [PMID: 38008374 DOI: 10.1016/j.neuropharm.2023.109799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/19/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
DNA demethylation mediated by ten-eleven translocation 1 (TET1) is a critical epigenetic mechanism in which gene expression is regulated via catalysis of 5-methylcytosine to 5-hydroxymethylcytosine. Previously, we demonstrated that TET1 is associated with the genesis of chronic inflammatory pain. However, how TET1 participates in enhanced nociceptive responses in chronic pain remains poorly understood. Here, we report that conditional knockout of Tet1 in dorsal horn neurons via intrathecal injection of rAAV-hSyn-Cre in Tet1fl/fl mice not only reversed the inflammation-induced upregulation of synapse-associated proteins (post-synaptic density protein 95 (PSD95) and synaptophysin (SYP)) in the dorsal horn but also ameliorated abnormalities in dendritic spine morphology and alleviated pain hypersensitivities. Pharmacological blockade of TET1 by intrathecal injection of a TET1-specific inhibitor-Bobcat 339-produced similar results, as did knockdown of Tet1 by intrathecal injection of siRNA. Thus, our data strongly suggest that increased TET1 expression during inflammatory pain upregulates the expression of multiple synapse-associated proteins and dysregulates synaptic morphology in dorsal horn neurons, suggesting that Tet1 may be a potential target for analgesic strategies.
Collapse
Affiliation(s)
- Kehui Yang
- Jiangsu Province Key Laboratory of Anesthesiology, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Runa Wei
- Jiangsu Province Key Laboratory of Anesthesiology, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qiaoqiao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yang Tao
- Jiangsu Province Key Laboratory of Anesthesiology, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zixuan Wu
- Jiangsu Province Key Laboratory of Anesthesiology, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qi-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hongjun Wang
- Jiangsu Province Key Laboratory of Anesthesiology, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
31
|
Mar D, Babenko IM, Zhang R, Noble WS, Denisenko O, Vaisar T, Bomsztyk K. A High-Throughput PIXUL-Matrix-Based Toolbox to Profile Frozen and Formalin-Fixed Paraffin-Embedded Tissues Multiomes. J Transl Med 2024; 104:100282. [PMID: 37924947 PMCID: PMC10872585 DOI: 10.1016/j.labinv.2023.100282] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
Large-scale high-dimensional multiomics studies are essential to unravel molecular complexity in health and disease. We developed an integrated system for tissue sampling (CryoGrid), analytes preparation (PIXUL), and downstream multiomic analysis in a 96-well plate format (Matrix), MultiomicsTracks96, which we used to interrogate matched frozen and formalin-fixed paraffin-embedded (FFPE) mouse organs. Using this system, we generated 8-dimensional omics data sets encompassing 4 molecular layers of intracellular organization: epigenome (H3K27Ac, H3K4m3, RNA polymerase II, and 5mC levels), transcriptome (messenger RNA levels), epitranscriptome (m6A levels), and proteome (protein levels) in brain, heart, kidney, and liver. There was a high correlation between data from matched frozen and FFPE organs. The Segway genome segmentation algorithm applied to epigenomic profiles confirmed known organ-specific superenhancers in both FFPE and frozen samples. Linear regression analysis showed that proteomic profiles, known to be poorly correlated with transcriptomic data, can be more accurately predicted by the full suite of multiomics data, compared with using epigenomic, transcriptomic, or epitranscriptomic measurements individually.
Collapse
Affiliation(s)
- Daniel Mar
- UW Medicine South Lake Union, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Ilona M Babenko
- Diabetes Institute, University of Washington, Seattle, Washington
| | - Ran Zhang
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington; Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington
| | - Oleg Denisenko
- UW Medicine South Lake Union, University of Washington, Seattle, Washington
| | - Tomas Vaisar
- Diabetes Institute, University of Washington, Seattle, Washington
| | - Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington; Matchstick Technologies, Inc, Kirkland, Washington.
| |
Collapse
|
32
|
Sint Jago SC, Bahabry R, Schreiber AM, Homola J, Ngyuen T, Meijia F, Allendorfer JB, Lubin FD. Aerobic exercise alters DNA hydroxymethylation levels in an experimental rodent model of temporal lobe epilepsy. Epilepsy Behav Rep 2023; 25:100642. [PMID: 38323091 PMCID: PMC10844942 DOI: 10.1016/j.ebr.2023.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 02/08/2024] Open
Abstract
The therapeutic potential of aerobic exercise in mitigating seizures and cognitive issues in temporal lobe epilepsy (TLE) is recognized, yet the underlying mechanisms are not well understood. Using a rodent TLE model induced by Kainic acid (KA), we investigated the impact of a single bout of exercise (i.e., acute) or 4 weeks of aerobic exercise (i.e., chronic). Blood was processed for epilepsy-associated serum markers, and DNA methylation (DNAme), and hippocampal area CA3 was assessed for gene expression levels for DNAme-associated enzymes. While acute aerobic exercise did not alter serum Brain-Derived Neurotrophic Factor (BDNF) or Interleukin-6 (IL-6), chronic exercise resulted in an exercise-specific decrease in serum BDNF and an increase in serum IL-6 levels in epileptic rats. Additionally, whole blood DNAme levels, specifically 5-hydroxymethylcytosine (5-hmC), decreased in epileptic animals following chronic exercise. Hippocampal CA3 5-hmC levels and ten-eleven translocation protein (TET1) expression mirrored these changes. Furthermore, immunohistochemistry analysis revealed that most 5-hmC changes in response to chronic exercise were neuron-specific within area CA3 of the hippocampus. Together, these findings suggest that DNAme mechanisms in the rodent model of TLE are responsive to chronic aerobic exercise, with emphasis on neuronal 5-hmC DNAme in the epileptic hippocampus.
Collapse
Affiliation(s)
| | - Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | | | - Julia Homola
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | - Tram Ngyuen
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | - Fernando Meijia
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | - Jane B. Allendorfer
- Department of Neurobiology, University of Alabama at Birmingham, United States
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Farah D. Lubin
- Department of Neurobiology, University of Alabama at Birmingham, United States
| |
Collapse
|
33
|
Adiga D, Eswaran S, Sriharikrishnaa S, Khan NG, Prasada Kabekkodu S, Kumar D. Epigenetics of Alzheimer’s Disease: Past, Present and Future. ENZYMATIC TARGETS FOR DRUG DISCOVERY AGAINST ALZHEIMER'S DISEASE 2023:27-72. [DOI: 10.2174/9789815136142123010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Alzheimer’s disease (AD) exemplifies a looming epidemic lacking effective
treatment and manifests with the accumulation of neurofibrillary tangles, amyloid-β
plaques, neuroinflammation, behavioral changes, and acute cognitive impairments. It is
a complex, multifactorial disorder that arises from the intricate interaction between
environment and genetic factors, restrained via epigenetic machinery. Though the
research progress has improved the understanding of clinical manifestations and
disease advancement, the causal mechanism of detrimental consequences remains
undefined. Despite the substantial improvement in recent diagnostic modalities, it is
challenging to distinguish AD from other forms of dementia. Accurate diagnosis is a
major glitch in AD as it banks on the symptoms and clinical criteria. Several studies are
underway in exploring novel and reliable biomarkers for AD. In this direction,
epigenetic alterations have transpired as key modulators in AD pathogenesis with the
impeding inferences for the management of this neurological disorder. The present
chapter aims to discuss the significance of epigenetic modifications reported in the
pathophysiology of AD such as DNA methylation, hydroxy-methylation, methylation
of mtDNA, histone modifications, and noncoding RNAs. Additionally, the chapter also
describes the possible therapeutic avenues that target epigenetic modifications in AD.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy
of Higher Education (MAHE), Manipal – 576104, Karnataka, India
| | - Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy
of Higher Education (MAHE), Manipal – 576104, Karnataka, India
| | - S. Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy
of Higher Education (MAHE), Manipal – 576104, Karnataka, India
| | - Nadeem G. Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy
of Higher Education (MAHE), Manipal – 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy
of Higher Education (MAHE), Manipal – 576104, Karnataka, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth
(Deemed to be University), Erandwane, Pune – 411038, Maharashtra, India
| |
Collapse
|
34
|
Yang J, Liu Y, Yin H, Xie S, Zhang L, Dong X, Ni H, Bu W, Ma H, Liu P, Zhu H, Guo R, Sun L, Wu Y, Qin J, Sun B, Li D, Luo HR, Liu M, Xuan C, Zhou J. HDAC6 deacetylates IDH1 to promote the homeostasis of hematopoietic stem and progenitor cells. EMBO Rep 2023; 24:e56009. [PMID: 37642636 PMCID: PMC10561360 DOI: 10.15252/embr.202256009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are cells mainly present in the bone marrow and capable of forming mature blood cells. However, the epigenetic mechanisms governing the homeostasis of HSPCs remain elusive. Here, we demonstrate an important role for histone deacetylase 6 (HDAC6) in regulating this process. Our data show that the percentage of HSPCs in Hdac6 knockout mice is lower than in wild-type mice due to decreased HSPC proliferation. HDAC6 interacts with isocitrate dehydrogenase 1 (IDH1) and deacetylates IDH1 at lysine 233. The deacetylation of IDH1 inhibits its catalytic activity and thereby decreases the 5-hydroxymethylcytosine level of ten-eleven translocation 2 (TET2) target genes, changing gene expression patterns to promote the proliferation of HSPCs. These findings uncover a role for HDAC6 and IDH1 in regulating the homeostasis of HSPCs and may have implications for the treatment of hematological diseases.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hanxiao Yin
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Songbo Xie
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of ShandongShandong Normal UniversityJinanChina
| | - Linlin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Xifeng Dong
- Department of HematologyTianjin Medical University General HospitalTianjinChina
| | - Hua Ni
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Weiwen Bu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hongbo Ma
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Peng Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Haiyan Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Rongxia Guo
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Lei Sun
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of ShandongShandong Normal UniversityJinanChina
| | - Yue Wu
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of ShandongShandong Normal UniversityJinanChina
| | - Juan Qin
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Baofa Sun
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hongbo R Luo
- Department of Pathology, Department of Laboratory Medicine, Harvard Medical SchoolChildren's Hospital Boston, Dana‐Farber/Harvard Cancer CenterBostonMAUSA
| | - Min Liu
- Laboratory of Tissue HomeostasisHaihe Laboratory of Cell EcosystemTianjinChina
| | - Chenghao Xuan
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of ShandongShandong Normal UniversityJinanChina
| |
Collapse
|
35
|
Bahabry R, Hauser RM, Sánchez RG, Jago SS, Ianov L, Stuckey RJ, Parrish RR, Hoef LV, Lubin FD. Alterations in DNA 5-hydroxymethylation Patterns in the Hippocampus of an Experimental Model of Refractory Epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560698. [PMID: 37873276 PMCID: PMC10592907 DOI: 10.1101/2023.10.03.560698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Temporal lobe epilepsy (TLE) is a type of focal epilepsy characterized by spontaneous recurrent seizures originating from the hippocampus. The epigenetic reprogramming hypothesis of epileptogenesis suggests that the development of TLE is associated with alterations in gene transcription changes resulting in a hyperexcitable network in TLE. DNA 5-methylcytosine (5-mC) is an epigenetic mechanism that has been associated with chronic epilepsy. However, the contribution of 5-hydroxymethylcytosine (5-hmC), a product of 5-mC demethylation by the Ten-Eleven Translocation (TET) family proteins in chronic TLE is poorly understood. 5-hmC is abundant in the brain and acts as a stable epigenetic mark altering gene expression through several mechanisms. Here, we found that the levels of bulk DNA 5-hmC but not 5-mC were significantly reduced in the hippocampus of human TLE patients and in the kainic acid (KA) TLE rat model. Using 5-hmC hMeDIP-sequencing, we characterized 5-hmC distribution across the genome and found bidirectional regulation of 5-hmC at intergenic regions within gene bodies. We found that hypohydroxymethylated 5-hmC intergenic regions were associated with several epilepsy-related genes, including Gal , SV2, and Kcnj11 and hyperdroxymethylation 5-hmC intergenic regions were associated with Gad65 , TLR4 , and Bdnf gene expression. Mechanistically, Tet1 knockdown in the hippocampus was sufficient to decrease 5-hmC levels and increase seizure susceptibility following KA administration. In contrast, Tet1 overexpression in the hippocampus resulted in increased 5-hmC levels associated with improved seizure resiliency in response to KA. These findings suggest an important role for 5-hmC as an epigenetic regulator of epilepsy that can be manipulated to influence seizure outcomes.
Collapse
|
36
|
Kaplánek R, Kejík Z, Hajduch J, Veselá K, Kučnirová K, Skaličková M, Venhauerová A, Hosnedlová B, Hromádka R, Dytrych P, Novotný P, Abramenko N, Antonyová V, Hoskovec D, Babula P, Masařík M, Martásek P, Jakubek M. TET protein inhibitors: Potential and limitations. Biomed Pharmacother 2023; 166:115324. [PMID: 37598475 DOI: 10.1016/j.biopha.2023.115324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
TET proteins (methylcytosine dioxygenases) play an important role in the regulation of gene expression. Dysregulation of their activity is associated with many serious pathogenic states such as oncological diseases. Regulation of their activity by specific inhibitors could represent a promising therapeutic strategy. Therefore, this review describes various types of TET protein inhibitors in terms of their inhibitory mechanism and possible applicability. The potential and possible limitations of this approach are thoroughly discussed in the context of TET protein functionality in living systems. Furthermore, possible therapeutic strategies based on the inhibition of TET proteins are presented and evaluated, especially in the field of oncological diseases.
Collapse
Affiliation(s)
- Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Božena Hosnedlová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Róbert Hromádka
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Petr Novotný
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Veronika Antonyová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| |
Collapse
|
37
|
Palau A, Segerberg F, Lidschreiber M, Lidschreiber K, Naughton AJ, Needhamsen M, Jung LA, Jagodic M, Cramer P, Lehmann S, Carlsten M, Lennartsson A. Perturbed epigenetic transcriptional regulation in AML with IDH mutations causes increased susceptibility to NK cells. Leukemia 2023; 37:1830-1841. [PMID: 37495775 PMCID: PMC10457197 DOI: 10.1038/s41375-023-01972-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Isocitrate dehydrogenase (IDH) mutations are found in 20% of acute myeloid leukemia (AML) patients. However, only 30-40% of the patients respond to IDH inhibitors (IDHi). We aimed to identify a molecular vulnerability to tailor novel therapies for AML patients with IDH mutations. We characterized the transcriptional and epigenetic landscape with the IDH2i AG-221, using an IDH2 mutated AML cell line model and AML patient cohorts, and discovered a perturbed transcriptional regulatory network involving myeloid transcription factors that were partly restored after AG-221 treatment. In addition, hypermethylation of the HLA cluster caused a down-regulation of HLA class I genes, triggering an enhanced natural killer (NK) cell activation and an increased susceptibility to NK cell-mediated responses. Finally, analyses of DNA methylation data from IDHi-treated patients showed that non-responders still harbored hypermethylation in HLA class I genes. In conclusion, this study provides new insights suggesting that IDH mutated AML is particularly sensitive to NK cell-based personalized immunotherapy.
Collapse
Affiliation(s)
- Anna Palau
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Filip Segerberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Michael Lidschreiber
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katja Lidschreiber
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Aonghus J Naughton
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Lisa Anna Jung
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Patrick Cramer
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sören Lehmann
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
- Hematology Centre, Karolinska University Hospital, Stockholm, Sweden.
- Hematology Unit, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | - Mattias Carlsten
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
- Center for Cell Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden.
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
38
|
Kazeminia S, Zhu XY, Tang H, Jordan KL, Saadiq IM, Herrmann SM, Chade AR, Irazabal MV, Lerman LO, Eirin A. Renal ischemia alters the transcriptomic and epigenetic profile of inflammatory genes in swine scattered tubular-like cells. Clin Sci (Lond) 2023; 137:1265-1283. [PMID: 37606084 PMCID: PMC10644845 DOI: 10.1042/cs20230555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Scattered tubular-like cells (STCs) are differentiated renal tubular cells that during recovery from ischemic injury dedifferentiate to repair other injured renal cells. Renal artery stenosis (RAS), often associated with chronic inflammatory injury, compromises the integrity and function of STCs, but the underlying mechanisms remain unknown. We hypothesized that RAS alters the transcriptomic and epigenetic profile of inflammatory genes in swine STCs. METHODS STCs were harvested from pig kidneys after 10 weeks of RAS or sham (n=6 each). STC mRNA profiles of inflammatory genes were analyzed using high-throughput mRNA-sequencing (seq) and their DNA methylation (5mC) and hydroxymethylation (5hmC) profiles by DNA immunoprecipitation and next-generation sequencing (MeDIP-seq) (n=3 each), followed by an integrated (mRNA-seq/MeDIP-seq) analysis. STC protein expression of candidate differentially expressed (DE) genes and common proinflammatory proteins were subsequently assessed in vitro before and after epigenetic (Bobcat339) modulation. RESULTS mRNA-seq identified 57 inflammatory genes up-regulated in RAS-STCs versus Normal-STCs (>1.4 or <0.7-fold, P<0.05), of which 14% exhibited lower 5mC and 5% higher 5hmC levels in RAS-STCs versus Normal-STCs, respectively. Inflammatory gene and protein expression was higher in RAS-STCs compared with Normal-STCs but normalized after epigenetic modulation. CONCLUSIONS These observations highlight a novel modulatory mechanism of this renal endogenous repair system and support development of epigenetic or anti-inflammatory therapies to preserve the reparative capacity of STCs in individuals with RAS.
Collapse
Affiliation(s)
- Sara Kazeminia
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Xiang-Yang Zhu
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Hui Tang
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Kyra L. Jordan
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Ishran M. Saadiq
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Sandra M. Herrmann
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Alejandro R. Chade
- Department of Medical Pharmacology and Physiology and Department of Medicine, University of Missouri-Columbia
| | - Maria V. Irazabal
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Lilach O. Lerman
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | - Alfonso Eirin
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
39
|
Chen F, Li MG, Hua ZD, Ren HY, Gu H, Luo AF, Zhou CF, Zhu Z, Huang T, Bi YZ. TET Family Members Are Integral to Porcine Oocyte Maturation and Parthenogenetic Pre-Implantation Embryogenesis. Int J Mol Sci 2023; 24:12455. [PMID: 37569830 PMCID: PMC10419807 DOI: 10.3390/ijms241512455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The ten-eleven translocation (TET) enzyme family, which includes TET1/2/3, participates in active DNA demethylation in the eukaryotic genome; moreover, TET1/2/3 are functionally redundant in mice embryos. However, the combined effect of TET1/2/3 triple-gene knockdown or knockout on the porcine oocytes or embryos is still unclear. In this study, using Bobcat339, a specific small-molecule inhibitor of the TET family, we explored the effects of TET enzymes on oocyte maturation and early embryogenesis in pigs. Our results revealed that Bobcat339 treatment blocked porcine oocyte maturation and triggered early apoptosis. Furthermore, in the Bobcat339-treated oocytes, spindle architecture and chromosome alignment were disrupted, probably due to the huge loss of 5-hydroxymethylcytosine (5hmC)and concurrent increase in 5-methylcytosine (5mC). After Bobcat339 treatment, early parthenogenetic embryos exhibited abnormal 5mC and 5hmC levels, which resulted in compromised cleavage and blastocyst rate. The mRNA levels of EIF1A and DPPA2 (ZGA marker genes) were significantly decreased, which may explain why the embryos were arrested at the 4-cell stage after Bobcat339 treatment. In addition, the mRNA levels of pluripotency-related genes OCT4 and NANOG were declined after Bobcat339 treatment. RNA sequencing analysis revealed differentially expressed genes in Bobcat339-treated embryos at the 4-cell stage, which were significantly enriched in cell proliferation, cell component related to mitochondrion, and cell adhesion molecule binding. Our results indicated that TET proteins are essential for porcine oocyte maturation and early embryogenesis, and they act by mediating 5mC/5hmC levels and gene transcription.
Collapse
Affiliation(s)
- Fan Chen
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Ming-Guo Li
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Zai-Dong Hua
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Hong-Yan Ren
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Hao Gu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - An-Feng Luo
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Chang-Fan Zhou
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Zhe Zhu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Tao Huang
- College of Animal Science and Technology, Shihezi University, Shihezi 832061, China
| | - Yan-Zhen Bi
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| |
Collapse
|
40
|
Bhattacharya C, Dey AS, Mukherji M. Substrate DNA length regulates the activity of TET 5-methylcytosine dioxygenases. Cell Biochem Funct 2023; 41:704-712. [PMID: 37349892 DOI: 10.1002/cbf.3825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
The ten-eleven translocation (TET) isoforms (TET1-3) play critical roles in epigenetic transcription regulation. In addition, mutations in the TET2 gene are frequently detected in patients with glioma and myeloid malignancies. TET isoforms can oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine, by iterative oxidation. The in vivo DNA demethylation activity of TET isoforms may depend on many factors including enzyme's structural features, its interaction with DNA-binding proteins, chromatin context, DNA sequence, DNA length, and configuration. The rationale for this study is to identify the preferred DNA length and configuration in the substrates of TET isoforms. We have used a highly sensitive LC-MS/MS-based method to compare the substrate preference of TET isoforms. To this end, four DNA substrate sets (S1, S2, S3, S4) of different sequences were chosen. In addition, in each set, four different lengths of DNA substrates comprising 7-, 13-, 19-, and 25-mer nucleotides were synthesized. Each DNA substrate was further used in three different configurations, that is, double stranded symmetrically-methylated, double stranded hemi-methylated, and single stranded single-methylated to evaluate their effect on TET-mediated 5mC oxidation. We demonstrate that mouse TET1 (mTET1) and human TET2 (hTET2) have highest preference for 13-mer dsDNA substrates. Increasing or decreasing the length of dsDNA substrate reduces product formation. In contrast to their dsDNA counterparts, the length of ssDNA substrates did not have a predictable effect on 5mC oxidation. Finally, we show that substrate specificity of TET isoforms correlates with their DNA binding efficiency. Our results demonstrate that mTET1 and hTET2 prefer 13-mer dsDNA as a substrate over ssDNA. These results may help elucidate novel properties of TET-mediated 5mC oxidation and help develop novel diagnostic tools to detect TET2 function in patients.
Collapse
Affiliation(s)
- Chayan Bhattacharya
- Division of Pharmacology & Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Aninda Sundar Dey
- Division of Pharmacology & Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Mridul Mukherji
- Division of Pharmacology & Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
41
|
Kaur N, Nayakoti S, Brock N, Halford NG. Uncovering plant epigenetics: new insights into cytosine methylation in rye genomes. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3395-3398. [PMID: 37369102 DOI: 10.1093/jxb/erad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
This article comments on:
Kalinka A, Starczak M, Gackowski D, Stępień E, Achrem M. 2023. Global DNA 5-hydroxymethylcytosine level and its chromosomal distribution in four rye species. Journal of Experimental Botany 74, 3488–3502.
Collapse
Affiliation(s)
- Navneet Kaur
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | | | - Natasha Brock
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | | |
Collapse
|
42
|
Sumbal S, Ali A, Nasser Binjawhar D, Ullah Z, Eldin SM, Iqbal R, Sher H, Ali I. Comparative Effects of Hydropriming and Iron Priming on Germination and Seedling Morphophysiological Attributes of Stay-Green Wheat. ACS OMEGA 2023; 8:23078-23088. [PMID: 37396271 PMCID: PMC10308549 DOI: 10.1021/acsomega.3c02359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/11/2023] [Indexed: 07/04/2023]
Abstract
Seed priming is considered to play an essential role in the overall improvement of agricultural crops. The current research work was carried out in order to investigate the comparative effects of hydropriming and iron priming on the germination behavior and morphophysiological attributes of wheat seedlings. The experimental materials consisted of three wheat genotypes including a synthetically derived wheat line (SD-194), stay-green wheat genotype (Chirya-7), and conventional wheat variety (Chakwal-50). The treatments included hydro (distilled and tap water)- and iron priming (10 and 50 mM) of wheat seeds for 12 h duration. Results indicated that both priming treatment and wheat genotypes exhibited highly different germination and seedling characteristics. These included germination percentage, root volume, root surface, root length, relative water content, chlorophyll content, membrane stability index, and chlorophyll fluorescence attributes. Furthermore, the synthetically derived line (SD-194) was the most promising in majority of the studied attributes by exhibiting a high germination index (2.21%), root fresh weight (7.76%), shoot dry weight (3.36%), relative water content (19.9%), chlorophyll content (7.58%), and photochemical quenching coefficient (2.58%) when compared with stay-green wheat (Chirya-7). The study also found that hydropriming with tap water and priming wheat seeds with low concentrations of iron yielded better results when a comparison was made with wheat seeds primed at high concentrations of iron. Therefore, wheat seed priming with tap water and iron solution for 12 h is recommended for optimum wheat improvement. Furthermore, current findings suggest that seed priming may have the prospect of an innovative and user-friendly approach for wheat biofortification with the aim of enhanced iron acquisition and accumulation in grains.
Collapse
Affiliation(s)
- Sumbal Sumbal
- Center
for Plant Sciences and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
| | - Ahmad Ali
- Center
for Plant Sciences and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
| | - Dalal Nasser Binjawhar
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Zahid Ullah
- Center
for Plant Sciences and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
| | - Sayed M. Eldin
- Center
of Research, Faculty of Engineering, Future
University in Egypt, New Cairo 18939, Egypt
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hassan Sher
- Center
for Plant Sciences and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
| | - Iftikhar Ali
- Center
for Plant Sciences and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
- Department
of Genetics and Development, Columbia University
Irving Medical Center, New York, New York 10032, United States
- School of
Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
43
|
Lirussi L, Nilsen HL. DNA Glycosylases Define the Outcome of Endogenous Base Modifications. Int J Mol Sci 2023; 24:10307. [PMID: 37373453 DOI: 10.3390/ijms241210307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chemically modified nucleic acid bases are sources of genomic instability and mutations but may also regulate gene expression as epigenetic or epitranscriptomic modifications. Depending on the cellular context, they can have vastly diverse impacts on cells, from mutagenesis or cytotoxicity to changing cell fate by regulating chromatin organisation and gene expression. Identical chemical modifications exerting different functions pose a challenge for the cell's DNA repair machinery, as it needs to accurately distinguish between epigenetic marks and DNA damage to ensure proper repair and maintenance of (epi)genomic integrity. The specificity and selectivity of the recognition of these modified bases relies on DNA glycosylases, which acts as DNA damage, or more correctly, as modified bases sensors for the base excision repair (BER) pathway. Here, we will illustrate this duality by summarizing the role of uracil-DNA glycosylases, with particular attention to SMUG1, in the regulation of the epigenetic landscape as active regulators of gene expression and chromatin remodelling. We will also describe how epigenetic marks, with a special focus on 5-hydroxymethyluracil, can affect the damage susceptibility of nucleic acids and conversely how DNA damage can induce changes in the epigenetic landscape by altering the pattern of DNA methylation and chromatin structure.
Collapse
Affiliation(s)
- Lisa Lirussi
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
- Unit for Precision Medicine, Akershus University Hospital, 1478 Lørenskog, Norway
| |
Collapse
|
44
|
Kong Y, Mead EA, Fang G. Navigating the pitfalls of mapping DNA and RNA modifications. Nat Rev Genet 2023; 24:363-381. [PMID: 36653550 PMCID: PMC10722219 DOI: 10.1038/s41576-022-00559-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 01/19/2023]
Abstract
Chemical modifications to nucleic acids occur across the kingdoms of life and carry important regulatory information. Reliable high-resolution mapping of these modifications is the foundation of functional and mechanistic studies, and recent methodological advances based on next-generation sequencing and long-read sequencing platforms are critical to achieving this aim. However, mapping technologies may have limitations that sometimes lead to inconsistent results. Some of these limitations are technical in nature and specific to certain types of technology. Here, however, we focus on common (yet not always widely recognized) pitfalls that are shared among frequently used mapping technologies and discuss strategies to help technology developers and users mitigate their effects. Although the emphasis is primarily on DNA modifications, RNA modifications are also discussed.
Collapse
Affiliation(s)
- Yimeng Kong
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward A Mead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
45
|
Ilyas M, Ali I, Nasser Binjawhar D, Ullah S, Eldin SM, Ali B, Iqbal R, Bokhari SHA, Mahmood T. Molecular Characterization of Germin-like Protein Genes in Zea mays ( ZmGLPs) Using Various In Silico Approaches. ACS OMEGA 2023; 8:16327-16344. [PMID: 37179620 PMCID: PMC10173433 DOI: 10.1021/acsomega.3c01104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023]
Abstract
Germin (GER) and germin-like proteins (GLPs) play an important role in various plant processes. Zea mays contains 26 germin-like protein genes (ZmGLPs) located on chromosomes 2, 4, and 10; most of which are functionally unexplored. The present study aimed to characterize all ZmGLPs using the latest computational tools. All of them were studied at a physicochemical, subcellular, structural, and functional level, and their expression was predicted in plant development, against biotic and abiotic stresses using various in silico approaches. Overall, ZmGLPs showed greater similarity in their physicochemical properties, domain architecture, and structure, mostly localized in the cytoplasmic or extracellular regions. Phylogenetically, they have a narrow genetic background with a recent history of gene duplication events on chromosome 4. Functional analysis revealed novel enzymatic activities of phosphoglycolate phosphatase, adenosylhomocysteinase, phosphoglycolate phosphatase-like, osmotin/thaumatin-like, and acetohydroxy acid isomeroreductase largely mediated by disulfide bonding. Expression analysis revealed their crucial role in the root, root tips, crown root, elongation and maturation zones, radicle, and cortex with the highest expression being observed during germination and at the maturity levels. Further, ZmGLPs showed strong expression against biotic (Aspergillus flavus, Colletotrichum graminicola, Cercospora zeina, Fusarium verticillioides, and Fusarium virguliforme) while limited expression was noted against abiotic stresses. Concisely, our results provide a platform for additional functional exploration of the ZmGLP genes against various environmental stresses.
Collapse
Affiliation(s)
- Muhammad Ilyas
- Department
of Botany, Kohsar University Murree, Murree 19679, Punjab, Pakistan
| | - Iftikhar Ali
- Centre
for Plant Science and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
- Department
of Genetics and Development, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Dalal Nasser Binjawhar
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sami Ullah
- Department
of Forestry & Range Management, Kohsar
University Murree, Murree 19679, Pakistan
| | - Sayed M Eldin
- Center
of
Research, Faculty of Engineering, Future
University in Egypt, New Cairo 11835, Egypt
| | - Baber Ali
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Syed Habib Ali Bokhari
- Department
of Biosciences, CUI, Islamabad, Pakistan; Faculty of Biomedical and
Life Sciences, Kohsar University Murree, Murree 19679, Pakistan
| | - Tariq Mahmood
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
46
|
Liu R, Feng L, Tang S, Liu Y, Yang Q. The impact and mechanism of TET3 overexpression on the progression of hepatic fibrosis. Epigenomics 2023; 15:577-591. [PMID: 37464780 DOI: 10.2217/epi-2023-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Aims: To investigate whether TET3 regulates hepatic stellate cell apoptosis and understand the role of demethylation in hepatic fibrosis (HF). Methods: LX-2T cells were infected with TET3 lentivirus. After TET3 adenovirus infection, the degree of HF in each group was analyzed. Chromatin immunoprecipitation was used to verify the targeting relationship between TET3 and CBP, and finally the expression of various proteins was detected. Results: TET3 overexpression activated the CBP/FOXO1-BIM pathway, increased the expression of apoptotic proteins and accelerated the apoptosis of activated LX-2 cells. The degree of HF was improved in the TET3 upregulation group. Conclusion: TET3 can activate the CBP/FOXO1-BIM pathway to accelerate the apoptosis of activated hepatic stellate cells and ultimately alleviate HF.
Collapse
Affiliation(s)
- Ranyang Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
| | - Linlin Feng
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
- Clinical Laboratory Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Shuang Tang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
| | - Yin Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
| | - Qin Yang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
| |
Collapse
|
47
|
Rodrigues D, Monteiro C, Cardoso-Cruz H, Galhardo V. Altered Brain Expression of DNA Methylation and Hydroxymethylation Epigenetic Enzymes in a Rat Model of Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24087305. [PMID: 37108466 PMCID: PMC10138521 DOI: 10.3390/ijms24087305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The role of epigenetics in chronic pain at the supraspinal level is yet to be fully characterized. DNA histone methylation is crucially regulated by de novo methyltransferases (DNMT1-3) and ten-eleven translocation dioxygenases (TET1-3). Evidence has shown that methylation markers are altered in different CNS regions related to nociception, namely the dorsal root ganglia, the spinal cord, and different brain areas. Decreased global methylation was found in the DRG, the prefrontal cortex, and the amygdala, which was associated with decreased DNMT1/3a expression. In contrast, increased methylation levels and mRNA levels of TET1 and TET3 were linked to augmented pain hypersensitivity and allodynia in inflammatory and neuropathic pain models. Since epigenetic mechanisms may be responsible for the regulation and coordination of various transcriptional modifications described in chronic pain states, with this study, we aimed to evaluate the functional role of TET1-3 and DNMT1/3a genes in neuropathic pain in several brain areas. In a spared nerve injury rat model of neuropathic pain, 21 days after surgery, we found increased TET1 expression in the medial prefrontal cortex and decreased expression in the caudate-putamen and the amygdala; TET2 was upregulated in the medial thalamus; TET3 mRNA levels were reduced in the medial prefrontal cortex and the caudate-putamen; and DNMT1 was downregulated in the caudate-putamen and the medial thalamus. No statistically significant changes in expression were observed with DNMT3a. Our results suggest a complex functional role for these genes in different brain areas in the context of neuropathic pain. The notion of DNA methylation and hydroxymethylation being cell-type specific and not tissue specific, as well as the possibility of chronologically differential gene expression after the establishment of neuropathic or inflammatory pain models, ought to be addressed in future studies.
Collapse
Affiliation(s)
- Diogo Rodrigues
- Departamento de Biomedicina-Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- i3S/IBMC, Instituto de Investigação e Inovação em Saúde e Instituto de Biologia Molecular e Celular, Pain Neurobiology Group, Universidade do Porto, 4200-135 Porto, Portugal
| | - Clara Monteiro
- Departamento de Biomedicina-Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- i3S/IBMC, Instituto de Investigação e Inovação em Saúde e Instituto de Biologia Molecular e Celular, Pain Neurobiology Group, Universidade do Porto, 4200-135 Porto, Portugal
| | - Helder Cardoso-Cruz
- Departamento de Biomedicina-Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- i3S/IBMC, Instituto de Investigação e Inovação em Saúde e Instituto de Biologia Molecular e Celular, Pain Neurobiology Group, Universidade do Porto, 4200-135 Porto, Portugal
| | - Vasco Galhardo
- Departamento de Biomedicina-Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- i3S/IBMC, Instituto de Investigação e Inovação em Saúde e Instituto de Biologia Molecular e Celular, Pain Neurobiology Group, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
48
|
Sufyan M, Daraz U, Hyder S, Zulfiqar U, Iqbal R, Eldin SM, Rafiq F, Mahmood N, Shahzad K, Uzair M, Fiaz S, Ali I. An overview of genome engineering in plants, including its scope, technologies, progress and grand challenges. Funct Integr Genomics 2023; 23:119. [PMID: 37022538 DOI: 10.1007/s10142-023-01036-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Genome editing is a useful, adaptable, and favored technique for both functional genomics and crop enhancement. Over the years, rapidly evolving genome editing technologies, including clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas), transcription activator-like effector nucleases (TALENs), and zinc finger nucleases (ZFNs), have shown broad application prospects in gene function research and improvement of critical agronomic traits in many crops. These technologies have also opened up opportunities for plant breeding. These techniques provide excellent chances for the quick modification of crops and the advancement of plant science in the future. The current review describes various genome editing techniques and how they function, particularly CRISPR/Cas9 systems, which can contribute significantly to the most accurate characterization of genomic rearrangement and plant gene functions as well as the enhancement of critical traits in field crops. To accelerate the use of gene-editing technologies for crop enhancement, the speed editing strategy of gene-family members was designed. As it permits genome editing in numerous biological systems, the CRISPR technology provides a valuable edge in this regard that particularly captures the attention of scientists.
Collapse
Affiliation(s)
- Muhammad Sufyan
- College of Biological Sciences, China Agricultural University, Beijing, 100083, China
| | - Umar Daraz
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Sajjad Hyder
- Department of Botant, Government College Women University, Sialkot, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo, 11835, Egypt
| | - Farzana Rafiq
- School of Environmental Sciences and Engineering, NCEPU, Beijing, China
| | - Naveed Mahmood
- College of Biological Sciences, China Agricultural University, Beijing, 100083, China
| | - Khurram Shahzad
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, China
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology, Park Road, Islamabad, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, 22620, Pakistan
| | - Iftikhar Ali
- Center for Plant Sciences and Biodiversity, University of Swat, Charbagh, 19120, Pakistan.
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
49
|
Mar D, Babenko IM, Zhang R, Noble WS, Denisenko O, Vaisar T, Bomsztyk K. MultiomicsTracks96: A high throughput PIXUL-Matrix-based toolbox to profile frozen and FFPE tissues multiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533031. [PMID: 36993219 PMCID: PMC10055122 DOI: 10.1101/2023.03.16.533031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background The multiome is an integrated assembly of distinct classes of molecules and molecular properties, or "omes," measured in the same biospecimen. Freezing and formalin-fixed paraffin-embedding (FFPE) are two common ways to store tissues, and these practices have generated vast biospecimen repositories. However, these biospecimens have been underutilized for multi-omic analysis due to the low throughput of current analytical technologies that impede large-scale studies. Methods Tissue sampling, preparation, and downstream analysis were integrated into a 96-well format multi-omics workflow, MultiomicsTracks96. Frozen mouse organs were sampled using the CryoGrid system, and matched FFPE samples were processed using a microtome. The 96-well format sonicator, PIXUL, was adapted to extract DNA, RNA, chromatin, and protein from tissues. The 96-well format analytical platform, Matrix, was used for chromatin immunoprecipitation (ChIP), methylated DNA immunoprecipitation (MeDIP), methylated RNA immunoprecipitation (MeRIP), and RNA reverse transcription (RT) assays followed by qPCR and sequencing. LC-MS/MS was used for protein analysis. The Segway genome segmentation algorithm was used to identify functional genomic regions, and linear regressors based on the multi-omics data were trained to predict protein expression. Results MultiomicsTracks96 was used to generate 8-dimensional datasets including RNA-seq measurements of mRNA expression; MeRIP-seq measurements of m6A and m5C; ChIP-seq measurements of H3K27Ac, H3K4m3, and Pol II; MeDIP-seq measurements of 5mC; and LC-MS/MS measurements of proteins. We observed high correlation between data from matched frozen and FFPE organs. The Segway genome segmentation algorithm applied to epigenomic profiles (ChIP-seq: H3K27Ac, H3K4m3, Pol II; MeDIP-seq: 5mC) was able to recapitulate and predict organ-specific super-enhancers in both FFPE and frozen samples. Linear regression analysis showed that proteomic expression profiles can be more accurately predicted by the full suite of multi-omics data, compared to using epigenomic, transcriptomic, or epitranscriptomic measurements individually. Conclusions The MultiomicsTracks96 workflow is well suited for high dimensional multi-omics studies - for instance, multiorgan animal models of disease, drug toxicities, environmental exposure, and aging as well as large-scale clinical investigations involving the use of biospecimens from existing tissue repositories.
Collapse
|
50
|
Sasamoto Y, Wu S, Lee CAA, Jiang JY, Ksander BR, Frank MH, Frank NY. Epigenetic Regulation of Corneal Epithelial Differentiation by TET2. Int J Mol Sci 2023; 24:2841. [PMID: 36769164 PMCID: PMC9917645 DOI: 10.3390/ijms24032841] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023] Open
Abstract
Epigenetic DNA modification by 5-hydroxymethylcytosine (5hmC), generated by the Ten-eleven translocation (TET) dioxygenases, regulates diverse biological functions in many organ tissues, including the mammalian eye. For example, 5hmC has been shown to be involved in epigenetic regulation of retinal gene expression. However, a functional role of 5hmC in corneal differentiation has not been investigated to date. Here, we examined 5hmC and TET function in the human cornea. We found 5hmC highly expressed in MUC16-positive terminally differentiated cells that also co-expressed the 5hmC-generating enzyme TET2. TET2 knockdown (KD) in cultured corneal epithelial cells led to significant reductions of 5hmC peak distributions and resulted in transcriptional repression of molecular pathways involved in corneal differentiation, as evidenced by downregulation of MUC4, MUC16, and Keratin 12. Additionally, integrated TET2 KD RNA-seq and genome-wide Reduced Representation Hydroxymethylation Profiling revealed novel epigenetically regulated genes expressed by terminally differentiated cells, including KRT78, MYEOV, and MAL. In aggregate, our findings reveal a novel function of TET2 in the epigenetic regulation of corneal epithelial gene expression and identify novel TET2-controlled genes expressed in differentiated corneal epithelial cells. These results point to potential roles for TET2 induction strategies to enhance treatment of corneal diseases associated with abnormal epithelial maturation.
Collapse
Affiliation(s)
- Yuzuru Sasamoto
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Transplant Research Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Siyuan Wu
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Transplant Research Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Jason Y. Jiang
- Transplant Research Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Bruce R. Ksander
- Massachusetts Eye & Ear Infirmary, Schepens Eye Research Institute, Boston, MA 02114, USA
| | - Markus H. Frank
- Transplant Research Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, WA, Australia
| | - Natasha Y. Frank
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
| |
Collapse
|