1
|
Tao Y, Chen Y, Ren J, Jiang S, Zhang S, Xu H, Li Y. Lipidomics and transcriptomics analysis revealed the role of the spleen of Nile tilapia (Oreochromis niloticus) in lipid metabolism. AQUACULTURE 2024; 592:741173. [DOI: 10.1016/j.aquaculture.2024.741173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Zhou Q, Wang J, Li J, Chen Z, Wang N, Li M, Wang L, Si Y, Lu S, Cui Z, Liu X, Chen S. Decoding the fish genome opens a new era in important trait research and molecular breeding in China. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2064-2083. [PMID: 39145867 DOI: 10.1007/s11427-023-2670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024]
Abstract
Aquaculture represents the fastest-growing global food production sector, as it has become an essential component of the global food supply. China has the world's largest aquaculture industry in terms of production volume. However, the sustainable development of fish culture is hindered by several concerns, including germplasm degradation and disease outbreaks. The practice of genomic breeding, which relies heavily on genome information and genotypephenotype relationships, has significant potential for increasing the efficiency of aquaculture production. In 2014, the completion of the genome sequencing and annotation of the Chinese tongue sole signified the beginning of the fish genomics era in China. Since then, domestic researchers have made dramatic progress in functional genomic studies. To date, the genomes of more than 60 species of fish in China have been assembled and annotated. Based on these reference genomes, evolutionary, comparative, and functional genomic studies have revolutionized our understanding of a wide range of biologically and economically important traits of fishes, including growth and development, sex determination, disease resistance, metamorphosis, and pigmentation. Furthermore, genomic tools and breeding techniques such as SNP arrays, genomic selection, and genome editing have greatly accelerated genetic improvement through the incorporation of functional genomic information into breeding activities. This review aims to summarize the current status, advances, and perspectives of the genome resources, genomic study of important traits, and genomic breeding techniques of fish in China. The review will provide aquaculture researchers, fish breeders, and farmers with updated information concerning fish genomic research and breeding technology. The summary will help to promote the genetic improvement of production traits and thus will support the sustainable development of fish aquaculture.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jialin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jiongtang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100041, China
| | - Zhangfan Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Na Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Ming Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Lei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Yufeng Si
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Sheng Lu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Zhongkai Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Xuhui Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
3
|
Nandanpawar P, Sahoo L, Sahoo B, Murmu K, Chaudhari A, Pavan kumar A, Das P. Identification of differentially expressed genes and SNPs linked to harvest body weight of genetically improved rohu carp, Labeo rohita. Front Genet 2023; 14:1153911. [PMID: 37359361 PMCID: PMC10285081 DOI: 10.3389/fgene.2023.1153911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
In most of the aquaculture selection programs, harvest body weight has been a preferred performance trait for improvement. Molecular interplay of genes linked to higher body weight is not elucidated in major carp species. The genetically improved rohu carp with 18% average genetic gain per generation with respect to harvest body weight is a promising candidate for studying genes' underlying performance traits. In the present study, muscle transcriptome sequencing of two groups of individuals, with significant difference in breeding value, belonging to the tenth generation of rohu carp was performed using the Illumina HiSeq 2000 platform. A total of 178 million paired-end raw reads were generated to give rise to 173 million reads after quality control and trimming. The genome-guided transcriptome assembly and differential gene expression produced 11,86,119 transcripts and 451 upregulated and 181 downregulated differentially expressed genes (DEGs) between high-breeding value and low-breeding value (HB & LB) groups, respectively. Similarly, 39,158 high-quality coding SNPs were identified with the Ts/Tv ratio of 1.23. Out of a total of 17 qPCR-validated transcripts, eight were associated with cellular growth and proliferation and harbored 13 SNPs. The gene expression pattern was observed to be positively correlated with RNA-seq data for genes such as myogenic factor 6, titin isoform X11, IGF-1 like, acetyl-CoA, and thyroid receptor hormone beta. A total of 26 miRNA target interactions were also identified to be associated with significant DETs (p-value < 0.05). Genes such as Myo6, IGF-1-like, and acetyl-CoA linked to higher harvest body weight may serve as candidate genes in marker-assisted breeding and SNP array construction for genome-wide association studies and genomic selection.
Collapse
Affiliation(s)
- P. Nandanpawar
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - L. Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - B. Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - K. Murmu
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - A. Chaudhari
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - A. Pavan kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - P. Das
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Kayansamruaj P, Dinh-Hung N, Srisapoome P, Na-Nakorn U, Chatchaiphan S. Genomics-driven prophylactic measures to increase streptococcosis resistance in tilapia. JOURNAL OF FISH DISEASES 2023; 46:597-610. [PMID: 36708284 DOI: 10.1111/jfd.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 05/07/2023]
Abstract
Streptococcosis caused by Streptococcus agalactiae and S. iniae is a significant problem that affects the success of tilapia aquaculture industries worldwide. In this critical review, we summarize the applicable practical strategies which may effectively enhance the world tilapia aquaculture development. Recently, the effect of vaccination and selective breeding programmes has been recognized as valuable tools to control the target disease and other consequent negative impacts caused by chemical and drug application. Advances in sequencing and molecular technologies are vital helpful factors with which to develop robust vaccines and increase the selective breeding programme's precision against streptococcosis. The genomic selection for streptococcosis-resistant tilapia strains and crucial genomic application for genomics' contribution to the development of novel Streptococcus vaccine, comparative genomics approach identifying vaccine candidates by reverse vaccinology, and next-generation vaccine design were described. Information from our review is encouraging for practical implementation of the development of vaccination and genomic selection in tilapia for streptococcosis resistance, which may be vital factors to sustain the world tilapia aquaculture industry effectively.
Collapse
Affiliation(s)
- Pattanapon Kayansamruaj
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Nguyen Dinh-Hung
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Prapansak Srisapoome
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Uthairat Na-Nakorn
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Satid Chatchaiphan
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
5
|
Barría A, Peñaloza C, Papadopoulou A, Mahmuddin M, Doeschl‐Wilson A, Benzie JAH, Houston RD, Wiener P. Genetic differentiation following recent domestication events: A study of farmed Nile tilapia ( Oreochromis niloticus) populations. Evol Appl 2023; 16:1220-1235. [PMID: 37360025 PMCID: PMC10286235 DOI: 10.1111/eva.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023] Open
Abstract
Nile tilapia (Oreochromis niloticus) is among the most farmed finfish worldwide, distributed across different environmental conditions. Its wide distribution has mainly been facilitated by several breeding programs and widespread dissemination of genetically improved strains. In the first Nile tilapia study exploiting a whole-genome pooled sequencing (Poolseq) approach, we identified the genetic structure and signatures of selection in diverse, farmed Nile tilapia populations, with a particular focus on the GIFT strain, developed in the 1980s, and currently managed by WorldFish (GIFTw). We also investigated important farmed strains from The Philippines and Africa. Using both SNP array data and Poolseq SNPs, we characterized the population structure of these samples. We observed the greatest separation between the Asian and African populations and greater admixture in the Asian populations than in the African ones. We also established that the SNP array data were able to successfully resolve relationships between these diverse Nile tilapia populations. The Poolseq data identified genomic regions with high levels of differentiation (F ST) between GIFTw and the other populations. Gene ontology terms associated with mesoderm development were significantly enriched in the genes located in these regions. A region on chromosome Oni06 was genetically differentiated in pairwise comparisons between GIFTw and all other populations. This region contains genes associated with muscle-related traits and overlaps with a previously published QTL for fillet yield, suggesting that these traits may have been direct targets for selection on GIFT. A nearby region was also identified using XP-EHH to detect genomic differentiation using the SNP array data. Genomic regions with high or extended homozygosity within each population were also identified. This study provides putative genomic landmarks associated with the recent domestication process in several Nile tilapia populations, which could help to inform their genetic management and improvement.
Collapse
Affiliation(s)
- Agustin Barría
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh Easter BushMidlothianUK
- Present address:
Benchmark Genetics Norway ASBergenNorway
| | - Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh Easter BushMidlothianUK
- Present address:
Benchmark GeneticsMidlothianUK
| | - Athina Papadopoulou
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh Easter BushMidlothianUK
- Center of Environment Fisheries and Aquaculture ScienceWeymouthUK
| | | | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh Easter BushMidlothianUK
| | - John A. H. Benzie
- WorldFishBayan LepasPenangMalaysia
- School of Biological Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh Easter BushMidlothianUK
- Benchmark GeneticsMidlothianUK
| | - Pamela Wiener
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh Easter BushMidlothianUK
| |
Collapse
|
6
|
Nascimento‐Schulze JC, Bean TP, Peñaloza C, Paris JR, Whiting JR, Simon A, Fraser BA, Houston RD, Bierne N, Ellis RP. SNP discovery and genetic structure in blue mussel species using low coverage sequencing and a medium density 60 K SNP-array. Evol Appl 2023; 16:1044-1060. [PMID: 37216031 PMCID: PMC10197230 DOI: 10.1111/eva.13552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Blue mussels from the genus Mytilus are an abundant component of the benthic community, found in the high latitude habitats. These foundation species are relevant to the aquaculture industry, with over 2 million tonnes produced globally each year. Mussels withstand a wide range of environmental conditions and species from the Mytilus edulis complex readily hybridize in regions where their distributions overlap. Significant effort has been made to investigate the consequences of environmental stress on mussel physiology, reproductive isolation, and local adaptation. Yet our understanding on the genomic mechanisms underlying such processes remains limited. In this study, we developed a multi species medium-density 60 K SNP-array including four species of the Mytilus genus. SNPs included in the platform were called from 138 mussels from 23 globally distributed mussel populations, sequenced using a whole-genome low coverage approach. The array contains polymorphic SNPs which capture the genetic diversity present in mussel populations thriving across a gradient of environmental conditions (~59 K SNPs) and a set of published and validated SNPs informative for species identification and for diagnosis of transmissible cancer (610 SNPs). The array will allow the consistent genotyping of individuals, facilitating the investigation of ecological and evolutionary processes in these taxa. The applications of this array extend to shellfish aquaculture, contributing to the optimization of this industry via genomic selection of blue mussels, parentage assignment, inbreeding assessment and traceability. Further applications such as genome wide association studies (GWAS) for key production traits and those related to environmental resilience are especially relevant to safeguard aquaculture production under climate change.
Collapse
Affiliation(s)
- Jennifer C. Nascimento‐Schulze
- Biosciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
- Centre for Environment, Fisheries and Aquaculture ScienceWeymouth LaboratoryWeymouthUK
| | - Tim P. Bean
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Josephine R. Paris
- Biosciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - James R. Whiting
- Biosciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Alexis Simon
- ISEMUniversity of Montpellier, CNRS, IRDMontpellierFrance
| | - Bonnie A. Fraser
- Biosciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | | | - Nicolas Bierne
- ISEMUniversity of Montpellier, CNRS, IRDMontpellierFrance
| | - Robert P. Ellis
- Biosciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
- Centre for Sustainable Aquaculture FuturesUniversity of ExeterExeterUK
| |
Collapse
|
7
|
Animal board invited review: Widespread adoption of genetic technologies is key to sustainable expansion of global aquaculture. Animal 2022; 16:100642. [PMID: 36183431 PMCID: PMC9553672 DOI: 10.1016/j.animal.2022.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
The extent of application of genetic technologies to aquaculture production varies widely by species and geography. Achieving a more universal application of seed derived from scientifically based breeding programmes is an important goal in order to meet increasing global demands for seafood production. This article reviews the status of genetic technologies across the world’s top 10 highly produced species. Opportunities and barriers to achieving broad-scale uptake of genetic technologies in global aquaculture are discussed. A future outlook for potential disruptive genetic technologies and how they might affect global aquaculture production is given.
Aquaculture production comprises a diverse range of species, geographies, and farming systems. The application of genetics and breeding technologies towards improved production is highly variable, ranging from the use of wild-sourced seed through to advanced family breeding programmes augmented by genomic techniques. This technical variation exists across some of the most highly produced species globally, with several of the top ten global species by volume generally lacking well-managed breeding programmes. Given the well-documented incremental and cumulative benefits of genetic improvement on production, this is a major missed opportunity. This short review focusses on (i) the status of application of selective breeding in the world’s most produced aquaculture species, (ii) the range of genetic technologies available and the opportunities they present, and (iii) a future outlook towards realising the potential contribution of genetic technologies to aquaculture sustainability and global food security.
Collapse
|
8
|
Thanh Nguyen D, Hoang Nguyen Q, Thuy Duong N, Vo NS. LmTag: functional-enrichment and imputation-aware tag SNP selection for population-specific genotyping arrays. Brief Bioinform 2022; 23:6627269. [PMID: 35780383 DOI: 10.1093/bib/bbac252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/02/2022] [Accepted: 05/31/2022] [Indexed: 12/16/2022] Open
Abstract
Despite the rapid development of sequencing technology, single-nucleotide polymorphism (SNP) arrays are still the most cost-effective genotyping solutions for large-scale genomic research and applications. Recent years have witnessed the rapid development of numerous genotyping platforms of different sizes and designs, but population-specific platforms are still lacking, especially for those in developing countries. SNP arrays designed for these countries should be cost-effective (small size), yet incorporate key information needed to associate genotypes with traits. A key design principle for most current platforms is to improve genome-wide imputation so that more SNPs not included in the array (imputed SNPs) can be predicted. However, current tag SNP selection methods mostly focus on imputation accuracy and coverage, but not the functional content of the array. It is those functional SNPs that are most likely associated with traits. Here, we propose LmTag, a novel method for tag SNP selection that not only improves imputation performance but also prioritizes highly functional SNP markers. We apply LmTag on a wide range of populations using both public and in-house whole-genome sequencing databases. Our results show that LmTag improved both functional marker prioritization and genome-wide imputation accuracy compared to existing methods. This novel approach could contribute to the next generation genotyping arrays that provide excellent imputation capability as well as facilitate array-based functional genetic studies. Such arrays are particularly suitable for under-represented populations in developing countries or non-model species, where little genomics data are available while investment in genome sequencing or high-density SNP arrays is limited. $\textrm{LmTag}$ is available at: https://github.com/datngu/LmTag.
Collapse
Affiliation(s)
- Dat Thanh Nguyen
- Center for Biomedical Informatics, Vingroup Big Data Institute, 458 Minh Khai, 10000, Hanoi, Vietnam
| | - Quan Hoang Nguyen
- Institute for Molecular Bioscience, University of Queensland, st Lucia, QLD 4067, Brisbane, Australia
| | - Nguyen Thuy Duong
- Center for Biomedical Informatics, Vingroup Big Data Institute, 458 Minh Khai, 10000, Hanoi, Vietnam.,Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 10000, Hanoi, Vietnam
| | - Nam S Vo
- Center for Biomedical Informatics, Vingroup Big Data Institute, 458 Minh Khai, 10000, Hanoi, Vietnam.,College of Engineering and Computer Science, VinUniversity, Vinhomes Ocean Park, 10000, Hanoi, Vietnam
| |
Collapse
|
9
|
Yu X, Joshi R, Gjøen HM, Lv Z, Kent M. Construction of Genetic Linkage Maps From a Hybrid Family of Large Yellow Croaker ( Larimichthys crocea). Front Genet 2022; 12:792666. [PMID: 35047014 PMCID: PMC8762270 DOI: 10.3389/fgene.2021.792666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Consensus and sex-specific genetic linkage maps for large yellow croaker (Larimichthys crocea) were constructed using samples from an F1 family produced by crossing a Daiqu female and a Mindong male. A total of 20,147 single nucleotide polymorphisms (SNPs) by restriction site associated DNA sequencing were assigned to 24 linkage groups (LGs). The total length of the consensus map was 1757.4 centimorgan (cM) with an average marker interval of 0.09 cM. The total length of female and male linkage map was 1533.1 cM and 1279.2 cM, respectively. The average female-to-male map length ratio was 1.2 ± 0.23. Collapsed markers in the genetic maps were re-ordered according to their relative positions in the ASM435267v1 genome assembly to produce integrated genetic linkage maps with 9885 SNPs distributed across the 24 LGs. The recombination pattern of most LGs showed sigmoidal patterns of recombination, with higher recombination in the middle and suppressed recombination at both ends, which corresponds with the presence of sub-telocentric and acrocentric chromosomes in the species. The average recombination rate in the integrated female and male maps was respectively 3.55 cM/Mb and 3.05 cM/Mb. In most LGs, higher recombination rates were found in the integrated female map, compared to the male map, except in LG12, LG16, LG21, LG22, and LG24. Recombination rate profiles within each LG differed between the male and the female, with distinct regions indicating potential recombination hotspots. Separate quantitative trait loci (QTL) and association analyses for growth related traits in 6 months fish were performed, however, no significant QTL was detected. The study indicates that there may be genetic differences between the two strains, which may have implications for the application of DNA-information in the further breeding schemes.
Collapse
Affiliation(s)
- Xinxiu Yu
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway.,National Engineering Research Centre of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | | | - Hans Magnus Gjøen
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Zhenming Lv
- National Engineering Research Centre of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Matthew Kent
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| |
Collapse
|
10
|
Development of Disease-Resistance-Associated Microsatellite DNA Markers for Selective Breeding of Tilapia (Oreochromis spp.) Farmed in Taiwan. Genes (Basel) 2021; 13:genes13010099. [PMID: 35052439 PMCID: PMC8774982 DOI: 10.3390/genes13010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
There are numerous means to improve the tilapia aquaculture industry, and one is to develop disease resistance through selective breeding using molecular markers. In this study, 11 disease-resistance-associated microsatellite markers including 3 markers linked to hamp2, 4 linked to hamp1, 1 linked to pgrn2, 2 linked to pgrn1, and 1 linked to piscidin 4 (TP4) genes were established for tilapia strains farmed in Taiwan after challenge with Streptococcus inae. The correlation analysis of genotypes and survival revealed a total of 55 genotypes related to survival by the chi-square and Z-test. Although fewer markers were found in B and N2 strains compared with A strain, they performed well in terms of disease resistance. It suggested that this may be due to the low potency of some genotypes and the combinatorial arrangement between them. Therefore, a predictive model was built by the genotypes of the parental generation and the mortality rate of different combinations was calculated. The results show the same trend of predicted mortality in the offspring of three new disease-resistant strains as in the challenge experiment. The present findings is a nonkilling method without requiring the selection by challenge with bacteria or viruses and might increase the possibility of utilization of selective breeding using SSR markers in farms.
Collapse
|
11
|
A major quantitative trait locus affecting resistance to Tilapia lake virus in farmed Nile tilapia (Oreochromis niloticus). Heredity (Edinb) 2021; 127:334-343. [PMID: 34262170 PMCID: PMC8405827 DOI: 10.1038/s41437-021-00447-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
Enhancing host resistance to infectious disease has received increasing attention in recent years as a major goal of farm animal breeding programs. Combining field data with genomic tools can provide opportunities to understand the genetic architecture of disease resistance, leading to new opportunities for disease control. In the current study, a genome-wide association study was performed to assess resistance to the Tilapia lake virus (TiLV), one of the biggest threats affecting Nile tilapia (Oreochromis niloticus); a key aquaculture species globally. A pond outbreak of TiLV in a pedigreed population of the GIFT strain was observed, with 950 fish classified as either survivor or mortality, and genotyped using a 65 K SNP array. A significant QTL of large effect was identified on chromosome Oni22. The average mortality rate of tilapia homozygous for the resistance allele at the most significant SNP (P value = 4.51E-10) was 11%, compared to 43% for tilapia homozygous for the susceptibility allele. Several candidate genes related to host response to viral infection were identified within this QTL, including lgals17, vps52, and trim29. These results provide a rare example of a major QTL affecting a trait of major importance to a farmed animal. Genetic markers from the QTL region have potential in marker-assisted selection to improve host resistance, providing a genetic solution to an infectious disease where few other control or mitigation options currently exist.
Collapse
|
12
|
Roberts Kingman GA, Lee D, Jones FC, Desmet D, Bell MA, Kingsley DM. Longer or shorter spines: Reciprocal trait evolution in stickleback via triallelic regulatory changes in Stanniocalcin2a. Proc Natl Acad Sci U S A 2021; 118:e2100694118. [PMID: 34321354 PMCID: PMC8346906 DOI: 10.1073/pnas.2100694118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Vertebrates have repeatedly modified skeletal structures to adapt to their environments. The threespine stickleback is an excellent system for studying skeletal modifications, as different wild populations have either increased or decreased the lengths of their prominent dorsal and pelvic spines in different freshwater environments. Here we identify a regulatory locus that has a major morphological effect on the length of stickleback dorsal and pelvic spines, which we term Maser (major spine enhancer). Maser maps in a closely linked supergene complex that controls multiple armor, feeding, and behavioral traits on chromosome IV. Natural alleles in Maser are differentiated between marine and freshwater sticklebacks; however, alleles found among freshwater populations are also differentiated, with distinct alleles found in short- and long-spined freshwater populations. The distinct freshwater alleles either increase or decrease expression of the bone growth inhibitor gene Stanniocalcin2a in developing spines, providing a simple genetic mechanism for either increasing or decreasing spine lengths in natural populations. Genomic surveys suggest many recurrently differentiated loci in sticklebacks are similarly specialized into three or more distinct alleles, providing multiple ancient standing variants in particular genes that may contribute to a range of phenotypes in different environments.
Collapse
Affiliation(s)
| | - David Lee
- Stanford University School of Humanities and Sciences, Stanford University, Stanford, CA 94305
| | - Felicity C Jones
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Danielle Desmet
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Michael A Bell
- University of California Museum of Paleontology, University of California, Berkeley, CA 94720
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305;
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
13
|
Peñaloza C, Manousaki T, Franch R, Tsakogiannis A, Sonesson AK, Aslam ML, Allal F, Bargelloni L, Houston RD, Tsigenopoulos CS. Development and testing of a combined species SNP array for the European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata). Genomics 2021; 113:2096-2107. [PMID: 33933591 PMCID: PMC8276775 DOI: 10.1016/j.ygeno.2021.04.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/30/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022]
Abstract
SNP arrays are powerful tools for high-resolution studies of the genetic basis of complex traits, facilitating both selective breeding and population genomic research. The European seabass (Dicentrarchus labrax) and the gilthead seabream (Sparus aurata) are the two most important fish species for Mediterranean aquaculture. While selective breeding programmes increasingly underpin stock supply for this industry, genomic selection is not yet widespread. Genomic selection has major potential to expedite genetic gain, particularly for traits practically impossible to measure on selection candidates, such as disease resistance and fillet characteristics. The aim of our study was to design a combined-species 60 K SNP array for European seabass and gilthead seabream, and to test its performance on farmed and wild populations from numerous locations throughout the species range. To achieve this, high coverage Illumina whole-genome sequencing of pooled samples was performed for 24 populations of European seabass and 27 populations of gilthead seabream. This resulted in a database of ~20 million SNPs per species, which were then filtered to identify high-quality variants and create the final set for the development of the ‘MedFish’ SNP array. The array was then tested by genotyping a subset of the discovery populations, highlighting a high conversion rate to functioning polymorphic assays on the array (92% in seabass; 89% in seabream) and repeatability (99.4–99.7%). The platform interrogates ~30 K markers in each species, includes features such as SNPs previously shown to be associated with performance traits, and is enriched for SNPs predicted to have high functional effects on proteins. The array was demonstrated to be effective at detecting population structure across a wide range of fish populations from diverse geographical origins, and to examine the extent of haplotype sharing among Mediterranean farmed fish populations. In conclusion, the new MedFish array enables efficient and accurate high-throughput genotyping for genome-wide distributed SNPs for each fish species, and will facilitate stock management, population genomics approaches, and acceleration of selective breeding through genomic selection. Α 60 K SNP array (MedFish) was designed for European seabass and gilthead seabream from wild and domesticated populations. The array exhibited a high conversion rate (92% in seabass; 89% in seabream) and repeatability (99.4 and 99.7%). The MedFish array is expected to facilitate stock management and acceleration of selective breeding via genomic selection.
Collapse
Affiliation(s)
- C Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - T Manousaki
- Hellenic Centre for Marine Research, Thalassocosmos Gournes Pediados, 71500 Irakleio, Crete, Greece
| | - R Franch
- Padova University, Via Ugo Bassi, 58yB, I-35131 Padova, Italy
| | - A Tsakogiannis
- Hellenic Centre for Marine Research, Thalassocosmos Gournes Pediados, 71500 Irakleio, Crete, Greece
| | - A K Sonesson
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, PO Box 210, N-1432 Ås, Norway
| | - M L Aslam
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, PO Box 210, N-1432 Ås, Norway
| | - F Allal
- MARBEC, University of Montpellier, Ifremer, CNRS, IRD, 34250 Palavas-les-Flots, France
| | - L Bargelloni
- Padova University, Via Ugo Bassi, 58yB, I-35131 Padova, Italy
| | - R D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK.
| | - C S Tsigenopoulos
- Hellenic Centre for Marine Research, Thalassocosmos Gournes Pediados, 71500 Irakleio, Crete, Greece.
| |
Collapse
|
14
|
Joshi R, Skaarud A, Alvarez AT, Moen T, Ødegård J. Bayesian genomic models boost prediction accuracy for survival to Streptococcus agalactiae infection in Nile tilapia (Oreochromus nilioticus). Genet Sel Evol 2021; 53:37. [PMID: 33882834 PMCID: PMC8058985 DOI: 10.1186/s12711-021-00629-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Streptococcosis is a major bacterial disease in Nile tilapia that is caused by Streptococcus agalactiae infection, and development of resistant strains of Nile tilapia represents a sustainable approach towards combating this disease. In this study, we performed a controlled disease trial on 120 full-sib families to (i) quantify and characterize the potential of genomic selection for survival to S. agalactiae infection in Nile tilapia, and (ii) identify the best genomic model and the optimal density of single nucleotide polymorphisms (SNPs) for this trait. Methods In total, 40 fish per family (15 fish intraperitoneally injected and 25 fish as cohabitants) were used in the challenge test. Mortalities were recorded every 3 h for 35 days. After quality control, genotypes (50,690 SNPs) and phenotypes (0 for dead and 1 for alive) for 2472 cohabitant fish were available. Genetic parameters were obtained using various genomic selection models (genomic best linear unbiased prediction (GBLUP), BayesB, BayesC, BayesR and BayesS) and a traditional pedigree-based model (PBLUP). The pedigree-based analysis used a deep 17-generation pedigree. Prediction accuracy and bias were evaluated using five replicates of tenfold cross-validation. The genomic models were further analyzed using 10 subsets of SNPs at different densities to explore the effect of pruning and SNP density on predictive accuracy. Results Moderate estimates of heritabilities ranging from 0.15 ± 0.03 to 0.26 ± 0.05 were obtained with the different models. Compared to a pedigree-based model, GBLUP (using all the SNPs) increased prediction accuracy by 15.4%. Furthermore, use of the most appropriate Bayesian genomic selection model and SNP density increased the prediction accuracy up to 71%. The 40 to 50 SNPs with non-zero effects were consistent for all BayesB, BayesC and BayesS models with respect to marker id and/or marker locations. Conclusions These results demonstrate the potential of genomic selection for survival to S. agalactiae infection in Nile tilapia. Compared to the PBLUP and GBLUP models, Bayesian genomic models were found to boost the prediction accuracy significantly. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00629-y.
Collapse
Affiliation(s)
- Rajesh Joshi
- GenoMar Genetics AS, Tjuvholmen allé 11, 0252, Oslo, Norway.
| | - Anders Skaarud
- GenoMar Genetics AS, Tjuvholmen allé 11, 0252, Oslo, Norway
| | | | - Thomas Moen
- AquaGen AS, Sluppen, P.O. Box 1240, 7462, Trondheim, Norway
| | - Jørgen Ødegård
- AquaGen AS, Sluppen, P.O. Box 1240, 7462, Trondheim, Norway
| |
Collapse
|
15
|
Abstract
Chromosome size and morphology vary within and among species, but little is known about the proximate or ultimate causes of these differences. Cichlid fish species in the tribe Oreochromini share an unusual giant chromosome that is ∼3 times longer than the other chromosomes. This giant chromosome functions as a sex chromosome in some of these species. We test two hypotheses of how this giant sex chromosome may have evolved. The first hypothesis proposes that it evolved by accumulating repetitive elements as recombination was reduced around a dominant sex determination locus, as suggested by canonical models of sex chromosome evolution. An alternative hypothesis is that the giant sex chromosome originated via the fusion of an autosome with a highly repetitive B chromosome, one of which carried a sex determination locus. We test these hypotheses using comparative analysis of chromosome-scale cichlid and teleost genomes. We find that the giant sex chromosome consists of three distinct regions based on patterns of recombination, gene and transposable element content, and synteny to the ancestral autosome. The WZ sex determination locus encompasses the last ∼105 Mb of the 134-Mb giant chromosome. The last 47 Mb of the giant chromosome shares no obvious homology to any ancestral chromosome. Comparisons across 69 teleost genomes reveal that the giant sex chromosome contains unparalleled amounts of endogenous retroviral elements, immunoglobulin genes, and long noncoding RNAs. The results favor the B chromosome fusion hypothesis for the origin of the giant chromosome.
Collapse
Affiliation(s)
- Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Frances E Clark
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Reade B Roberts
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Luohao Xu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Qi Zhou
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
16
|
Yoshikawa S, Hamasaki M, Kadomura K, Yamada T, Chuda H, Kikuchi K, Hosoya S. Genetic Dissection of a Precocious Phenotype in Male Tiger Pufferfish (Takifugu rubripes) using Genotyping by Random Amplicon Sequencing, Direct (GRAS-Di). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:177-188. [PMID: 33599909 PMCID: PMC8032607 DOI: 10.1007/s10126-020-10013-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The novel non-targeted PCR-based genotyping system, namely Genotyping by Random Amplicon Sequencing, Direct (GRAS-Di), is characterized by the simplicity in library construction and robustness against DNA degradation and is expected to facilitate advancements in genetics, in both basic and applied sciences. In this study, we tested the utility of GRAS-Di for genetic analysis in a cultured population of the tiger pufferfish Takifugu rubripes. The genetic analyses included family structure analysis, genetic map construction, and quantitative trait locus (QTL) analysis for the male precocious phenotype using a population consisting of four full-sib families derived from a genetically precocious line. An average of 4.7 million raw reads were obtained from 198 fish. Trimmed reads were mapped onto a Fugu reference genome for genotyping, and 21,938 putative single-nucleotide polymorphisms (SNPs) were obtained. These 22 K SNPs accurately resolved the sibship and parent-offspring pairs. A fine-scale linkage map (total size: 1,949 cM; average interval: 1.75 cM) was constructed from 1,423 effective SNPs, for which the allele inheritance patterns were known. QTL analysis detected a significant locus for testes weight on Chr_14 and three suggestive loci on Chr_1, Chr_8, and Chr_19. The significant QTL was shared by body length and body weight. The effect of each QTL was small (phenotypic variation explained, PVE: 3.1-5.9%), suggesting that the precociousness seen in the cultured pufferfish is polygenic. Taken together, these results indicate that GRAS-Di is a practical genotyping tool for aquaculture species and applicable for molecular breeding programs, such as marker-assisted selection and genomic selection.
Collapse
Affiliation(s)
- Sota Yoshikawa
- Nagasaki Prefectural Institute of Fisheries, Nagasaki, Japan
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Shizuoka, Japan
| | | | | | | | - Hisashi Chuda
- Aquaculture Research Institute, Kindai University, Wakayama, Japan
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Shizuoka, Japan
| | - Sho Hosoya
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Shizuoka, Japan.
| |
Collapse
|
17
|
Hu Q, Liu Y, Liao X, Tian H, Ji X, Zhu J, Xiao H. A high-density genetic map construction and sex-related loci identification in Chinese Giant salamander. BMC Genomics 2021; 22:230. [PMID: 33794798 PMCID: PMC8017863 DOI: 10.1186/s12864-021-07550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 03/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Chinese giant salamander Andrias davidianus is an important amphibian species in China because of its increasing economic value, protection status and special evolutionary position from aquatic to terrestrial animal. Its large genome presents challenges to genetic research. Genetic linkage mapping is an important tool for genome assembly and determination of phenotype-related loci. RESULTS In this study, we constructed a high-density genetic linkage map using ddRAD sequencing technology to obtain SNP genotyping data of members from an full-sib family which sex had been determined. A total of 10,896 markers were grouped and oriented into 30 linkage groups, representing 30 chromosomes of A. davidianus. The genetic length of LGs ranged from 17.61 cM (LG30) to 280.81 cM (LG1), with a mean inter-locus distance ranging from 0.11(LG3) to 0.48 cM (LG26). The total genetic map length was 2643.10 cM with an average inter-locus distance of 0.24 cM. Three sex-related loci and four sex-related markers were found on LG6 and LG23, respectively. CONCLUSION We constructed the first High-density genetic linkage map and identified three sex-related loci in the Chinese giant salamander. Current results are expected to be a useful tool for future genomic studies aiming at the marker-assisted breeding of the species.
Collapse
Affiliation(s)
- Qiaomu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, Hubei, China.
| | - Yang Liu
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiaolin Liao
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, 430079, China
| | - Haifeng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, Hubei, China
| | - Xiangshan Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Jiajie Zhu
- Guangxi Academy of Fishery Sciences, Nanning, 530021, Guangxi Province, China
| | - Hanbing Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, Hubei, China
| |
Collapse
|
18
|
Yoshida GM, Yáñez JM. Multi-trait GWAS using imputed high-density genotypes from whole-genome sequencing identifies genes associated with body traits in Nile tilapia. BMC Genomics 2021; 22:57. [PMID: 33451291 PMCID: PMC7811220 DOI: 10.1186/s12864-020-07341-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
Background Body traits are generally controlled by several genes in vertebrates (i.e. polygenes), which in turn make them difficult to identify through association mapping. Increasing the power of association studies by combining approaches such as genotype imputation and multi-trait analysis improves the ability to detect quantitative trait loci associated with polygenic traits, such as body traits. Results A multi-trait genome-wide association study (mtGWAS) was performed to identify quantitative trait loci (QTL) and genes associated with body traits in Nile tilapia (Oreochromis niloticus) using genotypes imputed to whole-genome sequences (WGS). To increase the statistical power of mtGWAS for the detection of genetic associations, summary statistics from single-trait genome-wide association studies (stGWAS) for eight different body traits recorded in 1309 animals were used. The mtGWAS increased the statistical power from the original sample size from 13 to 44%, depending on the trait analyzed. The better resolution of the WGS data, combined with the increased power of the mtGWAS approach, allowed the detection of significant markers which were not previously found in the stGWAS. Some of the lead single nucleotide polymorphisms (SNPs) were found within important functional candidate genes previously associated with growth-related traits in other terrestrial species. For instance, we identified SNP within the α1,6-fucosyltransferase (FUT8), solute carrier family 4 member 2 (SLC4A2), A disintegrin and metalloproteinase with thrombospondin motifs 9 (ADAMTS9) and heart development protein with EGF like domains 1 (HEG1) genes, which have been associated with average daily gain in sheep, osteopetrosis in cattle, chest size in goats, and growth and meat quality in sheep, respectively. Conclusions The high-resolution mtGWAS presented here allowed the identification of significant SNPs, linked to strong functional candidate genes, associated with body traits in Nile tilapia. These results provide further insights about the genetic variants and genes underlying body trait variation in cichlid fish with high accuracy and strong statistical support. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07341-z.
Collapse
Affiliation(s)
- Grazyella M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile. .,Núcleo Milenio INVASAL, Concepción, Chile.
| |
Collapse
|
19
|
Zhou T, Chen B, Ke Q, Zhao J, Pu F, Wu Y, Chen L, Zhou Z, Bai Y, Pan Y, Gong J, Zheng W, Xu P. Development and Evaluation of a High-Throughput Single-Nucleotide Polymorphism Array for Large Yellow Croaker ( Larimichthys crocea). Front Genet 2020; 11:571751. [PMID: 33193675 PMCID: PMC7645154 DOI: 10.3389/fgene.2020.571751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022] Open
Abstract
High-density single-nucleotide polymorphism (SNP) genotyping array is an essential tool for genetic analyses of animals and plants. Large yellow croaker (Larimichthys crocea) is one of the most commercially important marine fish species in China. Although plenty of SNPs have been identified in large yellow croaker, no high-throughput genotyping array is available. In this study, a high-throughput SNP array named NingXin-I with 600K SNPs was developed and evaluated. A set of 82 large yellow croakers were collected from different locations of China and re-sequenced. A total of 9.34M SNPs were identified by mapping sequence reads to the large yellow croaker reference genome. About 1.98M candidate SNPs were selected for further analyses by using criteria such as SNP quality score and conversion performance in the final array. Finally, 579.5K SNPs evenly distributed across the large yellow croaker genome with an average spacing of 1.19 kb were proceeded to array production. The performance of NingXin-I array was evaluated in 96 large yellow croaker individuals from five populations, and 83.38% SNPs on the array were polymorphic sites. A further test of the NingXin-I array in five closely related species in Sciaenidae identified 26.68–56.23% polymorphic SNP rate across species. A phylogenetic tree inferred by using the genotype data generated by NingXin-I confirmed the phylogenetic distance of the species in Sciaenidae. The performance of NingXin-I in large yellow croaker and the other species in Sciaenidae suggested high accuracy and broad application. The NingXin-I array should be valuable for quantitative genetic studies, such as genome-wide association studies (GWASs), high-density linkage map construction, haplotype analysis, and genome-based selection.
Collapse
Affiliation(s)
- Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Baohua Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiaozhen Ke
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Ji Zhao
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fei Pu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yidi Wu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lin Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yulin Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ying Pan
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Jie Gong
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Weiqiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| |
Collapse
|
20
|
Joshi R, Skaaurd A, Tola Alvarez A. Experimental validation of genetic selection for resistance against Streptococcus agalactiae via different routes of infection in the commercial Nile tilapia breeding programme. J Anim Breed Genet 2020; 138:338-348. [PMID: 33079402 DOI: 10.1111/jbg.12516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/08/2020] [Accepted: 09/30/2020] [Indexed: 11/29/2022]
Abstract
The objective of this study was to validate the genetic selection for resistance to streptococcosis under experimental challenge conditions in a commercial population of Nile tilapia. Further, effects of using two different routes of infection of Streptococcus agalactiae; intraperitoneal injection (IP) and cohabitation with the shedder fish (cohab), on the genomic parameters, prediction accuracy and response to selection are compared. The comparison was made between two different lines of fish; one selected for S. agalactiae resistance for one generation and randomly mated for two generations (to mimic the multiplication activities occurring in distribution channels and hatcheries); and the other unselected. 1,500 fish, each from these two lines, were used for the experimental challenge test. Survival analysis using Kaplan-Meier estimators and Hazard's ratio was used to quantify differences in mortality between the two lines. Further genomic analysis was performed with 2,684 fish and 35,745 SNPs using both univariate and bivariate GBLUP models. Genetic selection for resistance to S. agalactiae led to the significant (p < .001) reduction in the risk of death by 65% in the selected line, compared to the unselected line. Similarly, the risk of death via cohabitation route of infection significantly (p < .01) decreased by 80%, compared to IP. The genetic correlation between these two routes of infection was ~0.9. Genetic selection changed the impact of the routes of infection, with the change in the distribution of estimated breeding values and the gain of 3.04 ± 1.25 days as selection response (p < .05).
Collapse
|
21
|
Yáñez JM, Joshi R, Yoshida GM. Genomics to accelerate genetic improvement in tilapia. Anim Genet 2020; 51:658-674. [PMID: 32761644 DOI: 10.1111/age.12989] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
Selective breeding of tilapia populations started in the early 1990s and over the past three decades tilapia has become one of the most important farmed freshwater species, being produced in more than 125 countries around the globe. Although genome assemblies have been available since 2011, most of the tilapia industry still depends on classical selection techniques using mass spawning or pedigree information to select for growth traits with reported genetic gains of up to 20% per generation. The involvement of international breeding companies and research institutions has resulted in the rapid development and application of genomic resources in the last few years. GWAS and genomic selection are expected to contribute to uncovering the genetic variants involved in economically relevant traits and increasing the genetic gain in selective breeding programs, respectively. Developments over the next few years will probably focus on achieving a deep understanding of genetic architecture of complex traits, as well as accelerating genetic progress in the selection for growth-, quality- and robustness-related traits. Novel phenotyping technologies (i.e. phenomics), lower-cost whole-genome sequencing approaches, functional genomics and gene editing tools will be crucial in future developments for the improvement of tilapia aquaculture.
Collapse
Affiliation(s)
- J M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av Santa Rosa 11735, La Pintana, Santiago, 8820808, Chile.,Núcleo Milenio INVASAL, Casilla 160-C, Concepción, Chile
| | - R Joshi
- GenoMar Genetics AS, Bolette Brygge 1, Oslo, 0252, Norway
| | - G M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av Santa Rosa 11735, La Pintana, Santiago, 8820808, Chile
| |
Collapse
|
22
|
Development and Validation of an Open Access SNP Array for Nile Tilapia ( Oreochromis niloticus). G3-GENES GENOMES GENETICS 2020; 10:2777-2785. [PMID: 32532799 PMCID: PMC7407453 DOI: 10.1534/g3.120.401343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tilapia are among the most important farmed fish species worldwide, and are fundamental for the food security of many developing countries. Several genetically improved Nile tilapia (Oreochromis niloticus) strains exist, such as the iconic Genetically Improved Farmed Tilapia (GIFT), and breeding programs typically follow classical pedigree-based selection. The use of genome-wide single-nucleotide polymorphism (SNP) data can enable an understanding of the genetic architecture of economically important traits and the acceleration of genetic gain via genomic selection. Due to the global importance and diversity of Nile tilapia, an open access SNP array would be beneficial for aquaculture research and production. In the current study, a ∼65K SNP array was designed based on SNPs discovered from whole-genome sequence data from a GIFT breeding nucleus population and the overlap with SNP datasets from wild fish populations and several other farmed Nile tilapia strains. The SNP array was applied to clearly distinguish between different tilapia populations across Asia and Africa, with at least ∼30,000 SNPs segregating in each of the diverse population samples tested. It is anticipated that this SNP array will be an enabling tool for population genetics and tilapia breeding research, facilitating consistency and comparison of results across studies.
Collapse
|
23
|
Construction of a high density linkage map in Oil Palm using SPET markers. Sci Rep 2020; 10:9998. [PMID: 32561804 PMCID: PMC7305113 DOI: 10.1038/s41598-020-67118-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/01/2020] [Indexed: 11/08/2022] Open
Abstract
A high-density genetic linkage map from a controlled cross of two oil palm (Elaeis guineensis) genotypes was constructed based on Single Primer Enrichment Technology (SPET) markers. A 5K panel of hybridization probes were used for this purpose which was derived from previously developed SNP primers in oil palm. Initially, 13,384 SNPs were detected which were reduced to 13,073 SNPs after filtering for only bi-allelic SNP. Around 75% of the markers were found to be monomorphic in the progeny, reducing the markers left for linkage mapping to 3,501. Using Lep-MAP3 software, a linkage map was constructed which contained initially 2,388 markers and had a total length of 1,370 cM. In many cases several adjacent SNP were located on the same locus, due to missing recombination events between them, leading to a total of 1,054 loci on the 16 LG. Nevertheless, the marker density of 1.74 markers per cM (0.57 cM/marker) should allow the detection of QTLs in the future. This study shows that cost efficient SPET markers are suitable for linkage map construction in oil palm and probably, also in other species.
Collapse
|
24
|
Yáñez JM, Yoshida G, Barria A, Palma-Véjares R, Travisany D, Díaz D, Cáceres G, Cádiz MI, López ME, Lhorente JP, Jedlicki A, Soto J, Salas D, Maass A. High-Throughput Single Nucleotide Polymorphism (SNP) Discovery and Validation Through Whole-Genome Resequencing in Nile Tilapia (Oreochromis niloticus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:109-117. [PMID: 31938972 DOI: 10.1007/s10126-019-09935-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Nile tilapia (Oreochromis niloticus) is the second most important farmed fish in the world and a sustainable source of protein for human consumption. Several genetic improvement programs have been established for this species in the world. Currently, the estimation of genetic merit of breeders is typically based on genealogical and phenotypic information. Genome-wide information can be exploited to efficiently incorporate traits that are difficult to measure into the breeding goal. Thus, single nucleotide polymorphisms (SNPs) are required to investigate phenotype-genotype associations and determine the genomic basis of economically important traits. We performed de novo SNP discovery in three different populations of farmed Nile tilapia. A total of 29.9 million non-redundant SNPs were identified through Illumina (HiSeq 2500) whole-genome resequencing of 326 individual samples. After applying several filtering steps, including removing SNP based on genotype and site quality, presence of Mendelian errors, and non-unique position in the genome, a total of 50,000 high-quality SNPs were selected for the development of a custom Illumina BeadChip SNP panel. These SNPs were highly informative in the three populations analyzed showing between 43,869 (94%) and 46,139 (99%) SNPs in Hardy-Weinberg Equilibrium; 37,843 (76%) and 45,171(90%) SNPs with a minor allele frequency (MAF) higher than 0.05; and 43,450 (87%) and 46,570 (93%) SNPs with a MAF higher than 0.01. The 50K SNP panel developed in the current work will be useful for the dissection of economically relevant traits, enhancing breeding programs through genomic selection, as well as supporting genetic studies in farmed populations of Nile tilapia using dense genome-wide information.
Collapse
Affiliation(s)
- José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.
- Núcleo Milenio INVASAL, Concepción, Chile.
| | - Grazyella Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Benchmark Genetics Chile, Puerto Montt, Chile
| | - Agustín Barria
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Ricardo Palma-Véjares
- Centro para la Regulación del Genoma, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Dante Travisany
- Centro para la Regulación del Genoma, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Diego Díaz
- Centro para la Regulación del Genoma, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Giovanna Cáceres
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María I Cádiz
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María E López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Ana Jedlicki
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - José Soto
- Grupo Acuacorporacion, Internacional (GACI), Cañas, Costa Rica
| | - Diego Salas
- Grupo Acuacorporacion, Internacional (GACI), Cañas, Costa Rica
| | - Alejandro Maass
- Centro para la Regulación del Genoma, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| |
Collapse
|
25
|
Joshi R, Meuwissen THE, Woolliams JA, Gjøen HM. Genomic dissection of maternal, additive and non-additive genetic effects for growth and carcass traits in Nile tilapia. Genet Sel Evol 2020; 52:1. [PMID: 31941436 PMCID: PMC6964056 DOI: 10.1186/s12711-019-0522-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022] Open
Abstract
Background The availability of both pedigree and genomic sources of information for animal breeding and genetics has created new challenges in understanding how they can be best used and interpreted. This study estimated genetic variance components based on genomic information and compared these to the variance components estimated from pedigree alone in a population generated to estimate non-additive genetic variance. Furthermore, the study examined the impact of the assumptions of Hardy–Weinberg equilibrium (HWE) on estimates of genetic variance components. For the first time, the magnitude of inbreeding depression for important commercial traits in Nile tilapia was estimated by using genomic data. Results The study estimated the non-additive genetic variance in a Nile tilapia population of full-sib families and, when present, it was almost entirely represented by additive-by-additive epistatic variance, although in pedigree studies this non-additive variance is commonly assumed to arise from dominance. For body depth (BD) and body weight at harvest (BWH), the proportion of additive-by-additive epistatic to phenotypic variance was estimated to be 0.15 and 0.17 using genomic data (P < 0.05). In addition, with genomic data, the maternal variance (P < 0.05) for BD, BWH, body length (BL) and fillet weight (FW) explained approximately 10% of the phenotypic variances, which was comparable to pedigree-based estimates. The study also showed the detrimental effects of inbreeding on commercial traits of tilapia, which was estimated to reduce trait values by 1.1, 0.9, 0.4 and 0.3% per 1% increase in the individual homozygosity for FW, BWH, BD and BL, respectively. The presence of inbreeding depression but lack of dominance variance was consistent with an infinitesimal dominance model for the traits. Conclusions The benefit of including non-additive genetic effects for genetic evaluations in tilapia breeding schemes is not evident from these findings, but the observed inbreeding depression points to a role for reciprocal recurrent selection. Commercially, this conclusion will depend on the scheme’s operational costs and resources. The creation of maternal lines in Tilapia breeding schemes may be a possibility if the variation associated with maternal effects is heritable.
Collapse
Affiliation(s)
- Rajesh Joshi
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
| | - Theo H E Meuwissen
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - John A Woolliams
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.,The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Hans M Gjøen
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| |
Collapse
|
26
|
Lind CE, Agyakwah SK, Attipoe FY, Nugent C, Crooijmans RPMA, Toguyeni A. Genetic diversity of Nile tilapia (Oreochromis niloticus) throughout West Africa. Sci Rep 2019; 9:16767. [PMID: 31727970 PMCID: PMC6856548 DOI: 10.1038/s41598-019-53295-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/29/2019] [Indexed: 01/17/2023] Open
Abstract
Nile tilapia (Oreochromis niloticus) is a globally significant aquaculture species rapidly gaining status as a farmed commodity. In West Africa, wild Nile tilapia genetic resources are abundant yet knowledge of fine-scale population structure and patterns of natural genetic variation are limited. Coinciding with this is a burgeoning growth in tilapia aquaculture in Ghana and other countries within the region underpinned by locally available genetic resources. Using 192 single nucleotide polymorphism (SNP) markers this study conducted a genetic survey of Nile tilapia throughout West Africa, sampling 23 wild populations across eight countries (Benin, Burkina Faso, Côte d’Ivoire, Ghana, Togo, Mali, Gambia and Senegal), representing the major catchments of the Volta, Niger, Senegal and Gambia River basins. A pattern of isolation-by-distance and significant spatial genetic structure was identified throughout West Africa (Global FST = 0.144), which largely corresponds to major river basins and, to a lesser extent, sub-basins. Two populations from the Gambia River (Kudang and Walekounda), one from the western Niger River (Lake Sélingué) and one from the upper Red Volta River (Kongoussi) showed markedly lower levels of diversity and high genetic differentiation compared to all other populations, suggesting genetically isolated populations occurring across the region. Genetic structure within the Volta Basin did not always follow the pattern expected for sub-river basins. This study identifies clear genetic structuring and differentiation amongst West African Nile tilapia populations, which concur with broad patterns found in previous studies. In addition, we provide new evidence for fine-scale genetic structuring within the Volta Basin and previously unidentified genetic differences of populations in Gambia. The 192 SNP marker suite used in this study is a useful tool for differentiating tilapia populations and we recommend incorporating this marker suite into future population screening of O. niloticus. Our results form the basis of a solid platform for future research on wild tilapia genetic resources in West Africa, and the identification of potentially valuable germplasm for use in ongoing breeding programs for aquaculture.
Collapse
Affiliation(s)
- Curtis E Lind
- WorldFish, Jalan Batu Maung, Batu Maung, 11960, Bayan Lepas, Penang, Malaysia. .,CSIRO Agriculture & Food, Castray Esplanade, Hobart, Australia.
| | - Seth K Agyakwah
- Aquaculture Research and Development Center (ARDEC), CSIR-Water Research Institute, PO Box 139, Akosombo, Ghana
| | - Felix Y Attipoe
- Aquaculture Research and Development Center (ARDEC), CSIR-Water Research Institute, PO Box 139, Akosombo, Ghana
| | - Christopher Nugent
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | | | - Aboubacar Toguyeni
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES) 01 BP 454 Bobo-Dioulasso 01, Bobo-Dioulasso, Burkina Faso.,Université Nazi BONI (UNB) 01 BP 1091 Bobo-Dioulasso 01, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
27
|
Lind CE, Agyakwah SK, Attipoe FY, Nugent C, Crooijmans RPMA, Toguyeni A. Genetic diversity of Nile tilapia (Oreochromis niloticus) throughout West Africa. Sci Rep 2019. [PMID: 31727970 DOI: 10.1038/s41598-019-53295-y.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Nile tilapia (Oreochromis niloticus) is a globally significant aquaculture species rapidly gaining status as a farmed commodity. In West Africa, wild Nile tilapia genetic resources are abundant yet knowledge of fine-scale population structure and patterns of natural genetic variation are limited. Coinciding with this is a burgeoning growth in tilapia aquaculture in Ghana and other countries within the region underpinned by locally available genetic resources. Using 192 single nucleotide polymorphism (SNP) markers this study conducted a genetic survey of Nile tilapia throughout West Africa, sampling 23 wild populations across eight countries (Benin, Burkina Faso, Côte d'Ivoire, Ghana, Togo, Mali, Gambia and Senegal), representing the major catchments of the Volta, Niger, Senegal and Gambia River basins. A pattern of isolation-by-distance and significant spatial genetic structure was identified throughout West Africa (Global FST = 0.144), which largely corresponds to major river basins and, to a lesser extent, sub-basins. Two populations from the Gambia River (Kudang and Walekounda), one from the western Niger River (Lake Sélingué) and one from the upper Red Volta River (Kongoussi) showed markedly lower levels of diversity and high genetic differentiation compared to all other populations, suggesting genetically isolated populations occurring across the region. Genetic structure within the Volta Basin did not always follow the pattern expected for sub-river basins. This study identifies clear genetic structuring and differentiation amongst West African Nile tilapia populations, which concur with broad patterns found in previous studies. In addition, we provide new evidence for fine-scale genetic structuring within the Volta Basin and previously unidentified genetic differences of populations in Gambia. The 192 SNP marker suite used in this study is a useful tool for differentiating tilapia populations and we recommend incorporating this marker suite into future population screening of O. niloticus. Our results form the basis of a solid platform for future research on wild tilapia genetic resources in West Africa, and the identification of potentially valuable germplasm for use in ongoing breeding programs for aquaculture.
Collapse
Affiliation(s)
- Curtis E Lind
- WorldFish, Jalan Batu Maung, Batu Maung, 11960, Bayan Lepas, Penang, Malaysia. .,CSIRO Agriculture & Food, Castray Esplanade, Hobart, Australia.
| | - Seth K Agyakwah
- Aquaculture Research and Development Center (ARDEC), CSIR-Water Research Institute, PO Box 139, Akosombo, Ghana
| | - Felix Y Attipoe
- Aquaculture Research and Development Center (ARDEC), CSIR-Water Research Institute, PO Box 139, Akosombo, Ghana
| | - Christopher Nugent
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | | | - Aboubacar Toguyeni
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES) 01 BP 454 Bobo-Dioulasso 01, Bobo-Dioulasso, Burkina Faso.,Université Nazi BONI (UNB) 01 BP 1091 Bobo-Dioulasso 01, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
28
|
An SNP-Based Genetic Map and QTL Mapping for Growth Traits in the Red-Spotted Grouper ( Epinephelus akaara). Genes (Basel) 2019; 10:genes10100793. [PMID: 31614822 PMCID: PMC6826704 DOI: 10.3390/genes10100793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
The red-spotted grouper (Epinephelus akaara) is one of the most commercially important aquatic species in China. However, its seedstock has low larval survival rates, and its stability is confronted with the danger of overexploitation. In this study, a high-density genetic map was constructed using 3435 single nucleotide polymorphisms (SNPs) from 142 first generation (F1) full-sib offspring and two parents of a red-spotted grouper population. The total genetic length of the map was 2300.12 cM with an average intermarker distance of 0.67 cM. Seventeen genome-wide significant quantitative trait loci (QTLs) for growth-related traits were detected on 24 linkage groups, including 5 QTLs for full length, 7 QTLs for body length, and 5 QTLs for body weight. The contribution values of explained phenotypic variance ranged from 10.7% to 12.9%. Moreover, 13 potential candidate genes for growth-related traits were identified. Collectively, these findings will be useful for conducting marker-assisted selection of the red-spotted grouper in future studies.
Collapse
|
29
|
Cáceres G, López ME, Cádiz MI, Yoshida GM, Jedlicki A, Palma-Véjares R, Travisany D, Díaz-Domínguez D, Maass A, Lhorente JP, Soto J, Salas D, Yáñez JM. Fine Mapping Using Whole-Genome Sequencing Confirms Anti-Müllerian Hormone as a Major Gene for Sex Determination in Farmed Nile Tilapia ( Oreochromis niloticus L.). G3 (BETHESDA, MD.) 2019; 9:3213-3223. [PMID: 31416805 PMCID: PMC6778786 DOI: 10.1534/g3.119.400297] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
Abstract
Nile tilapia (Oreochromis niloticus) is one of the most cultivated and economically important species in world aquaculture. Intensive production promotes the use of monosex animals, due to an important dimorphism that favors male growth. Currently, the main mechanism to obtain all-male populations is the use of hormones in feeding during larval and fry phases. Identifying genomic regions associated with sex determination in Nile tilapia is a research topic of great interest. The objective of this study was to identify genomic variants associated with sex determination in three commercial populations of Nile tilapia. Whole-genome sequencing of 326 individuals was performed, and a total of 2.4 million high-quality bi-allelic single nucleotide polymorphisms (SNPs) were identified after quality control. A genome-wide association study (GWAS) was conducted to identify markers associated with the binary sex trait (males = 1; females = 0). A mixed logistic regression GWAS model was fitted and a genome-wide significant signal comprising 36 SNPs, spanning a genomic region of 536 kb in chromosome 23 was identified. Ten out of these 36 genetic variants intercept the anti-Müllerian (Amh) hormone gene. Other significant SNPs were located in the neighboring Amh gene region. This gene has been strongly associated with sex determination in several vertebrate species, playing an essential role in the differentiation of male and female reproductive tissue in early stages of development. This finding provides useful information to better understand the genetic mechanisms underlying sex determination in Nile tilapia.
Collapse
Affiliation(s)
- Giovanna Cáceres
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago, Chile
| | - María E López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - María I Cádiz
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago, Chile
| | - Grazyella M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Benchmark Genetics Chile, Puerto Montt, Chile
| | - Ana Jedlicki
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Ricardo Palma-Véjares
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Dante Travisany
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Diego Díaz-Domínguez
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Alejandro Maass
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | | | - Jose Soto
- Grupo Acuacorporación Internacional (GACI), Cañas, Costa Rica, and
| | - Diego Salas
- Grupo Acuacorporación Internacional (GACI), Cañas, Costa Rica, and
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile,
- Núcleo Milenio INVASAL, Concepción, Chile
| |
Collapse
|
30
|
Yoshida GM, Barria A, Correa K, Cáceres G, Jedlicki A, Cadiz MI, Lhorente JP, Yáñez JM. Genome-Wide Patterns of Population Structure and Linkage Disequilibrium in Farmed Nile Tilapia ( Oreochromis niloticus). Front Genet 2019; 10:745. [PMID: 31552083 PMCID: PMC6737105 DOI: 10.3389/fgene.2019.00745] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 07/16/2019] [Indexed: 01/29/2023] Open
Abstract
Nile tilapia (Oreochromis niloticus) is one of the most produced farmed fish in the world and represents an important source of protein for human consumption. Farmed Nile tilapia populations are increasingly based on genetically improved stocks, which have been established from admixed populations. To date, there is scarce information about the population genomics of farmed Nile tilapia, assessed by dense single nucleotide polymorphism (SNP) panels. The patterns of linkage disequilibrium (LD) may affect the success of genome-wide association studies (GWAS) and genomic selection (GS), and also provide key information about demographic history of farmed Nile tilapia populations. The objectives of this study were to provide further knowledge about the population structure and LD patterns, as well as, estimate the effective population size (N e ) for three farmed Nile tilapia populations, one from Brazil (POP A) and two from Costa Rica (POP B and POP C). A total of 55 individuals from each population, were genotyped using a 50K SNP panel selected from a whole-genome sequencing (WGS) experiment. The first two principal components explained about 20% of the total variation and clearly differentiated between the three populations. Population genetic structure analysis showed evidence of admixture, especially for POP C. The contemporary N e estimated, based on LD values, ranged from 78 to 159. No differences were observed in the LD decay among populations, with a rapid decrease of r 2 with increasing inter-marker distance. Average r 2 between adjacent SNP pairs ranged from 0.19 to 0.03 for both POP A and C, and 0.20 to 0.03 f or POP B. Based on the number of independent chromosome segments in the Nile tilapia genome, at least 9.4, 7.6, and 4.6K SNPs for POP A, POP B, and POP C respectively, are required for the implementation of GS in the present farmed Nile tilapia populations.
Collapse
Affiliation(s)
- Grazyella M. Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Benchmark Genetics Chile, Puerto Montt, Chile
| | - Agustín Barria
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | | | - Giovanna Cáceres
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Ana Jedlicki
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María I. Cadiz
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | | | - José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Benchmark Genetics Chile, Puerto Montt, Chile
- Nucleo Milenio INVASAL, Concepción, Chile
| |
Collapse
|
31
|
Yoshida GM, Lhorente JP, Correa K, Soto J, Salas D, Yáñez JM. Genome-Wide Association Study and Cost-Efficient Genomic Predictions for Growth and Fillet Yield in Nile Tilapia ( Oreochromis niloticus). G3 (BETHESDA, MD.) 2019; 9:2597-2607. [PMID: 31171566 PMCID: PMC6686944 DOI: 10.1534/g3.119.400116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022]
Abstract
Fillet yield (FY) and harvest weight (HW) are economically important traits in Nile tilapia production. Genetic improvement of these traits, especially for FY, are lacking, due to the absence of efficient methods to measure the traits without sacrificing fish and the use of information from relatives to selection. However, genomic information could be used by genomic selection to improve traits that are difficult to measure directly in selection candidates, as in the case of FY. The objectives of this study were: (i) to perform genome-wide association studies (GWAS) to dissect the genetic architecture of FY and HW, (ii) to evaluate the accuracy of genotype imputation and (iii) to assess the accuracy of genomic selection using true and imputed low-density (LD) single nucleotide polymorphism (SNP) panels to determine a cost-effective strategy for practical implementation of genomic information in tilapia breeding programs. The data set consisted of 5,866 phenotyped animals and 1,238 genotyped animals (108 parents and 1,130 offspring) using a 50K SNP panel. The GWAS were performed using all genotyped and phenotyped animals. The genotyped imputation was performed from LD panels (LD0.5K, LD1K and LD3K) to high-density panel (HD), using information from parents and 20% of offspring in the reference set and the remaining 80% in the validation set. In addition, we tested the accuracy of genomic selection using true and imputed genotypes comparing the accuracy obtained from pedigree-based best linear unbiased prediction (PBLUP) and genomic predictions. The results from GWAS supports evidence of the polygenic nature of FY and HW. The accuracy of imputation ranged from 0.90 to 0.98 for LD0.5K and LD3K, respectively. The accuracy of genomic prediction outperformed the estimated breeding value from PBLUP. The use of imputation for genomic selection resulted in an increased relative accuracy independent of the trait and LD panel analyzed. The present results suggest that genotype imputation could be a cost-effective strategy for genomic selection in Nile tilapia breeding programs.
Collapse
Affiliation(s)
- Grazyella M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, 8820808 Chile
- Benchmark Genetics Chile, Puerto Montt, Chile, and
| | | | | | - Jose Soto
- Grupo Acuacorporacion Internacional (GACI), Cañas, Costa Rica
| | - Diego Salas
- Grupo Acuacorporacion Internacional (GACI), Cañas, Costa Rica
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, 8820808 Chile,
| |
Collapse
|
32
|
Conte MA, Joshi R, Moore EC, Nandamuri SP, Gammerdinger WJ, Roberts RB, Carleton KL, Lien S, Kocher TD. Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes. Gigascience 2019; 8:giz030. [PMID: 30942871 PMCID: PMC6447674 DOI: 10.1093/gigascience/giz030] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/11/2019] [Accepted: 03/07/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND African cichlid fishes are well known for their rapid radiations and are a model system for studying evolutionary processes. Here we compare multiple, high-quality, chromosome-scale genome assemblies to elucidate the genetic mechanisms underlying cichlid diversification and study how genome structure evolves in rapidly radiating lineages. RESULTS We re-anchored our recent assembly of the Nile tilapia (Oreochromis niloticus) genome using a new high-density genetic map. We also developed a new de novo genome assembly of the Lake Malawi cichlid, Metriaclima zebra, using high-coverage Pacific Biosciences sequencing, and anchored contigs to linkage groups (LGs) using 4 different genetic maps. These new anchored assemblies allow the first chromosome-scale comparisons of African cichlid genomes. Large intra-chromosomal structural differences (∼2-28 megabase pairs) among species are common, while inter-chromosomal differences are rare (<10 megabase pairs total). Placement of the centromeres within the chromosome-scale assemblies identifies large structural differences that explain many of the karyotype differences among species. Structural differences are also associated with unique patterns of recombination on sex chromosomes. Structural differences on LG9, LG11, and LG20 are associated with reduced recombination, indicative of inversions between the rock- and sand-dwelling clades of Lake Malawi cichlids. M. zebra has a larger number of recent transposable element insertions compared with O. niloticus, suggesting that several transposable element families have a higher rate of insertion in the haplochromine cichlid lineage. CONCLUSION This study identifies novel structural variation among East African cichlid genomes and provides a new set of genomic resources to support research on the mechanisms driving cichlid adaptation and speciation.
Collapse
Affiliation(s)
- Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Rajesh Joshi
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, PO Box 5003, Ås, Norway
| | - Emily C Moore
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | - Reade B Roberts
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, PO Box 5003, Ås, Norway
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|