1
|
Wu Y, Zhao Z, Deng X, Jia J, Yuan G. Pregnancy zone protein, a potential research target in multiple diseases. Gene 2025; 935:149013. [PMID: 39433266 DOI: 10.1016/j.gene.2024.149013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Pregnancy zone protein (PZP) is an antiprotease-resistant immunosuppressant belonging to the α-macroglobulin (αM) protein family. PZP is secreted by the liver and was found to be upregulated in plasma during pregnancy. α-2-macroglobulin (Α2M) shares 71 % serial homology with PZP, but low PZP levels do not lead to increased A2M levels in pregnancy. PZP can interact with several factors such as low-density lipoprotein receptor-associated protein (LRP), transforming growth factor-β (TGF-β), 78 kDa glucose-regulated protein (GRP78), and glycoside A (GdA). PZP is involved in the development of glycolipid metabolism disorders, bronchiectasis, Alzheimer's disease (AD), rheumatoid arthritis (RA), myocardial infarction (MI) and inflammatory bowel disease (IBD). PZP is also associated with the progression of tumorigenesis such as breast cancer (BC), homologyepatocellular carcinoma (HCC), lung adenocarcinoma (LAC), and colorectal cancer (CRC). Therefore, this review analyzes the role of PZP in pathophysiology of various diseases.
Collapse
Affiliation(s)
- You Wu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Zhicong Zhao
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210033, China
| | - Xia Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Jue Jia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| |
Collapse
|
2
|
Ossa Gomez CA, Achatz MI, Hurtado M, Sanabria-Salas MC, Sullcahuaman Y, Chávarri-Guerra Y, Dutil J, Nielsen SM, Esplin ED, Michalski ST, Bristow SL, Hatchell KE, Nussbaum RL, Pineda-Alvarez DE, Ashton-Prolla P. Germline Pathogenic Variant Prevalence Among Latin American and US Hispanic Individuals Undergoing Testing for Hereditary Breast and Ovarian Cancer: A Cross-Sectional Study. JCO Glob Oncol 2022; 8:e2200104. [PMID: 35867948 PMCID: PMC9812461 DOI: 10.1200/go.22.00104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/13/2022] [Accepted: 06/15/2022] [Indexed: 01/07/2023] Open
Abstract
PURPOSE To report on pathogenic germline variants detected among individuals undergoing genetic testing for hereditary breast and/or ovarian cancer (HBOC) from Latin America and compare them with self-reported Hispanic individuals from the United States. METHODS In this cross-sectional study, unrelated individuals with a personal/family history suggestive of HBOC who received clinician-ordered germline multigene sequencing were grouped according to the location of the ordering physician: group A, Mexico, Central America, and the Caribbean; group B, South America; and group C, United States with individuals who self-reported Hispanic ethnicity. Relatives who underwent cascade testing were analyzed separately. RESULTS Among 24,075 unrelated probands across all regions, most were female (94.9%) and reported a personal history suggestive of HBOC (range, 65.0%-80.6%); the mean age at testing was 49.1 ± 13.1 years. The average number of genes analyzed per patient was highest in group A (A 63 ± 28, B 56 ± 29, and C 40 ± 28). Between 9.1% and 18.7% of patients had pathogenic germline variants in HBOC genes (highest yield in group A), with the majority associated with high HBOC risk. Compared with US Hispanics individuals the overall yield was significantly higher in both Latin American regions (A v C P = 1.64×10-9, B v C P < 2.2×10-16). Rates of variants of uncertain significance were similar across all three regions (33.7%-42.6%). Cascade testing uptake was low in all regions (A 6.6%, B 4.5%, and C 1.9%). CONCLUSION This study highlights the importance of multigene panel testing in Latin American individuals with newly diagnosed or history of HBOC, who can benefit from medical management changes including targeted therapies, eligibility to clinical trials, risk-reducing surgeries, surveillance and prevention of secondary malignancy, and genetic counseling and subsequent cascade testing of at-risk relatives.
Collapse
Affiliation(s)
| | - Maria Isabel Achatz
- Department of Oncology, Hospital Sírio-Libanês, Brasília, Distrito Federal, Brazil
| | - Mabel Hurtado
- Instituto Oncológico, Fundación Arturo López Pérez, Santiago, Chile
| | | | - Yasser Sullcahuaman
- Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Instituto de Investigación Genomica, Lima, Peru
| | - Yanin Chávarri-Guerra
- Department of Hemato-Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Julie Dutil
- Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Pone, Puerto Rico
| | | | | | | | | | | | | | | | - Patricia Ashton-Prolla
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica e Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
3
|
Gómez-Flores-Ramos L, Barraza-Arellano AL, Mohar A, Trujillo-Martínez M, Grimaldo L, Ortiz-Lopez R, Treviño V. Germline Variants in Cancer Genes from Young Breast Cancer Mexican Patients. Cancers (Basel) 2022; 14:cancers14071647. [PMID: 35406420 PMCID: PMC8997148 DOI: 10.3390/cancers14071647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer (BC) is one of the most frequent cancer types in women worldwide. About 7% is diagnosed in young women (YBC) less than 40 years old. In Mexico, however, YBC reaches 15% suggesting a higher genetic susceptibility. There have been some reports of germline variants in YBC across the world. However, there is only one report from a Mexican population, which is not restricted by age and limited to a panel of 143 genes resulting in 15% of patients carrying putatively pathogenic variants. Nevertheless, expanding the analysis to whole exome involves using more complex tools to determine which genes and variants could be pathogenic. We used germline whole exome sequencing combined with the PeCanPie tool to analyze exome variants in 115 YBC patients. Our results showed that we were able to identify 49 high likely pathogenic variants involving 40 genes on 34% of patients. We noted many genes already reported in BC and YBC worldwide, such as BRCA1, BRCA2, ATM, CHEK2, PALB2, and POLQ, but also others not commonly reported in YBC in Latin America, such as CLTCL1, DDX3X, ERCC6, FANCE, and NFKBIE. We show further supporting and controversial evidence for some of these genes. We conclude that exome sequencing combined with robust annotation tools and further analysis, can identify more genes and more patients affected by germline mutations in cancer.
Collapse
Affiliation(s)
- Liliana Gómez-Flores-Ramos
- CONACYT/Center for Population Health Research, National Institute of Public Health, Universidad No. 655, Cuernavaca 62100, Morelos, Mexico; (L.G.-F.-R.); (L.G.)
| | - Angélica Leticia Barraza-Arellano
- School of Medicine, Tecnologico de Monterrey, Morones Prieto Av 3000, Los Doctores, Monterrey 64710, Nuevo Leon, Mexico; (A.L.B.-A.); (R.O.-L.)
| | - Alejandro Mohar
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Dirección de Investigación, Instituto Nacional de Cancerología, Av. San Fernando #22, Col. Sección XVI, Delegación Tlalpan, Mexico City 14080, Mexico;
| | - Miguel Trujillo-Martínez
- Instituto Mexicano del Seguro Social, Hospital General de Zona con Medicina Familiar No. 7, Cuautla 62780, Morelos, Mexico;
| | - Lizbeth Grimaldo
- CONACYT/Center for Population Health Research, National Institute of Public Health, Universidad No. 655, Cuernavaca 62100, Morelos, Mexico; (L.G.-F.-R.); (L.G.)
| | - Rocío Ortiz-Lopez
- School of Medicine, Tecnologico de Monterrey, Morones Prieto Av 3000, Los Doctores, Monterrey 64710, Nuevo Leon, Mexico; (A.L.B.-A.); (R.O.-L.)
- The Institute for Obesity Research, Tecnologico de Monterrey, Eugenio Garza Sada Av 2501, Monterrey 64849, Nuevo Leon, Mexico
| | - Víctor Treviño
- School of Medicine, Tecnologico de Monterrey, Morones Prieto Av 3000, Los Doctores, Monterrey 64710, Nuevo Leon, Mexico; (A.L.B.-A.); (R.O.-L.)
- The Institute for Obesity Research, Tecnologico de Monterrey, Eugenio Garza Sada Av 2501, Monterrey 64849, Nuevo Leon, Mexico
- Correspondence:
| |
Collapse
|
4
|
Payliss BJ, Patel A, Sheppard AC, Wyatt HDM. Exploring the Structures and Functions of Macromolecular SLX4-Nuclease Complexes in Genome Stability. Front Genet 2021; 12:784167. [PMID: 34804132 PMCID: PMC8599992 DOI: 10.3389/fgene.2021.784167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
All organisms depend on the ability of cells to accurately duplicate and segregate DNA into progeny. However, DNA is frequently damaged by factors in the environment and from within cells. One of the most dangerous lesions is a DNA double-strand break. Unrepaired breaks are a major driving force for genome instability. Cells contain sophisticated DNA repair networks to counteract the harmful effects of genotoxic agents, thus safeguarding genome integrity. Homologous recombination is a high-fidelity, template-dependent DNA repair pathway essential for the accurate repair of DNA nicks, gaps and double-strand breaks. Accurate homologous recombination depends on the ability of cells to remove branched DNA structures that form during repair, which is achieved through the opposing actions of helicases and structure-selective endonucleases. This review focuses on a structure-selective endonuclease called SLX1-SLX4 and the macromolecular endonuclease complexes that assemble on the SLX4 scaffold. First, we discuss recent developments that illuminate the structure and biochemical properties of this somewhat atypical structure-selective endonuclease. We then summarize the multifaceted roles that are fulfilled by human SLX1-SLX4 and its associated endonucleases in homologous recombination and genome stability. Finally, we discuss recent work on SLX4-binding proteins that may represent integral components of these macromolecular nuclease complexes, emphasizing the structure and function of a protein called SLX4IP.
Collapse
Affiliation(s)
- Brandon J Payliss
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ayushi Patel
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anneka C Sheppard
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Haley D M Wyatt
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Canada Research Chairs Program, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Timoshkina NN, Gvaldin DY, Omelchuk EP, Vashhenko LN, Ausheva TV, Kechedzhieva EE, Kit OI. A clinical case of multiple primary cancers in a carrier of rare SDK2 and NOTCH2 gene mutations. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Genetic predisposition is one of the risk factors for the development of multiple primary cancers (MPCs), the frequency of which increases and ranges from 2 to 17%. This study describes a combination of rare mutations, rs746551843 in the NOTCH2 gene and rs144933006 in the SDK2 gene, in a woman with breast cancer and leiomyosarcoma without a clearly burdened family history.
Case presentation
A 55-year-old Caucasian woman received complex treatment on the basis of the National Medical Research Centre for Oncology for left breast cancer and leiomyosarcoma of soft tissues of the left thigh. The patient was referred for consultation with a geneticist. Among direct relatives, a maternal aunt with a history of kidney cancer was not a carrier of the studied single nucleotide polymorphisms (SNPs). The healthy son of the patient inherited both mutations.
Conclusion
Thus, perhaps in the described case, there is a synergistic effect of two alleles of moderate and low penetrance, which led to the phenotype of multiple primary cancers.
Collapse
|
6
|
Felicio PS, Grasel RS, Campacci N, de Paula AE, Galvão HCR, Torrezan GT, Sabato CS, Fernandes GC, Souza CP, Michelli RD, Andrade CE, Barros BDDF, Matsushita MM, Revil T, Ragoussis J, Couch FJ, Hart SN, Reis RM, Melendez ME, Tonin PN, Carraro DM, Palmero EI. Whole-exome sequencing of non-BRCA1/BRCA2 mutation carrier cases at high-risk for hereditary breast/ovarian cancer. Hum Mutat 2020; 42:290-299. [PMID: 33326660 PMCID: PMC7898723 DOI: 10.1002/humu.24158] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/25/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022]
Abstract
The current study aimed to identify new breast and/or ovarian cancer predisposition genes. For that, whole-exome sequencing (WES) was performed in the germline DNA of 52 non-BRCA1/BRCA2/TP53 mutation carrier women at high-risk for hereditary breast and ovarian cancer (HBOC). All variants were classified using information from population and disease specific databases, in silico prediction tools and the American College of Medical Genetics and Genomics (ACMG) criteria. Loss of heterozygosity (LOH) of tumor samples and segregation analyses were performed whenever possible. The variants identified were investigated in a second, independent cohort of 17 BC cases. Pathogenic/Likely Pathogenic variants were identified in known cancer genes such as CHEK2, MUTYH, PMS2, and RAD51C. Rare and potentially pathogenic variants were identified in DNA repair genes (FAN1, POLQ, and RAD54L) and other cancer-related genes such as DROSHA and SLC34A2. Interestingly, the variant c.149T>G in the FAN1 gene was identified in two unrelated families, and exhibited LOH in the tumor tissue of one of them. In conclusion, this is the largest Brazilian WES study involving families at high-risk for HBOC which has brought novel insights into the role of potentially new genetic risk factors for hereditary breast and ovarian cancer.
Collapse
Affiliation(s)
- Paula S Felicio
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Rebeca S Grasel
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Natalia Campacci
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Andre E de Paula
- Center of Molecular Diagnosis, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | | | - Giovana T Torrezan
- Genomics and Molecular Biology Group, CIPE - A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Cristina S Sabato
- Center of Molecular Diagnosis, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Gabriela C Fernandes
- Center of Molecular Diagnosis, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Cristiano P Souza
- Department of Oncogenetics, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Carlos E Andrade
- Department of Oncogenetics, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Marcus M Matsushita
- Department of Pathology, Barretos Cancer Hospital Barretos, Sao Paulo, Brazil
| | - Timothée Revil
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, Canada.,McGill Genome Centre, University of McGill, Montreal, Canada
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.,Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Steven N Hart
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.,Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Center of Molecular Diagnosis, Barretos Cancer Hospital, Barretos, São Paulo, Brazil.,Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Matias E Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Pele Little Prince Research Institute, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Patricia N Tonin
- Department of Human Genetics, McGill University, Montreal, Canada.,Department of Medicine, McGill University, Montreal, Canada.,Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Dirce M Carraro
- Genomics and Molecular Biology Group, CIPE - A. C. Camargo Cancer Center, São Paulo, Brazil.,Genomic Diagnostic Center, AC Camargo Cancer Center, São Paulo, Brazil
| | - Edenir I Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Center of Molecular Diagnosis, Barretos Cancer Hospital, Barretos, São Paulo, Brazil.,Pele Little Prince Research Institute, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil
| |
Collapse
|
7
|
Kumar R, Kuligina E, Sokolenko A, Siddiqui Q, Gardi N, Gupta S, Varma AK, Hasan SK. Genetic ablation of pregnancy zone protein promotes breast cancer progression by activating TGF-β/SMAD signaling. Breast Cancer Res Treat 2020; 185:317-330. [PMID: 33057846 DOI: 10.1007/s10549-020-05958-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Pregnancy zone protein (PZP) is best known as protease inhibitor and its concentration in human blood plasma increases dramatically during pregnancy. Recent investigation revealed a role of PZP inactivating germ-line mutation in breast cancer predisposition, and therefore we designed a study to evaluate functional involvement of this protein in tumor pathogenesis. METHODS PZP knockout cells were generated utilizing the CRISPR-Cas9 approach in MCF7 and T47D (breast cancer) cell lines, and colony formation, cell proliferation, and migration assays carried out. TGF-β and SMAD expression studies were performed using qRT-PCR and Western blot. PZP expression in tumor vs normal tissue was compared using meta-analyses of data records of breast cancer patients (n = 1211) included in the TCGA consortium registry as well as in independent cohorts of hormone receptor-positive (n = 118) and triple-negative breast cancer (TNBC) patients (n = 116). RESULTS We demonstrated that genetic ablation of PZP efficiently inhibits tamoxifen-induced apoptosis and enhances cell proliferation, migration, and colony-forming capacity. We found a significant increase in survival fraction of CRISPR/Cas9-mediated PZP knockout clones compared to wild-type counterpart after tamoxifen treatment (p < 0.05). The PZP knockout significantly promoted breast cancer cell migration (p < 0.01) in vitro. We observed high expression of TGF-β2 ligand, TGF-β- receptor 2, and upregulation of phosphorylated regulatory-SMADs (pSMAD2 and pSMAD3) activating the pro-survival function of TGF-β/SMAD signaling in PZP knockout clones. Meta-analyses of data records of breast cancer patients indicated that low PZP expression is associated with poor overall survival at 6 years (51.7% vs 62.9% in low vs high expressers, respectively; p = 0.026). We also observed a significantly lower PZP mRNA expression in TNBC as compared with hormone receptor-positive tumors (p = 0.019). CONCLUSION Taken together, our results suggest that genetic ablation of PZP results in tumor progression and low expression of PZP is associated with poor survival of breast cancer patients.
Collapse
Affiliation(s)
- Rohit Kumar
- Cell and Tumor Biology Group, Advanced Centre for Treatment, Research and Education in Cancer, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India
| | - Ekaterina Kuligina
- Laboratory of Molecular Oncology, N.N. Petrov Institute of Oncology, Pesochny-2, 197758, St.-Petersburg, Russia
| | - Anna Sokolenko
- Laboratory of Molecular Oncology, N.N. Petrov Institute of Oncology, Pesochny-2, 197758, St.-Petersburg, Russia
| | - Quadir Siddiqui
- Cell and Tumor Biology Group, Advanced Centre for Treatment, Research and Education in Cancer, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India
| | - Nilesh Gardi
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, 400012, Maharashtra, India
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India
| | - Sudeep Gupta
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, 400012, Maharashtra, India
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India
| | - Ashok K Varma
- Varma Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, 410210, India.
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India.
| | - Syed K Hasan
- Cell and Tumor Biology Group, Advanced Centre for Treatment, Research and Education in Cancer, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India.
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
8
|
Bandeira G, Rocha K, Lazar M, Ezquina S, Yamamoto G, Varela M, Takahashi V, Aguena M, Gollop T, Zatz M, Passos-Bueno MR, Krepischi A, Okamoto OK. Germline variants of Brazilian women with breast cancer and detection of a novel pathogenic ATM deletion in early-onset breast cancer. Breast Cancer 2020; 28:346-354. [PMID: 32986223 DOI: 10.1007/s12282-020-01165-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/16/2020] [Indexed: 04/07/2023]
Abstract
BACKGROUND It is estimated that 5-10% of breast cancer cases are hereditary. The identification of pathogenic germline variants allows individualized preventive health care, improvement of clinical management and genetic counseling. Studies in ethnically admixed Latin American populations have identified regions with increased frequency of deleterious variants in breast cancer predisposing genes. In this context, the Brazilian population exhibits great genetic heterogeneity, and is not well represented in international databases, which makes it difficult to interpret the clinical relevance of germline variants. METHODS We evaluated the frequency of pathogenic/likely pathogenic (P/LP) germline variants in up to 37 breast cancer predisposing genes, in a cohort of 105 breast and/or ovarian cancer Brazilian women referred to two research centers between 2014 and 2019. RESULTS A total of 22 patients (21%) were found to carry P/LP variants, and 16 VUS were detected in 15 patients (14.3%). Additionally, a novel pathogenic ATM intragenic deletion was identified in an early-onset breast cancer. We also detected a BRCA1 pathogenic variant (c.5074+2T>C) in higher frequency (10×) than in other studies with similar cohorts. CONCLUSIONS Our findings contribute to the characterization of the genetic background of breast cancer predisposition in the Brazilian population as a useful resource to discriminate between deleterious variants and VUS, thus enabling improvement in the preventive health care and clinical management of carriers.
Collapse
Affiliation(s)
- Gabriel Bandeira
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil
| | - Katia Rocha
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil
| | - Monize Lazar
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil
| | - Suzana Ezquina
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil
| | - Guilherme Yamamoto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil.,Genetics Unit, Faculty of Medicine, Children's Institute, Clinics Hospital, University of Sao Paulo, São Paulo, Brazil
| | - Monica Varela
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil
| | - Vanessa Takahashi
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil
| | - Meire Aguena
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil
| | - Thomaz Gollop
- Department of Gynecology and Obstetrics, Faculty of Medicine of Jundiai, São Paulo, Brazil
| | - Mayana Zatz
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil
| | - Maria Rita Passos-Bueno
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil
| | - Ana Krepischi
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil
| | - Oswaldo Keith Okamoto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil.
| |
Collapse
|
9
|
Alenezi WM, Fierheller CT, Recio N, Tonin PN. Literature Review of BARD1 as a Cancer Predisposing Gene with a Focus on Breast and Ovarian Cancers. Genes (Basel) 2020; 11:E856. [PMID: 32726901 PMCID: PMC7464855 DOI: 10.3390/genes11080856] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Soon after the discovery of BRCA1 and BRCA2 over 20 years ago, it became apparent that not all hereditary breast and/or ovarian cancer syndrome families were explained by germline variants in these cancer predisposing genes, suggesting that other such genes have yet to be discovered. BRCA1-associated ring domain (BARD1), a direct interacting partner of BRCA1, was one of the earliest candidates investigated. Sequencing analyses revealed that potentially pathogenic BARD1 variants likely conferred a low-moderate risk to hereditary breast cancer, but this association is inconsistent. Here, we review studies of BARD1 as a cancer predisposing gene and illustrate the challenge of discovering additional cancer risk genes for hereditary breast and/or ovarian cancer. We selected peer reviewed research articles that focused on three themes: (i) sequence analyses of BARD1 to identify potentially pathogenic germline variants in adult hereditary cancer syndromes; (ii) biological assays of BARD1 variants to assess their effect on protein function; and (iii) association studies of BARD1 variants in family-based and case-control study groups to assess cancer risk. In conclusion, BARD1 is likely to be a low-moderate penetrance breast cancer risk gene.
Collapse
Affiliation(s)
- Wejdan M. Alenezi
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada; (W.M.A.); (C.T.F.); (N.R.)
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medical Laboratory Technology, Taibah University, Medina 42353, Saudi Arabia
| | - Caitlin T. Fierheller
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada; (W.M.A.); (C.T.F.); (N.R.)
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Neil Recio
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada; (W.M.A.); (C.T.F.); (N.R.)
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Patricia N. Tonin
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada; (W.M.A.); (C.T.F.); (N.R.)
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
10
|
Suszynska M, Kozlowski P. Summary of BARD1 Mutations and Precise Estimation of Breast and Ovarian Cancer Risks Associated with the Mutations. Genes (Basel) 2020; 11:genes11070798. [PMID: 32679805 PMCID: PMC7397132 DOI: 10.3390/genes11070798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last two decades, numerous BARD1 mutations/pathogenic variants (PVs) have been found in patients with breast cancer (BC) and ovarian cancer (OC). However, their role in BC and OC susceptibility remains controversial, and strong evidence-based guidelines for carriers are not yet available. Herein, we present a comprehensive catalog of BARD1 PVs identified in large cumulative cohorts of ~48,700 BC and ~20,800 OC cases (retrieved from 123 studies examining the whole coding sequence of BARD1). Using these resources, we compared the frequency of BARD1 PVs in the cases and ~134,100 controls from the gnomAD database and estimated the effect of the BARD1 PVs on BC and OC risks. The analysis revealed that BARD1 is a BC moderate-risk gene (odds ratio (OR) = 2.90, 95% CIs:2.25–3.75, p < 0.0001) but not an OC risk gene (OR = 1.36, 95% CIs:0.87–2.11, p = 0.1733). In addition, the BARD1 mutational spectrum outlined in this study allowed us to determine recurrent PVs and evaluate the variant-specific risk for the most frequent PVs. In conclusion, these precise estimates improve the understanding of the role of BARD1 PVs in BC and OC predisposition and support the need for BARD1 diagnostic testing in BC patients.
Collapse
Affiliation(s)
| | - Piotr Kozlowski
- Correspondence: ; Tel.: +48-618-528-503 (ext. 261); Fax: +48-618-520-532
| |
Collapse
|
11
|
Rotunno M, Barajas R, Clyne M, Hoover E, Simonds NI, Lam TK, Mechanic LE, Goldstein AM, Gillanders EM. A Systematic Literature Review of Whole Exome and Genome Sequencing Population Studies of Genetic Susceptibility to Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:1519-1534. [PMID: 32467344 DOI: 10.1158/1055-9965.epi-19-1551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/17/2020] [Accepted: 05/13/2020] [Indexed: 01/03/2023] Open
Abstract
The application of next-generation sequencing (NGS) technologies in cancer research has accelerated the discovery of somatic mutations; however, progress in the identification of germline variation associated with cancer risk is less clear. We conducted a systematic literature review of cancer genetic susceptibility studies that used NGS technologies at an exome/genome-wide scale to obtain a fuller understanding of the research landscape to date and to inform future studies. The variability across studies on methodologies and reporting was considerable. Most studies sequenced few high-risk (mainly European) families, used a candidate analysis approach, and identified potential cancer-related germline variants or genes in a small fraction of the sequenced cancer cases. This review highlights the importance of establishing consensus on standards for the application and reporting of variants filtering strategies. It also describes the progress in the identification of cancer-related germline variation to date. These findings point to the untapped potential in conducting studies with appropriately sized and racially diverse families and populations, combining results across studies and expanding beyond a candidate analysis approach to advance the discovery of genetic variation that accounts for the unexplained cancer heritability.
Collapse
Affiliation(s)
- Melissa Rotunno
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland.
| | - Rolando Barajas
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Mindy Clyne
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Elise Hoover
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | | | - Tram Kim Lam
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Leah E Mechanic
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Alisa M Goldstein
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Elizabeth M Gillanders
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
12
|
Ouni N, Ben Chaaben A, Ayari F, Douik H, Guizani I, Benammar-Elgaaied A, Guemira F, Tamouza R. MICA-129 Met/Val polymorphism could be a genetic biomarker for Familial Breast Cancer in the Tunisian population. Int J Immunogenet 2020; 47:406-413. [PMID: 32048423 DOI: 10.1111/iji.12480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/05/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
Abstract
Identification of candidate genes associated with susceptibility of breast cancer can have a significant impact at a cancer management national healthcare systems level, making genetic testing more affordable and cost-effective. We have previously shown that the major histocompatibility complex class I-related chain A (MICA) was related to breast cancer and plays an important role in modulating immune response mechanisms through NKG2D receptor activation. Compared to our previous study, in this work, we recruited a new cohort composed of 354 unrelated Tunisian women affected by breast cancer and 380 age-matched women as controls, all genotyped for MICA-129 Met/Val (rs 1051792). Subsequently, we exanimated the distribution of this polymorphism in ten families. As a result, an association was found between the Val allele and Val/Val genotype and the risk of breast cancer (p = 2.5 × 10-15 ; OR = 2.40; p = 6.5 × 10-13 ; OR = 3.03, respectively). Stratified analysis with age and family history of cancer revealed an association between the Val/Val genotype and younger patients <40 years (p = .003; OR = 2.03). Among those patients having a family history of cancer, 68% had a Val/Val genotype (p = .02; OR = 1.82). In the family study, an analyse of pedigrees revealed that the majority of families showed the development of breast cancer at a young age. Moreover, all patients diagnosed with early-onset breast cancer had a Val/Val genotype. Our results lead us to propose that this polymorphism may be an inherited genetic biomarker contributing to an increased breast cancer risk in Tunisian women.
Collapse
Affiliation(s)
- Nesrine Ouni
- Clinical Biology Department, Salah Azaiz Institut, Tunis, Tunisia.,Faculty of Mathematics, Physics and Natural Sciences, University of Tunis El Manar, Tunis, Tunisia
| | - Arij Ben Chaaben
- Clinical Biology Department, Salah Azaiz Institut, Tunis, Tunisia
| | - Fayza Ayari
- Clinical Biology Department, Salah Azaiz Institut, Tunis, Tunisia.,Faculty of Mathematics, Physics and Natural Sciences, University of Tunis El Manar, Tunis, Tunisia
| | - Hayet Douik
- Clinical Biology Department, Salah Azaiz Institut, Tunis, Tunisia
| | - Imen Guizani
- Faculty of Mathematics, Physics and Natural Sciences, University of Tunis El Manar, Tunis, Tunisia.,Faculty of Medicine of Tunis, CHU la Rabta, Laboratory of Biochemistry, Tunis, Tunisia
| | - Amel Benammar-Elgaaied
- Immunology Department, Faculty of Mathematics, Physics, and Natural Sciences, Tunis El Manar University, Tunis, Tunisia
| | - Fethi Guemira
- Clinical Biology Department, Salah Azaiz Institut, Tunis, Tunisia
| | - Ryad Tamouza
- INSERM U955, Translational Psychiatry, Creteil, France.,Fondation FondaMental, Creteil, France.,Department of Psychiatry, AP-HP, DHU PePSY, Hôpital Henri Mondor, Université Paris-Est-Creteil, Creteil, France
| |
Collapse
|
13
|
da Costa E Silva Carvalho S, Cury NM, Brotto DB, de Araujo LF, Rosa RCA, Texeira LA, Plaça JR, Marques AA, Peronni KC, Ruy PDC, Molfetta GA, Moriguti JC, Carraro DM, Palmero EI, Ashton-Prolla P, de Faria Ferraz VE, Silva WA. Germline variants in DNA repair genes associated with hereditary breast and ovarian cancer syndrome: analysis of a 21 gene panel in the Brazilian population. BMC Med Genomics 2020; 13:21. [PMID: 32039725 PMCID: PMC7011249 DOI: 10.1186/s12920-019-0652-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Hereditary Breast and Ovarian Cancer Syndrome (HBOC) occurs in families with a history of breast/ovarian cancer, presenting an autosomal dominant inheritance pattern. BRCA1 and BRCA2 are high penetrance genes associated with an increased risk of up to 20-fold for breast and ovarian cancer. However, only 20-30% of HBOC cases present pathogenic variants in those genes, and other DNA repair genes have emerged as increasing the risk for HBOC. In Brazil, variants in ATM, ATR, CHEK2, MLH1, MSH2, MSH6, POLQ, PTEN, and TP53 genes have been reported in up to 7.35% of the studied cases. Here we screened and characterized variants in 21 DNA repair genes in HBOC patients. METHODS We systematically analyzed 708 amplicons encompassing the coding and flanking regions of 21 genes related to DNA repair pathways (ABRAXAS1, ATM, ATR, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, MLH1, MRE11, MSH2, MSH6, NBN, PALB2, PMS2, PTEN, RAD50, RAD51, TP53 and UIMC1). A total of 95 individuals with HBOC syndrome clinical suspicion in Southeast Brazil were sequenced, and 25 samples were evaluated for insertions/deletions in BRCA1/BRCA2 genes. Identified variants were assessed in terms of population allele frequency and their functional effects were predicted through in silico algorithms. RESULTS We identified 80 variants in 19 genes. About 23.4% of the patients presented pathogenic variants in BRCA1, BRCA2 and TP53, a frequency higher than that identified among previous studies in Brazil. We identified a novel variant in ATR, which was predicted as pathogenic by in silico tools. The association analysis revealed 13 missense variants in ABRAXAS1, BARD1, BRCA2, CHEK2, CDH1, MLH1, PALB2, and PMS2 genes, as significantly associated with increased risk to HBOC, and the patients carrying those variants did not present large insertions or deletions in BRCA1/BRCA2 genes. CONCLUSIONS This study embodies the third report of a multi-gene analysis in the Brazilian population, and addresses the first report of many germline variants associated with HBOC in Brazil. Although further functional analyses are necessary to better characterize the contribution of those variants to the phenotype, these findings would improve the risk estimation and clinical follow-up of patients with HBOC clinical suspicion.
Collapse
Affiliation(s)
- Simone da Costa E Silva Carvalho
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Center for Medical Genomics at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
- Regional Blood Center at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Nathalia Moreno Cury
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Regional Blood Center at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Danielle Barbosa Brotto
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Regional Blood Center at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiza Ferreira de Araujo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Regional Blood Center at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Reginaldo Cruz Alves Rosa
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Center for Medical Genomics at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lorena Alves Texeira
- Division of Internal Medicine and Geriatrics, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jessica Rodrigues Plaça
- Regional Blood Center at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Adriana Aparecida Marques
- Regional Blood Center at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Kamila Chagas Peronni
- Regional Blood Center at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Patricia de Cássia Ruy
- Center for Medical Genomics at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Greice Andreotti Molfetta
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Center for Medical Genomics at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Julio Cesar Moriguti
- Division of Internal Medicine and Geriatrics, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dirce Maria Carraro
- International Research, Center/CIPE, AC Camargo Cancer Center, Sao Paulo, SP, Brazil
| | - Edenir Inêz Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Patricia Ashton-Prolla
- Laboratório de Medicina Genômica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Victor Evangelista de Faria Ferraz
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Center for Medical Genomics at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Medical Genetics, University Hospital of the Ribeirão Preto Medical School, Ribeirão Preto, Brazil
| | - Wilson Araujo Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
- Center for Medical Genomics at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil.
- Regional Blood Center at University Hospital of the Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
14
|
Zhang C, Zhang B, Meng D, Ge C. Comprehensive analysis of DNA methylation and gene expression profiles in cholangiocarcinoma. Cancer Cell Int 2019; 19:352. [PMID: 31889904 PMCID: PMC6933876 DOI: 10.1186/s12935-019-1080-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The incidence of cholangiocarcinoma (CCA) has risen in recent years, and it has become a significant health burden worldwide. However, the mechanisms underlying tumorigenesis and progression of this disease remain largely unknown. An increasing number of studies have demonstrated crucial biological functions of epigenetic modifications, especially DNA methylation, in CCA. The present study aimed to identify and analyze methylation-regulated differentially expressed genes (MeDEGs) involved in CCA tumorigenesis and progression by bioinformatics analysis. METHODS The gene expression profiling dataset (GSE119336) and gene methylation profiling dataset (GSE38860) were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were identified using the limma packages of R and GEO2R, respectively. The MeDEGs were obtained by overlapping the DEGs and DMGs. Functional enrichment analyses of these genes were then carried out. Protein-protein interaction (PPI) networks were constructed using STRING and visualized in Cytoscape to determine hub genes. Finally, the results were verified based on The Cancer Genome Atlas (TCGA) database. RESULTS We identified 98 hypermethylated, downregulated genes and 93 hypomethylated, upregulated genes after overlapping the DEGs and DMGs. These genes were mainly enriched in the biological processes of the cell cycle, nuclear division, xenobiotic metabolism, drug catabolism, and negative regulation of proteolysis. The top nine hub genes of the PPI network were F2, AHSG, RRM2, AURKB, CCNA2, TOP2A, BIRC5, PLK1, and ASPM. Moreover, the expression and methylation status of the hub genes were significantly altered in TCGA. CONCLUSIONS Our study identified novel methylation-regulated differentially expressed genes (MeDEGs) and explored their related pathways and functions in CCA, which may provide novel insights into a further understanding of methylation-mediated regulatory mechanisms in CCA.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Bingye Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Di Meng
- Department of Gerontology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Chunlin Ge
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| |
Collapse
|
15
|
Oliver J, Quezada Urban R, Franco Cortés CA, Díaz Velásquez CE, Montealegre Paez AL, Pacheco-Orozco RA, Castro Rojas C, García-Robles R, López Rivera JJ, Gaitán Chaparro S, Gómez AM, Suarez Obando F, Giraldo G, Maya MI, Hurtado-Villa P, Sanchez AI, Serrano N, Orduz Galvis AI, Aruachan S, Nuñez Castillo J, Frecha C, Riggi C, Jauk F, Gómez García EM, Carranza CL, Zamora V, Torres Mejía G, Romieu I, Castañeda CA, Castillo M, Gitler R, Antoniano A, Rojas Jiménez E, Romero Cruz LE, Vallejo Lecuona F, Delgado Enciso I, Martínez Rizo AB, Flores Carranza A, Benites Godinez V, Méndez Catalá CF, Herrera LA, Chirino YI, Terrazas LI, Perdomo S, Vaca Paniagua F. Latin American Study of Hereditary Breast and Ovarian Cancer LACAM: A Genomic Epidemiology Approach. Front Oncol 2019; 9:1429. [PMID: 31921681 PMCID: PMC6933010 DOI: 10.3389/fonc.2019.01429] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022] Open
Abstract
Purpose: Hereditary Breast and Ovarian Cancer (HBOC) syndrome is responsible for ~5-10% of all diagnosed breast and ovarian cancers. Breast cancer is the most common malignancy and the leading cause of cancer-related mortality among women in Latin America (LA). The main objective of this study was to develop a comprehensive understanding of the genomic epidemiology of HBOC throughout the establishment of The Latin American consortium for HBOC-LACAM, consisting of specialists from 5 countries in LA and the description of the genomic results from the first phase of the study. Methods: We have recruited 403 individuals that fulfilled the criteria for HBOC from 11 health institutions of Argentina, Colombia, Guatemala, Mexico and Peru. A pilot cohort of 222 individuals was analyzed by NGS gene panels. One hundred forty-three genes were selected on the basis of their putative role in susceptibility to different hereditary cancers. Libraries were sequenced in MiSeq (Illumina, Inc.) and PGM (Ion Torrent-Thermo Fisher Scientific) platforms. Results: The overall prevalence of pathogenic variants was 17% (38/222); the distribution spanned 14 genes and varied by country. The highest relative prevalence of pathogenic variants was found in patients from Argentina (25%, 14/57), followed by Mexico (18%, 12/68), Guatemala (16%, 3/19), and Colombia (13%, 10/78). Pathogenic variants were found in BRCA1 (20%) and BRCA2 (29%) genes. Pathogenic variants were found in other 12 genes, including high and moderate risk genes such as MSH2, MSH6, MUTYH, and PALB2. Additional pathogenic variants were found in HBOC unrelated genes such as DCLRE1C, WRN, PDE11A, and PDGFB. Conclusion: In this first phase of the project, we recruited 403 individuals and evaluated the germline genetic alterations in an initial cohort of 222 patients among 4 countries. Our data show for the first time in LA the distribution of pathogenic variants in a broad set of cancer susceptibility genes in HBOC. Even though we used extended gene panels, there was still a high proportion of patients without any detectable pathogenic variant, which emphasizes the larger, unexplored genetic nature of the disease in these populations.
Collapse
Affiliation(s)
- Javier Oliver
- Medical Oncology Service, Hospitales Universitarios Regional y Virgen de la Victoria, Institute of Biomedical Research in Malaga, CIMES, University of Málaga, Málaga, Spain
- Laboratorio de Secuenciación, Instituto de Medicina Traslacional e Ingeniería Biomédica, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla de Baz, Mexico
| | - Rosalía Quezada Urban
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla de Baz, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla de Baz, Mexico
| | - Claudia Alejandra Franco Cortés
- Laboratorio de Secuenciación, Instituto de Medicina Traslacional e Ingeniería Biomédica, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Clara Estela Díaz Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla de Baz, Mexico
| | - Ana Lorena Montealegre Paez
- Instituto de Nutrición, Genética y Metabolismo, Facultad de Medicina, Universidad El Bosque, Bogota, Colombia
| | | | - Carlos Castro Rojas
- Instituto de Nutrición, Genética y Metabolismo, Facultad de Medicina, Universidad El Bosque, Bogota, Colombia
| | - Reggie García-Robles
- Instituto de Nutrición, Genética y Metabolismo, Facultad de Medicina, Universidad El Bosque, Bogota, Colombia
| | - Juan Javier López Rivera
- Grupo INPAC, Organización Keralty, Departamento de Genética, Clínica Universitaria Colombia, Bogotá, Colombia
| | - Sandra Gaitán Chaparro
- Grupo INPAC, Organización Keralty, Facultad de Medicina, Fundación Universitaria Sanitas, Bogotá, Colombia
| | - Ana Milena Gómez
- Servicio de Genética, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Fernando Suarez Obando
- Servicio de Genética, Hospital Universitario San Ignacio, Bogotá, Colombia
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Gustavo Giraldo
- Clínica Universitaria Bolivariana, Pontificia Universidad Bolivariana, Medellín, Colombia
| | - Maria Isabel Maya
- Clínica Universitaria Bolivariana, Pontificia Universidad Bolivariana, Medellín, Colombia
| | - Paula Hurtado-Villa
- Departamento Ciencias Básicas de Salud, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana Cali, Cali, Colombia
- Centro Médico Imbanaco, Cali, Colombia
| | - Ana Isabel Sanchez
- Centro Médico Imbanaco, Cali, Colombia
- Departamento Materno Infantil, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana Cali, Cali, Colombia
| | - Norma Serrano
- Fundación Cardiovascular de Colombia, Centro de Investigaciones, Floridablanca, Colombia
| | | | - Sandra Aruachan
- Departamento de Investigación y Estudios Clínicos, IMAT - Oncomédica S.A., Montería, Colombia
| | - Johanna Nuñez Castillo
- Departamento de Investigación y Estudios Clínicos, IMAT - Oncomédica S.A., Montería, Colombia
| | - Cecilia Frecha
- Instituto de Medicina Traslacional e Ingeniería Biomédica, CONICET-Instituto Universitario del Hospital Italiano-Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Riggi
- Servicio de Ginecología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Federico Jauk
- Laboratorio de Secuenciación, Instituto de Medicina Traslacional e Ingeniería Biomédica, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | - Isabelle Romieu
- Instituto Nacional de Salud Pública, Cuernavaca, Mexico
- Hubert Department of Global Health, Emory University, Atlanta, GA, United States
| | - Carlos Arturo Castañeda
- Departamento de Oncología Médica, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | - Miluska Castillo
- Departamento de Investigación, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | | | | | - Ernesto Rojas Jiménez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla de Baz, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla de Baz, Mexico
| | - Luis Enrique Romero Cruz
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla de Baz, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla de Baz, Mexico
| | - Fernando Vallejo Lecuona
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla de Baz, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla de Baz, Mexico
| | | | | | | | | | - Claudia Fabiola Méndez Catalá
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla de Baz, Mexico
| | - Luis Alonso Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas-Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Yolanda Irasema Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla de Baz, Mexico
| | - Luis Ignacio Terrazas
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla de Baz, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla de Baz, Mexico
| | - Sandra Perdomo
- Instituto de Nutrición, Genética y Metabolismo, Facultad de Medicina, Universidad El Bosque, Bogota, Colombia
- Departamento de Patología, Hospital Universitario Fundación Santa Fe de Bogotá, Bogota, Colombia
| | - Felipe Vaca Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla de Baz, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla de Baz, Mexico
- Instituto Nacional de Cancerología, Ciudad de México, Mexico
| |
Collapse
|
16
|
Kuligina ES, Sokolenko AP, Bizin IV, Romanko AA, Zagorodnev KA, Anisimova MO, Krylova DD, Anisimova EI, Mantseva MA, Varma AK, Hasan SK, Ni VI, Koloskov AV, Suspitsin EN, Venina AR, Aleksakhina SN, Sokolova TN, Milanović AM, Schürmann P, Prokofyeva DS, Bermisheva MA, Khusnutdinova EK, Bogdanova N, Dörk T, Imyanitov EN. Exome sequencing study of Russian breast cancer patients suggests a predisposing role for USP39. Breast Cancer Res Treat 2019; 179:731-742. [DOI: 10.1007/s10549-019-05492-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
|
17
|
Urbina-Jara LK, Rojas-Martinez A, Martinez-Ledesma E, Aguilar D, Villarreal-Garza C, Ortiz-Lopez R. Landscape of Germline Mutations in DNA Repair Genes for Breast Cancer in Latin America: Opportunities for PARP-Like Inhibitors and Immunotherapy. Genes (Basel) 2019; 10:E786. [PMID: 31658756 PMCID: PMC6827033 DOI: 10.3390/genes10100786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/28/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022] Open
Abstract
Germline mutations in BRCA1 and BRCA2 (BRCA1/2) genes are present in about 50% of cases of hereditary breast cancer. Proteins encoded by these genes are key players in DNA repair by homologous recombination (HR). Advances in next generation sequencing and gene panels for breast cancer testing have generated a large amount of data on gene variants implicated in hereditary breast cancer, particularly in genes such as PALB2, ATM, CHEK2, RAD51, MSH2, and BARD1. These genes are involved in DNA repair. Most of these variants have been reported for Caucasian, Jewish, and Asian population, with few reports for other communities, like those in Latin American (LA) countries. We reviewed 81 studies from 11 LA countries published between 2000 and 2019 but most of these studies focused on BRCA1/2 genes. In addition to these genes, breast cancer-related variants have been reported for PALB2, ATM, CHEK2, BARD1, MLH1, BRIP1, MSH2, NBN, MSH6, and PMS2 genes. Some of these variants are unique to LA populations. This analysis may contribute to enhance breast cancer variant characterization, and thus to find therapies and implement precision medicine for LA communities.
Collapse
Affiliation(s)
- Laura Keren Urbina-Jara
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico.
| | - Augusto Rojas-Martinez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico.
| | | | - Dione Aguilar
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico.
- Tecnologico de Monterrey, Centro de Cancer de Mama, Hospital Zambrano Hellion, San Pedro Garza Garcia 66278, Mexico.
| | - Cynthia Villarreal-Garza
- Tecnologico de Monterrey, Centro de Cancer de Mama, Hospital Zambrano Hellion, San Pedro Garza Garcia 66278, Mexico.
- Instituto Nacional de Cancerologia, Departamento de Investigacion, Av. San Fernando #22, Tlalpan, Ciudad de Mexico 14080, Mexico.
| | - Rocio Ortiz-Lopez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico.
| |
Collapse
|
18
|
Shen M, Yang L, Lei T, Xiao L, Li L, Zhang P, Feng W, Ye F, Bu H. BRCA1/2 mutation spectrum in Chinese early-onset breast cancer. Transl Cancer Res 2019; 8:483-490. [PMID: 35116780 PMCID: PMC8798914 DOI: 10.21037/tcr.2019.03.02] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/25/2019] [Indexed: 02/05/2023]
Abstract
Background Breast cancer is the most commonly diagnosed cancer among women. Although many studies have reported the BRCA mutations among breast cancer patients, few studies have focused among Chinese early-onset breast cancer patients. The purpose of this study is to identify BRCA1 and BRCA2 mutation features and their clinical significance of early-onset Chinese breast cancer patients. Methods A total of 54 female patients diagnosed with breast cancer were enrolled in this study, of which 27 were younger than 40 (study group, mean age 32 years, range, 23–40 years) and 27 were older than 40 (control group, mean age 52 years, range, 41–68 years). Tumor FFPE samples were collected for somatic mutation test, while blood samples or normal tissue were used for germline mutation by both PGM and Miseq platform. All codon exons and functional introns for BRCA1/2 were covered. The clinical significance of mutation types was cross analyzed in several available database. The novel mutations were confirmed by sanger sequencing. Results In study group, 14.8% (4/27) and 3.7% (1/27) patients had deleterious BRCA1/2 germline and somatic mutations respectively. While in control group, only 3.7% (1/27) and 7.4% (2/27) had deleterious BRCA1/2 germline and somatic mutations respectively. BRCA1 germline mutation c.2623C>T and BRCA2 germline mutation c.5852G>A were found to be novel mutation sites and confirmed by sanger sequencing. Conclusions Our study found two novel BRCA1/2 mutation sites in early-onset breast cancer, and also showed that early-onset breast cancer patients are more likely to harbor germline mutations with deleterious and uncertain significance.
Collapse
Affiliation(s)
- Mengjia Shen
- Laboratory of Pathology, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Libo Yang
- Laboratory of Pathology, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Lei
- Laboratory of Pathology, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Xiao
- Laboratory of Pathology, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Li
- Laboratory of Pathology, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041, China.,Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peichuan Zhang
- Laboratory of Pathology, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041, China.,Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weiyi Feng
- Big Data Research Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Feng Ye
- Laboratory of Pathology, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041, China.,Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Bu
- Laboratory of Pathology, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China.,Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|