1
|
Pedrazzi JFC, Sales AJ, Guimarães FS, Joca SRL, Crippa JAS, Del Bel E. Cannabidiol prevents disruptions in sensorimotor gating induced by psychotomimetic drugs that last for 24-h with probable involvement of epigenetic changes in the ventral striatum. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110352. [PMID: 34015384 DOI: 10.1016/j.pnpbp.2021.110352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Cannabidiol (CBD), a major non-psychotomimetic component of the Cannabis sativa plant, shows therapeutic potential in several psychiatric disorders, including schizophrenia. The molecular mechanisms underlying the antipsychotic-like effects of CBD are not fully understood. Schizophrenia and antipsychotic treatment can modulate DNA methylation in the blood and brain, resulting in altered expression of diverse genes associated with this complex disorder. However, to date, the possible involvement of DNA methylation in the antipsychotic-like effects of CBD has not been investigated. Therefore, this study aimed at evaluating in mice submitted to the prepulse inhibition (PPI) model: i) the effects of a single injection of CBD or clozapine followed by AMPH or MK-801 on PPI and global DNA methylation changes in the ventral striatum and prefrontal cortex (PFC); and ii). if the acute antipsychotic-like effects of CBD would last for 24-h. AMPH (5 mg/kg) and MK-801 (0.5 mg/kg) impaired PPI. CBD (30 and 60 mg/kg), similar to clozapine (5 mg/kg), attenuated AMPH- and MK801-induced PPI disruption. AMPH, but not MK-801, increased global DNA methylation in the ventral striatum, an effect prevented by CBD. CBD and clozapine increased, by themselves, DNA methylation in the prefrontal cortex. The acute effects of CBD (30 or 60 mg/kg) on the PPI impairment induced by AMPH or MK-801 was also detectable 24 h later. Altogether, the results show that CBD induces acute antipsychotic-like effects that last for 24-h. It also modulates DNA methylation in the ventral striatum, suggesting a new potential mechanism for its antipsychotic-like effects.
Collapse
Affiliation(s)
- João F C Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Amanda J Sales
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sâmia R L Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Departament of Biomedicine, Aarhus University, Denmark
| | - José A S Crippa
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Elaine Del Bel
- Department of Morphology, Physiology, and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Xu Q, Guo L, Cheng J, Wang M, Geng Z, Zhu W, Zhang B, Liao W, Qiu S, Zhang H, Xu X, Yu Y, Gao B, Han T, Yao Z, Cui G, Liu F, Qin W, Zhang Q, Li MJ, Liang M, Chen F, Xian J, Li J, Zhang J, Zuo XN, Wang D, Shen W, Miao Y, Yuan F, Lui S, Zhang X, Xu K, Zhang LJ, Ye Z, Yu C. CHIMGEN: a Chinese imaging genetics cohort to enhance cross-ethnic and cross-geographic brain research. Mol Psychiatry 2020; 25:517-529. [PMID: 31827248 PMCID: PMC7042768 DOI: 10.1038/s41380-019-0627-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 02/05/2023]
Abstract
The Chinese Imaging Genetics (CHIMGEN) study establishes the largest Chinese neuroimaging genetics cohort and aims to identify genetic and environmental factors and their interactions that are associated with neuroimaging and behavioral phenotypes. This study prospectively collected genomic, neuroimaging, environmental, and behavioral data from more than 7000 healthy Chinese Han participants aged 18-30 years. As a pioneer of large-sample neuroimaging genetics cohorts of non-Caucasian populations, this cohort can provide new insights into ethnic differences in genetic-neuroimaging associations by being compared with Caucasian cohorts. In addition to micro-environmental measurements, this study also collects hundreds of quantitative macro-environmental measurements from remote sensing and national survey databases based on the locations of each participant from birth to present, which will facilitate discoveries of new environmental factors associated with neuroimaging phenotypes. With lifespan environmental measurements, this study can also provide insights on the macro-environmental exposures that affect the human brain as well as their timing and mechanisms of action.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Meiyun Wang
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, 450003, Zhengzhou, China
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, 450003, Zhengzhou, China
| | - Zuojun Geng
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, 050000, Shijiazhuang, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, 210008, Nanjing, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorder, 410008, Changsha, China
| | - Shijun Qiu
- Department of Medical Imaging, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405, Guangzhou, China
| | - Hui Zhang
- Department of Radiology, The First Hospital of Shanxi Medical University, 030001, Taiyuan, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, 310009, Hangzhou, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Bo Gao
- Department of Radiology, Yantai Yuhuangding Hospital, 264000, Yantai, China
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, 300350, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, 300350, Tianjin, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hosptial, Fudan University, 200040, Shanghai, China
| | - Guangbin Cui
- Functional and Molecular Imaging Key Lab of Shaanxi Province & Department of Radiology, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), 710038, Xi'an, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Quan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Mulin Jun Li
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Meng Liang
- School of Medical Imaging, Tianjin Medical University, 300203, Tianjin, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital, 570311, Haikou, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Jiance Li
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, 730050, Lanzhou, China
| | - Xi-Nian Zuo
- Department of Psychology, University of Chinese Academy of Sciences (CAS), 100049, Beijing, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, 100101, Beijing, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Wen Shen
- Department of Radiology, Tianjin First Center Hospital, 300192, Tianjin, China
| | - Yanwei Miao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Fei Yuan
- Department of Radiology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, 300162, Tianjin, China
| | - Su Lui
- Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, 610041, Chengdu, China
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Xiaochu Zhang
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, 230026, Hefei, China
- School of Life Sciences, University of Science & Technology of China, 230026, Hefei, China
| | - Kai Xu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, 221006, Xuzhou, China
- School of Medical Imaging, Xuzhou Medical University, 221004, Xuzhou, China
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052, Tianjin, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
5
|
Chen J, Liu J, Calhoun VD. The Translational Potential of Neuroimaging Genomic Analyses To Diagnosis And Treatment In The Mental Disorders. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2019; 107:912-927. [PMID: 32051642 PMCID: PMC7015534 DOI: 10.1109/jproc.2019.2913145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Imaging genomics focuses on characterizing genomic influence on the variation of neurobiological traits, holding promise for illuminating the pathogenesis, reforming the diagnostic system, and precision medicine of mental disorders. This paper aims to provide an overall picture of the current status of neuroimaging-genomic analyses in mental disorders, and how we can increase their translational potential into clinical practice. The review is organized around three perspectives. (a) Towards reliability, generalizability and interpretability, where we summarize the multivariate models and discuss the considerations and trade-offs of using these methods and how reliable findings may be reached, to serve as ground for further delineation. (b) Towards improved diagnosis, where we outline the advantages and challenges of constructing a dimensional transdiagnostic model and how imaging genomic analyses map into this framework to aid in deconstructing heterogeneity and achieving an optimal stratification of patients that better inform treatment planning. (c) Towards improved treatment. Here we highlight recent efforts and progress in elucidating the functional annotations that bridge between genomic risk and neurobiological abnormalities, in detecting genomic predisposition and prodromal neurodevelopmental changes, as well as in identifying imaging genomic biomarkers for predicting treatment response. Providing an overview of the challenges and promises, this review hopefully motivates imaging genomic studies with multivariate, dimensional and transdiagnostic designs for generalizable and interpretable findings that facilitate development of personalized treatment.
Collapse
Affiliation(s)
- Jiayu Chen
- The Mind Research Network, Albuquerque, NM 87106 USA
| | - Jingyu Liu
- The Mind Research Network, Albuquerque, NM 87106 USA, and also with the Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131 USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM 87106 USA, and also with the Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131 USA
| |
Collapse
|