1
|
Meijer T, Ter Braak B, Loonstra-Wolters L, Kunnen SJ, Islam B, Suciu I, Gardner I, Hatley O, Currie R, Hardy B, Leist M, van de Water B, Jennings P, Wilmes A. Transcriptomic changes and mitochondrial toxicity in response to acute and repeat dose treatment with brequinar in human liver and kidney in vitro models. Toxicol In Vitro 2025; 104:106010. [PMID: 39900124 DOI: 10.1016/j.tiv.2025.106010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Accepted: 01/17/2025] [Indexed: 02/05/2025]
Abstract
The potent dihydroorotate dehydrogenase (DHODH) inhibitor brequinar has been investigated as an anticancer, immunosuppressive, and antiviral pharmaceutical agent. However, its toxicity is still poorly understood. We investigated the cellular responses of primary human hepatocytes (PHH) and telomerase-immortalised human renal proximal tubular epithelial cells (RPTEC/TERT1) after a single 24-h exposure up to 100 μM brequinar. Additionally, RPTEC/TERT1 cells underwent repeated daily exposure for five consecutive days at 0.3, 3, and 20 μM. Transcriptomic analysis revealed that PHH were less sensitive to brequinar treatment than RPTEC/TERT1 cells. Upregulation of various phase I and II drug-metabolising enzymes, particularly Cytochrome P450 (CYP) 1 A and 3 A enzymes, in PHH suggests potential detoxification. Furthermore, brequinar exposure led to a significant upregulation of several stress response pathways in PHH and RPTEC/TERT1 cells, including the unfolded protein response, Nrf2, p53, and inflammatory responses. RPTEC/TERT1 cells exhibited greater sensitivity to brequinar at 0.3 μM with repeated exposure compared to a single exposure. Furthermore, brequinar could impair the mitochondrial respiration of RPTEC/TERT1 cells after 24 h. This study provides new insights into the differential responses of PHH and RPTEC/TERT1 cells in response to brequinar exposure and highlights the biological relevance of implementing repeated dosing regimens in in vitro studies.
Collapse
Affiliation(s)
- Tamara Meijer
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| | - Bas Ter Braak
- Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands; Toxys B.V., Leiden Bioscience Park, 2342 DH Oegstgeest, the Netherlands
| | - Liesanne Loonstra-Wolters
- Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands; Toxys B.V., Leiden Bioscience Park, 2342 DH Oegstgeest, the Netherlands
| | - Steven J Kunnen
- Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| | - Barira Islam
- Certara - Simcyp Division, Sheffield, United Kingdom.
| | - Ilinca Suciu
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78464 Konstanz, Germany
| | - Iain Gardner
- Certara - Simcyp Division, Sheffield, United Kingdom
| | - Oliver Hatley
- Certara - Simcyp Division, Sheffield, United Kingdom
| | - Richard Currie
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Barry Hardy
- Edelweiss Connect GmbH, Technology Park Basel, Hochbergerstrasse 60C, 4057 Basel, Switzerland.
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78464 Konstanz, Germany
| | - Bob van de Water
- Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| | - Paul Jennings
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| | - Anja Wilmes
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Madia F, Pillo G, Worth A, Corvi R, Prieto P. Integration of data across toxicity endpoints for improved safety assessment of chemicals: the example of carcinogenicity assessment. Arch Toxicol 2021; 95:1971-1993. [PMID: 33830278 PMCID: PMC8166685 DOI: 10.1007/s00204-021-03035-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
In view of the need to enhance the assessment of consumer products called for in the EU Chemicals Strategy for Sustainability, we developed a methodology for evaluating hazard by combining information across different systemic toxicity endpoints and integrating the information with new approach methodologies. This integrates mechanistic information with a view to avoiding redundant in vivo studies, minimising reliance on apical endpoint tests and ultimately devising efficient testing strategies. Here, we present the application of our methodology to carcinogenicity assessment, mapping the available information from toxicity test methods across endpoints to the key characteristics of carcinogens. Test methods are deconstructed to allow the information they provide to be organised in a systematic way, enabling the description of the toxicity mechanisms leading to the adverse outcome. This integrated approach provides a flexible and resource-efficient means of fully exploiting test methods for which test guidelines are available to fulfil regulatory requirements for systemic toxicity assessment as well as identifying where new methods can be integrated.
Collapse
Affiliation(s)
- Federica Madia
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027, Ispra, VA, Italy.
| | - Gelsomina Pillo
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027, Ispra, VA, Italy
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027, Ispra, VA, Italy
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027, Ispra, VA, Italy
| | - Pilar Prieto
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027, Ispra, VA, Italy
| |
Collapse
|
3
|
Moné MJ, Pallocca G, Escher SE, Exner T, Herzler M, Bennekou SH, Kamp H, Kroese ED, Leist M, Steger-Hartmann T, van de Water B. Setting the stage for next-generation risk assessment with non-animal approaches: the EU-ToxRisk project experience. Arch Toxicol 2020; 94:3581-3592. [PMID: 32886186 PMCID: PMC7502065 DOI: 10.1007/s00204-020-02866-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/12/2020] [Indexed: 01/22/2023]
Abstract
In 2016, the European Commission launched the EU-ToxRisk research project to develop and promote animal-free approaches in toxicology. The 36 partners of this consortium used in vitro and in silico methods in the context of case studies (CSs). These CSs included both compounds with a highly defined target (e.g. mitochondrial respiratory chain inhibitors) as well as compounds with poorly defined molecular initiation events (e.g. short-chain branched carboxylic acids). The initial project focus was on developing a science-based strategy for read-across (RAx) as an animal-free approach in chemical risk assessment. Moreover, seamless incorporation of new approach method (NAM) data into this process (= NAM-enhanced RAx) was explored. Here, the EU-ToxRisk consortium has collated its scientific and regulatory learnings from this particular project objective. For all CSs, a mechanistic hypothesis (in the form of an adverse outcome pathway) guided the safety evaluation. ADME data were generated from NAMs and used for comprehensive physiological-based kinetic modelling. Quality assurance and data management were optimized in parallel. Scientific and Regulatory Advisory Boards played a vital role in assessing the practical applicability of the new approaches. In a next step, external stakeholders evaluated the usefulness of NAMs in the context of RAx CSs for regulatory acceptance. For instance, the CSs were included in the OECD CS portfolio for the Integrated Approach to Testing and Assessment project. Feedback from regulators and other stakeholders was collected at several stages. Future chemical safety science projects can draw from this experience to implement systems toxicology-guided, animal-free next-generation risk assessment.
Collapse
Affiliation(s)
- M J Moné
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - G Pallocca
- CAAT-Europe at the University of Konstanz, Constance, Germany
| | - S E Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - T Exner
- Edelweiss Connect GmbH, Basel, Switzerland
| | - M Herzler
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - H Kamp
- BASF SE, Ludwigshafen, Germany
| | - E D Kroese
- TNO Innovation for Life, Utrecht, The Netherlands
| | - Marcel Leist
- CAAT-Europe at the University of Konstanz, Constance, Germany.
- In Vitro Toxicology and Biomedicine, Department Inaugurated By the Doerenkamp-Zbinden Foundation at the University of Konstanz, University of Konstanz, 78457, Constance, Germany.
| | - T Steger-Hartmann
- Investigational Toxicology, Bayer AG, Pharmaceuticals, Berlin, Germany
| | - B van de Water
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
4
|
Weighted Correlation Network Analysis Reveals CDK2 as a Regulator of a Ubiquitous Environmental Toxin-Induced Cell-Cycle Arrest. Cells 2020; 9:cells9010143. [PMID: 31936152 PMCID: PMC7017252 DOI: 10.3390/cells9010143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/22/2022] Open
Abstract
Environmental food contaminants constitute a threat to human health. For instance, the globally spread mycotoxin Ochratoxin A (OTA) contributes to chronic kidney damage by affecting proximal tubule cells via unknown mechanisms. We applied a top-down approach to identify relevant toxicological mechanisms of OTA using RNA-sequencing followed by in-depth bioinformatics analysis and experimental validation. Differential expression analyses revealed that OTA led to the regulation of gene expression in kidney human cell lines, including for genes enriched in cell cycle-related pathways, and OTA-induced gap 1 and 2 (G1 and G2) cell-cycle arrests were observed. Weighted correlation network analysis highlighted cyclin dependent kinase 2 (CDK2) as a putative key regulator of this effect. CDK2 was downregulated by OTA exposure, and its overexpression partially blocked the OTA-induced G1 but not G2 cell-cycle arrest. We, therefore, propose CDK2 as one of the key regulators of the G1 cell-cycle arrest induced by low nanomolar concentrations of OTA.
Collapse
|