1
|
Shojaei M, Tavalaee M, Ghazavi B, Izadi T, Safaeinejad Z, Ghajari E, Motlagh AV, Nasr-Esfahani MH. Alterations Expression of Key RNA Methylation (m6A) Enzymes in Testicular Tissue of Rats with Induced Varicocele. Reprod Sci 2025; 32:218-228. [PMID: 39537972 DOI: 10.1007/s43032-024-01747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Epigenetics impacts male fertility and reproductive disorders. RNA modifications, like m6A, influence RNA metabolism. Varicocele contributes to male infertility, and oxidative stress affects sperm function. This study investigates the expression of key RNA modification enzymes in a rat varicocele model, aiming to elucidate the relationship between varicocele, oxidative stress, and fertility. Fifteen male Wistar rats were divided into Control, Sham, and Varicocele induction groups. Varicocele was induced in the rats surgically. After 8 weeks, testicular tissues and sperm were collected for analysis, including histopathological assessment and evaluation of sperm parameters, functional tests, and gene expression of key RNA modification enzymes: METTL3 as a writer, ALKBH5 and FTO as erasers, and YTHDF2 as a reader involved in recognizing m6A-modified RNA using qRT-PCR. One-way ANOVA with post-hoc Tukey HSD was used for comparing tests within groups. Varicocele induction resulted in histological changes in testicular tissues, including irregularly variable-sized seminiferous tubules. Sperm parameters were significantly affected, with lower concentration, motility, and higher percentage of abnormal sperm in the varicocele group. Increased levels of oxidative stress markers (Sperm lipid peroxidation, and intracytoplasmic ROS) and sperm DNA damage were observed, indicating the presence of oxidative stress in varicocele. Moreover, the expression of key enzymes involved in RNA metabolism was downregulated in the varicocele group. These findings highlight the detrimental impact of varicocele on testicular health, sperm quality, and gene expression, providing insights into the underlying mechanisms of male infertility associated with varicocele.
Collapse
Affiliation(s)
- Mohammad Shojaei
- Isfahan Branch, ACECR Institute of Higher Education, Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- Isfahan Branch, ACECR Institute of Higher Education, Isfahan, Iran.
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Bahareh Ghazavi
- Isfahan Branch, ACECR Institute of Higher Education, Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Tayebeh Izadi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Zahra Safaeinejad
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elham Ghajari
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Ali Valipour Motlagh
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad H Nasr-Esfahani
- Isfahan Branch, ACECR Institute of Higher Education, Isfahan, Iran.
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
2
|
Yang W, Zhao Y, Yang Y. Dynamic RNA methylation modifications and their regulatory role in mammalian development and diseases. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2084-2104. [PMID: 38833084 DOI: 10.1007/s11427-023-2526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/15/2023] [Indexed: 06/06/2024]
Abstract
Among over 170 different types of chemical modifications on RNA nucleobases identified so far, RNA methylation is the major type of epitranscriptomic modifications existing on almost all types of RNAs, and has been demonstrated to participate in the entire process of RNA metabolism, including transcription, pre-mRNA alternative splicing and maturation, mRNA nucleus export, mRNA degradation and stabilization, mRNA translation. Attributing to the development of high-throughput detection technologies and the identification of both dynamic regulators and recognition proteins, mechanisms of RNA methylation modification in regulating the normal development of the organism as well as various disease occurrence and developmental abnormalities upon RNA methylation dysregulation have become increasingly clear. Here, we particularly focus on three types of RNA methylations: N6-methylcytosine (m6A), 5-methylcytosine (m5C), and N7-methyladenosine (m7G). We summarize the elements related to their dynamic installment and removal, specific binding proteins, and the development of high-throughput detection technologies. Then, for a comprehensive understanding of their biological significance, we also overview the latest knowledge on the underlying mechanisms and key roles of these three mRNA methylation modifications in gametogenesis, embryonic development, immune system development, as well as disease and tumor progression.
Collapse
Affiliation(s)
- Wenlan Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Yongliang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Yungui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
3
|
蒋 婷, 张 学, 许 文. [The Roles of N 6-Methyladenosine Modification and Its Regulators in Male Reproduction]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:527-534. [PMID: 38948273 PMCID: PMC11211765 DOI: 10.12182/20240560103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Indexed: 07/02/2024]
Abstract
Infertility affects an estimated 10 to 15 percent of couples worldwide, with approximately half of the cases attributed to male-related issues. Most men diagnosed with infertility exhibit symptoms such as oligospermia, asthenospermia, azoospermia, and compromised sperm quality. Spermatogenesis is a complex and tightly coordinated process of germ cell differentiation, precisely regulated at transcriptional, posttranscriptional, and translational levels to ensure stage-specific gene expression during the development of spermatogenic cells and normal spermiogenesis. N6-methyladenosine (m6A) stands out as the most prevalent modification on eukaryotic mRNA, playing pivotal roles in various biological processes, including mRNA splicing, transportation, and translation. RNA methylation modification is a dynamic and reversible process primarily mediated by "writers", removed by "erasers", and recognized by "readers". In mammals, the aberrant methylation modification of m6A on mRNA is associated with a variety of diseases, including male infertility. However, the precise involvement of disrupted m6A modification in the pathogenesis of human male infertility remains unresolved. Intriguingly, a significant correlation has been found between the expression levels of m6A regulators in the testis and the severity of sperm concentration, motility, and morphology. Aberrant expression patterns of m6A regulatory proteins have been detected in anomalous human semen samples, including those of oligospermia, asthenozoospermia, and azoospermia. Furthermore, the examination of both sperm samples and testicular tissues revealed abnormal mRNA m6A modification, leading to reduced sperm motility and concentration in infertile men. Consequently, it is hypothesized that dysregulation of m6A modification might serve as an integral link in the mechanism of male infertility. This paper presents a comprehensive review of the recent discoveries regarding the spatial and temporal expression dynamics of m6A regulators in testicular tissues and the correlation between deregulated m6A regulators and human male infertility. Previous studies predominantly utilized constitutive or conditional knockout animal models for testicular phenotypic investigations. However, gene suppression in additional tissues could potentially influence the testis in constitutive knockout models. Furthermore, considering the compromised spermatogenesis observed in constitutive animals, distinguishing between the indirect effects of gene depletion on testicular development and its direct impact on the spermatogenic process is challenging, due to their intricate relationship. Such confounding factors might compromise the validity of the findings. To address this challenge, an inducible and conditional gene knockout model may serve as a superior approach. To date, nearly all reported studies have concentrated solely on the level changes of m6A and its regulators in germs cells, while the understanding of the function of m6A modification in testicular somatic cells remains limited. Testicular somatic cells, including peritubular myoid cells, Sertoli cells, and Leydig cells, play indispensable roles during spermatogenesis. Hence, comprehensive exploration of m6A modification within these cells as an additional crucial regulatory mechanism is warranted. In addition, exploration into the presence of unique methylation mechanisms or m6A regulatory factors within the testes is warranted. To elucidate the role of m6A modification in germ cells and testicular somatic cells, detailed experimental strategies need to be implemented. Among them, manipulation of the levels of key enzymes involved in m6A methylation and demethylation might be the most effective approach. Moreover, comprehensive analysis of the gene expression profiles involved in various signaling pathways, such as Wnt/β-catenin, Ras/MAPK, and Hippo, in m6A-modified germ cells and testicular somatic cells can provide more insight into its regulatory role in the spermatogenesis process. Further research in this area could provide valuable insights for developing innovative strategies to treat male infertility. Finally, considering the mitigation impact of m6A imbalance regulation on disease, investigation concerning whether restoring the equilibrium of m6A modification regulation can restore normal spermatogenesis function is essential, potentially elucidating the pivotal clinical significance of m6A modulation in male infertility.
Collapse
Affiliation(s)
- 婷 蒋
- 四川大学华西第二医院 生殖遗传与表观遗传调控研究室 (成都 610041)Laboratory of Reproductive Genetics and Epigenetic Regulatio, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 出生缺陷与相关妇儿疾病教育部重点实验室(四川大学) (成都 610041)Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 学广 张
- 四川大学华西第二医院 生殖遗传与表观遗传调控研究室 (成都 610041)Laboratory of Reproductive Genetics and Epigenetic Regulatio, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 出生缺陷与相关妇儿疾病教育部重点实验室(四川大学) (成都 610041)Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 文明 许
- 四川大学华西第二医院 生殖遗传与表观遗传调控研究室 (成都 610041)Laboratory of Reproductive Genetics and Epigenetic Regulatio, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 出生缺陷与相关妇儿疾病教育部重点实验室(四川大学) (成都 610041)Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Zhang M, Nie J, Chen Y, Li X, Chen H. Connecting the Dots: N6-Methyladenosine (m 6 A) Modification in Spermatogenesis. Adv Biol (Weinh) 2023; 7:e2300068. [PMID: 37353958 DOI: 10.1002/adbi.202300068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/20/2023] [Indexed: 06/25/2023]
Abstract
N6-methyladenosine (m6 A) is the most common RNA modification found in eukaryotes and is involved in multiple biological processes, including neuronal development, tumorigenesis, and gametogenesis. It is well known that methylation-modifying enzymes (classified into writers, erasers, and readers) mediate catalysis, clearance, and recognition of m6 A. Recent studies suggest that these genes may be associated with spermatogenesis. Numerous studies have revealed the m6 A role during spermatogenesis. However, the expression patterns and relationships of these m6 A enzymes during various stages of spermatogenesis remain unknown. In this review, it is aimed to provide an overview of m6 A enzyme functions and elucidate their potential mechanisms and regulatory relationships at a specific phase during spermatogenesis, providing new insights into the m6 A modification underlying the spermatogenesis process.
Collapse
Affiliation(s)
- Mengya Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226000, China
| | - Junyu Nie
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226000, China
| | - Yufei Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226000, China
| | - Xiaofeng Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Lianhua Road No. 1120, Futian District, Shenzhen, Guangdong Province, 518000, P. R. China
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226000, China
| |
Collapse
|
5
|
Lv J, Xing L, Zhong X, Li K, Liu M, Du K. Role of N6-methyladenosine modification in central nervous system diseases and related therapeutic agents. Biomed Pharmacother 2023; 162:114583. [PMID: 36989722 DOI: 10.1016/j.biopha.2023.114583] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
N6-methyladenosine (m6A) is a ubiquitous mRNA modification in eukaryotes. m6A occurs through the action of methyltransferases, demethylases, and methylation-binding proteins. m6A methylation of RNA is associated with various neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), depression, cerebral apoplexy, brain injury, epilepsy, cerebral arteriovenous malformations, and glioma. Furthermore, recent studies report that m6A-related drugs have attracted considerable concerns in the therapeutic areas of neurological disorders. Here, we mainly summarized the role of m6A modification in neurological diseases and the therapeutic potential of m6A-related drugs. The aim of this review is expected to be useful to systematically assess m6A as a new potential biomarker and develop innovative modulators of m6A for the amelioration and treatment of neurological disorders.
Collapse
Affiliation(s)
- Junya Lv
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China
| | - Lijuan Xing
- Precision Laboratory of Panjin Central Hospital, Panjin 124000, China
| | - Xin Zhong
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China
| | - Kai Li
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Mingyan Liu
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang 110179, China.
| | - Ke Du
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, the First Affiliated Hospital of China Medical University, Shenyang 110001, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang 110179, China.
| |
Collapse
|
6
|
Wu Y, Li J, Li C, Lu S, Wei X, Li Y, Xia W, Qian C, Wang Z, Liu M, Gu Y, Huang B, Tan Y, Hu Z. Fat mass and obesity-associated factor (FTO)-mediated N6-methyladenosine regulates spermatogenesis in an age-dependent manner. J Biol Chem 2023:104783. [PMID: 37146971 DOI: 10.1016/j.jbc.2023.104783] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent reversible RNA modification in the mammalian transcriptome. It has recently been demonstrated that m6A is crucial for male germline development. Fat mass and obesity-associated factor (FTO), a known m6A demethylase, is widely expressed in human and mouse tissues and is involved in manifold biological processes and human diseases. However, the function of FTO in spermatogenesis and male fertility remains poorly understood. Here, we generated an Fto knockout mouse model using CRISPR/Cas9-mediated genome editing techniques to address this knowledge gap. Remarkably, we found that loss of Fto in mice caused spermatogenesis defects in an age-dependent manner, resulting from the attenuated proliferation ability of undifferentiated spermatogonia and increased male germ cell apoptosis. Further research showed that FTO plays a vital role in the modulation of spermatogenesis and Leydig cell maturation by regulating the translation of the androgen receptor in an m6A-dependent manner. In addition, we identified two functional mutations of FTO in male infertility patients, resulting in truncated FTO protein and increased m6A modification in vitro. Our results highlight the crucial effects of FTO on spermatogonia and Leydig cells for the long-term maintenance of spermatogenesis and expand our understanding of the function of m6A in male fertility.
Collapse
Affiliation(s)
- Yifei Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jincheng Li
- State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Suzhou Municipal Hospital, Suzhou 215002, China
| | - Chenmeijie Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuai Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyu Wei
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yang Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wenjuan Xia
- State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Suzhou Municipal Hospital, Suzhou 215002, China
| | - Chunfeng Qian
- State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Suzhou Municipal Hospital, Suzhou 215002, China
| | - Zihang Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Suzhou Municipal Hospital, Suzhou 215002, China.
| | - Yueqiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410000, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410000, China.
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
7
|
Zhong D, Yao C, Zhang L, Wang J, Liu Q, Shi D, Jiang M, Li H. Comprehensive analysis of long non-coding RNA expression profiles of GC-1spg cells with m6A methylation knockdown. Gene 2023; 871:147430. [PMID: 37062454 DOI: 10.1016/j.gene.2023.147430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/18/2023]
Abstract
Spermatogenesis is a complex process that requires many regulatory mechanisms to form healthy sperm. Numerous studies have also proved that m6A methylation modification and lncRNA are essential for normal spermatogenesis. However, the mutual regulation of m6A methylation and lncRNA in spermatogenesis is still unclear. In this study, we knocked down METTL3 in GC-1spg cells and found that a reduction in METTL3 increased cell proliferation. Further, we examined the lncRNA expression profiles of normal spermatogonia and spermatogonia with knocked down METTL3. We detected 30,924 lncRNAs, of which 34 were up-regulated and 77 down-regulated. The results of the MeRIP-qPCR experiment showed that ENSMUST00000186472, MSTRG.8019.3 and ENSMUST00000202148 had m6A methylation sites and were regulated by METTL3. We constructed ceRNA networks for these 3 lncRNAs. And we identified that these 3 lncRNAs might act as miRNA sponges to regulate some genes related to spermatogenesis. This study focuses on exploring the regulatory mechanisms of m6A methylation on lncRNAs in spermatogonia and provides some epigenetic theories for subsequent studies on the expression mechanisms of lncRNAs.
Collapse
Affiliation(s)
- Dandan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Chengxuan Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Liyin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jian Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Mingsheng Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
8
|
Liu W, Yasui M, Sassa A, You X, Wan J, Cao Y, Xi J, Zhang X, Honma M, Luan Y. FTO regulates the DNA damage response via effects on cell-cycle progression. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 887:503608. [PMID: 37003652 DOI: 10.1016/j.mrgentox.2023.503608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
The fat mass and obesity-associated protein FTO is an "eraser" of N6-methyladenosine, the most abundant mRNA modification. FTO plays important roles in tumorigenesis. However, its activities have not been fully elucidated and its possible involvement in DNA damage - the early driving event in tumorigenesis - remains poorly characterized. Here, we have investigated the role of FTO in the DNA damage response (DDR) and its underlying mechanisms. We demonstrate that FTO responds to various DNA damage stimuli. FTO is overexpressed in mice following exposure to the promutagens aristolochic acid I and benzo[a]pyrene. Knockout of the FTO gene in TK6 cells, via CRISPR/Cas9, increased genotoxicity induced by DNA damage stimuli (micronucleus and TK mutation assays). Cisplatin- and diepoxybutane-induced micronucleus frequencies and methyl methanesulfonate- and azathioprine-induced TK mutant frequencies were also higher in FTO KO cells. We investigated the potential roles of FTO in DDR. RNA sequencing and enrichment analysis revealed that FTO deletion disrupted the p38 MAPK pathway and inhibited the activation of nucleotide excision repair and cell-cycle-related pathways following cisplatin (DNA intrastrand cross-links) treatment. These effects were confirmed by western blotting and qRT-PCR. FTO deletion impaired cell-cycle arrest at the G2/M phase following cisplatin and diepoxybutane treatment (flow cytometry analysis). Our findings demonstrated that FTO is involved in several aspects of DDR, acting, at least in part, by impairing cell cycle progression.
Collapse
|
9
|
Tan X, Zheng C, Zhuang Y, Jin P, Wang F. The m6A reader PRRC2A is essential for meiosis I completion during spermatogenesis. Nat Commun 2023; 14:1636. [PMID: 36964127 PMCID: PMC10039029 DOI: 10.1038/s41467-023-37252-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
N6-methyladenosine (m6A) and its reader proteins YTHDC1, YTHDC2, and YTHDF2 have been shown to exert essential functions during spermatogenesis. However, much remains unknown about m6A regulation mechanisms and the functions of specific readers during the meiotic cell cycle. Here, we show that the m6A reader Proline rich coiled-coil 2A (PRRC2A) is essential for male fertility. Germ cell-specific knockout of Prrc2a causes XY asynapsis and impaired meiotic sex chromosome inactivation in late-prophase spermatocytes. Moreover, PRRC2A-null spermatocytes exhibit delayed metaphase entry, chromosome misalignment, and spindle disorganization at metaphase I and are finally arrested at this stage. Sequencing data reveal that PRRC2A decreases the RNA abundance or improves the translation efficiency of targeting transcripts. Specifically, PRRC2A recognizes spermatogonia-specific transcripts and downregulates their RNA abundance to maintain the spermatocyte expression pattern during the meiosis prophase. For genes involved in meiotic cell division, PRRC2A improves the translation efficiency of their transcripts. Further, co-immunoprecipitation data show that PRRC2A interacts with several proteins regulating mRNA metabolism or translation (YBX1, YBX2, PABPC1, FXR1, and EIF4G3). Our study reveals post-transcriptional functions of PRRC2A and demonstrates its critical role in the completion of meiosis I in spermatogenesis.
Collapse
Affiliation(s)
- Xinshui Tan
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Caihong Zheng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, 100101, China
| | - Yinghua Zhuang
- National Institute of Biological Sciences, Beijing, China
| | - Pengpeng Jin
- National Institute of Biological Sciences, Beijing, China
| | - Fengchao Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
10
|
Li Q, Zhu Q. The role of demethylase AlkB homologs in cancer. Front Oncol 2023; 13:1153463. [PMID: 37007161 PMCID: PMC10060643 DOI: 10.3389/fonc.2023.1153463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The AlkB family (ALKBH1-8 and FTO), a member of the Fe (II)- and α-ketoglutarate-dependent dioxygenase superfamily, has shown the ability to catalyze the demethylation of a variety of substrates, including DNA, RNA, and histones. Methylation is one of the natural organisms’ most prevalent forms of epigenetic modifications. Methylation and demethylation processes on genetic material regulate gene transcription and expression. A wide variety of enzymes are involved in these processes. The methylation levels of DNA, RNA, and histones are highly conserved. Stable methylation levels at different stages can coordinate the regulation of gene expression, DNA repair, and DNA replication. Dynamic methylation changes are essential for the abilities of cell growth, differentiation, and division. In some malignancies, the methylation of DNA, RNA, and histones is frequently altered. To date, nine AlkB homologs as demethylases have been identified in numerous cancers’ biological processes. In this review, we summarize the latest advances in the research of the structures, enzymatic activities, and substrates of the AlkB homologs and the role of these nine homologs as demethylases in cancer genesis, progression, metastasis, and invasion. We provide some new directions for the AlkB homologs in cancer research. In addition, the AlkB family is expected to be a new target for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Qiao Li
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingsan Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Qingsan Zhu,
| |
Collapse
|
11
|
Rader MA, Jaime OG, Abarca VO, Young KA. Photoperiod alters testicular methyltransferase complex mRNA expression in Siberian hamsters. Gen Comp Endocrinol 2023; 333:114186. [PMID: 36521516 PMCID: PMC10575611 DOI: 10.1016/j.ygcen.2022.114186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Exposure to long photoperiods stimulates, whereas exposure to short photoperiods transiently inhibit testicular function in Siberian hamsters via well-described neuroendocrine mechanisms. However, less is known about the intra-testicular regulation of these photoperiod-mediated changes. N6-methyladenosine (m6A) is one of the most common mRNA modifications in eukaryotes, with alterations in m6A mRNA methylation affecting testis function and fertility. We hypothesized that genes controlling m6A methylation such as methyltransferase-like-3 (Mettl3) and -14 (Mettl14) and Wilms' tumor-1 associated protein (Wtap), part of an mRNA methylating methyl-transferase complex, or the fat-mass-and-obesity-associated (Fto) and the α-ketoglutarate-dependent dioxygenase alkB homolog-5 (Alkbh5) genes responsible for m6A demethylation, may be differentially regulated by photoperiod in the testis. Male hamsters were exposed to long (LD, control) photoperiod for 14-weeks, short (SD) photoperiod for 2, 5, 8, 11 and 14-weeks to induce regression, or SD for 14-weeks followed by transfer to LD for 1, 2, 4 or 8-weeks to induce recrudescence (post-transfer, PT). SD exposure significantly reduced body, testis, and epididymal masses compared to all other groups. Spermatogenic index, seminiferous tubule diameters and testosterone concentrations significantly decreased in SD as compared to LD, returning to levels no different than LD in post-transfer groups. SD exposure significantly decreased Wtap, Fto, Alkbh5, but increased Mettl14 mRNA expression as compared to LD, with values in PT groups restored to LD levels. Mettl3 mRNA expression did not change. These results suggest that testicular recovery induced by stimulatory photoperiod is relatively rapid, and that the methyltransferase complex may play a role during photostimulated testicular recrudescence.
Collapse
Affiliation(s)
- Melanie A Rader
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Olga G Jaime
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Victor O Abarca
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Kelly A Young
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA.
| |
Collapse
|
12
|
Liu P, Yan X, Ma C, Gu J, Tian F, Qu J. Prognostic value of m6A regulators and the nomogram construction in glioma patients. Medicine (Baltimore) 2022; 101:e30643. [PMID: 36123877 PMCID: PMC9478228 DOI: 10.1097/md.0000000000030643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Although N6-methyladenosine (m6A) has been implicated in various biological functions in human cancers, its role in predicting the prognosis of glioma remains unclear. In this study, the transcriptome expression profiles and the clinical data of 961 patients were derived from the Chinese Glioma Genome Atlas (CGGA). We comprehensively evaluated the association between the expression of m6A regulators and the prognosis of glioma and established a 3-gene (YTHDF2, FTO, and ALKBH5) risk signature using least absolute shrinkage and selection operator (LASSO) analysis. Patients with a high-risk signature had significantly adverse prognoses. Gene set enrichment analysis (GSEA) analysis revealed that the G2M checkpoint, MTORC1 signaling, epithelial mesenchymal transition, and PI3K-AKT-mTOR signaling were significantly enriched in the high-risk group. Univariate and multivariate Cox regression analyses confirmed the independent prognostic value of this risk signature. We then constructed a nomogram for individualized prediction of overall survival (OS) by integrating clinicopathological features (age, World Health Organization [WHO] grade), treatment information (radiotherapy, temozolomide therapy), and m6A risk signature. The calibration curves showed excellent agreement between the predicted and actual probabilities for the 1-, 3-, and 5-year OS, with a C-index of 0.780 in the training cohort and 0.717 in the validation cohort. Altogether, our study elucidated the important role of m6A regulators in glioma prognosis, which is valuable for the selection of therapeutic methods and clinical management of patients with glioma.
Collapse
Affiliation(s)
- Pengdi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Shaanxi Province, China
| | - Xianxia Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Shaanxi Province, China
| | - Chengwen Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Shaanxi Province, China
| | - Junxiang Gu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Shaanxi Province, China
| | - Fuyu Tian
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Shaanxi Province, China
| | - Jianqiang Qu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Shaanxi Province, China
- *Correspondence: Jianqiang Qu, Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu road, Xi’an 710004, shaanxi Province, China (e-mail: )
| |
Collapse
|
13
|
Wang HQ, Wang T, Gao F, Ren WZ. Application of CRISPR/Cas Technology in Spermatogenesis Research and Male Infertility Treatment. Genes (Basel) 2022; 13:genes13061000. [PMID: 35741761 PMCID: PMC9223233 DOI: 10.3390/genes13061000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 12/04/2022] Open
Abstract
As the basis of animal reproductive activity, normal spermatogenesis directly determines the efficiency of livestock production. An in-depth understanding of spermatogenesis will greatly facilitate animal breeding efforts and male infertility treatment. With the continuous development and application of gene editing technologies, they have become valuable tools to study the mechanism of spermatogenesis. Gene editing technologies have provided us with a better understanding of the functions and potential mechanisms of action of factors that regulate spermatogenesis. This review summarizes the applications of gene editing technologies, especially CRISPR/Cas9, in deepening our understanding of the function of spermatogenesis-related genes and disease treatment. The problems of gene editing technologies in the field of spermatogenesis research are also discussed.
Collapse
|
14
|
Khodeer S, Klungland A, Dahl JA. ALKBH5 regulates somatic cell reprogramming in a phase specific manner. J Cell Sci 2022; 135:275396. [PMID: 35552718 PMCID: PMC9234673 DOI: 10.1242/jcs.259824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
Establishment of the pluripotency regulatory network in somatic cells by introducing four transcription factors (octamer binding transcription factor 4 (OCT4), sex determining region Y (SRY)-box 2 (SOX2), Kruppel-like factor 4 (KLF4), and cellular myelocytomatosis (c-MYC)) provides a promising tool for cell-based therapies in regenerative medicine. Nevertheless, the mechanisms at play when generating induced pluripotent stem cells from somatic cells are only partly understood. Here, we show that the RNA specific N6-methyladenosine (m6A) demethylase ALKBH5 regulates somatic cell reprogramming in a stage-specific manner through its catalytic activity. Knockdown or knockout of Alkbh5 in the early reprogramming phase impairs reprogramming efficiency by reducing the proliferation rate through arresting the cells at G2/M phase and decreasing the upregulation of epithelial markers. On the other hand, ALKBH5 overexpression at the early reprogramming phase has no significant impact on reprogramming efficiency, while overexpression at the late phase enhances reprogramming by stabilizing Nanog transcripts, resulting in upregulated Nanog expression. Our study provides mechanistic insight into the crucial dynamic role of ALKBH5 through its catalytic activity in regulating somatic cell reprogramming at the posttranscriptional level.
Collapse
Affiliation(s)
- Sherif Khodeer
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Forskningsveien 1, 0373. Oslo, Norway
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Forskningsveien 1, 0373. Oslo, Norway.,Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316. Oslo, Norway
| | - John Arne Dahl
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Forskningsveien 1, 0373. Oslo, Norway
| |
Collapse
|
15
|
Chang Y, Yi M, Wang J, Cao Z, Zhou T, Ge W, Muhammad Z, Zhang Z, Feng Y, Yan Z, Felici MD, Shen W, Cao H. Genetic Regulation of N6-Methyladenosine-RNA in Mammalian Gametogenesis and Embryonic Development. Front Cell Dev Biol 2022; 10:819044. [PMID: 35359444 PMCID: PMC8964082 DOI: 10.3389/fcell.2022.819044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/21/2022] [Indexed: 01/20/2023] Open
Abstract
Emerging evidence shows that m6A is the most abundant modification in eukaryotic RNA molecules. It has only recently been found that this epigenetic modification plays an important role in many physiological and pathological processes, such as cell fate commitment, immune response, obesity, tumorigenesis, and relevant for the present review, gametogenesis. Notably the RNA metabolism process mediated by m6A is controlled and regulated by a series of proteins termed writers, readers and erasers that are highly expressed in germ cells and somatic cells of gonads. Here, we review and discuss the expression and the functional emerging roles of m6A in gametogenesis and early embryogenesis of mammals. Besides updated references about such new topics, readers might find in the present work inspiration and clues to elucidate epigenetic molecular mechanisms of reproductive dysfunction and perspectives for future research.
Collapse
Affiliation(s)
- Yuguang Chang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Mingliang Yi
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jing Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhikun Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tingting Zhou
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wei Ge
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zafir Muhammad
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zijun Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yanqin Feng
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zihui Yan
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- *Correspondence: Massimo De Felici, ; Wei Shen, ; Hongguo Cao,
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Massimo De Felici, ; Wei Shen, ; Hongguo Cao,
| | - Hongguo Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- *Correspondence: Massimo De Felici, ; Wei Shen, ; Hongguo Cao,
| |
Collapse
|
16
|
Jin C, Li R, Deng T, Li J, Yang Y, Li H, Chen K, Xiong H, Chen G, Wang Y. Identification and Validation of a Prognostic Prediction Model of m6A Regulator-Related LncRNAs in Hepatocellular Carcinoma. Front Mol Biosci 2022; 8:784553. [PMID: 34988119 PMCID: PMC8721125 DOI: 10.3389/fmolb.2021.784553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/08/2021] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly invasive malignancy prone to recurrence, and patients with HCC have a low 5-year survival rate. Long non-coding RNAs (lncRNAs) play a vital role in the occurrence and development of HCC. N6-methyladenosine methylation (m6A) is the most common modification influencing cancer development. Here, we used the transcriptome of m6A regulators and lncRNAs, along with the complete corresponding clinical HCC patient information obtained from The Cancer Genome Atlas (TCGA), to explore the role of m6A regulator-related lncRNA (m6ARlnc) as a prognostic biomarker in patients with HCC. The prognostic m6ARlnc was selected using Pearson correlation and univariate Cox regression analyses. Moreover, three clusters were obtained via consensus clustering analysis and further investigated for differences in immune infiltration, immune microenvironment, and prognosis. Subsequently, nine m6ARlncs were identified with Lasso-Cox regression analysis to construct the prognostic signature m6A-9LPS for patients with HCC in the training cohort (n = 226). Based on m6A-9LPS, the risk score for each case was calculated. Patients were then divided into high- and low-risk subgroups based on the cutoff value set by the X-tile software. m6A-9LPS showed a strong prognosis prediction ability in the validation cohort (n = 116), the whole cohort (n = 342), and even clinicopathological stratified survival analysis. Combining the risk score and clinical characteristics, we established a nomogram for predicting the overall survival (OS) of patients. To further understand the mechanism underlying the m6A-9LPS-based classification of prognosis differences, KEGG and GO enrichment analyses, competitive endogenous RNA (ceRNA) network, chemotherapeutic agent sensibility, and immune checkpoint expression level were assessed. Taken together, m6A-9LPS could be used as a precise prediction model for the prognosis of patients with HCC, which will help in individualized treatment of HCC.
Collapse
Affiliation(s)
- Chen Jin
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Rui Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Tuo Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialiang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Yang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Haoqi Li
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Kaiyu Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Qi Z, Liu Y, Yang H, Yang X, Wang H, Liu B, Yuan Y, Wang G, Xu B, Liu W, Xu Z, Deng Y. Protective role of m 6A binding protein YTHDC2 on CCNB2 in manganese-induced spermatogenesis dysfunction. Chem Biol Interact 2022; 351:109754. [PMID: 34822792 DOI: 10.1016/j.cbi.2021.109754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/22/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
Human infertility has become the third largest serious disease in the world, seriously affecting the quality of human fertility. Studies have shown that manganese (Mn) can accumulate in the testis through the blood-testicular barrier and damage the male reproductive system. However, the mechanism has not been explored clearly. Recent studies have reported that YTH domain-containing 2 (YTHDC2) can regulate reproductive function. However, none has explored the role of YTHDC2 in Mn-induced reproductive toxicity. The present study investigated whether YTHDC2/CyclinB2 (CCNB2) pathway participates in Mn-induced reproductive toxicity using Kunming mice, spermatogonia, and the seminal plasma of male workers. The mice were received intraperitoneal (i.p.) injections of 0, 12.5, 25, and 50 mg/kg MnCl2 once daily for 2 weeks. The cells were treated with 0, 100, 200 and 400 μM MnCl2 for 24 h. Here, we found that occupational Mn exposure significantly increased Mn levels in the seminal plasma of male workers, while decreased sperm density, semen quality, and the levels of YTHDC2, CCNB1, and CCNB2. We found that Mn can inhibit the YTHDC2/CCNB2 signaling pathway and block the G2/M phase of the cell cycle. Moreover, the morphology of cells and the histomorphology of mice testis were injured. Notably, over-expression (OE) of YTHDC2 increased CCNB2 levels, reduced cell cycle arrest, and improved reproductive toxicity after Mn exposure. These findings suggest that the YTHDC2/CCNB2 signaling pathway participates in Mn-induced reproductive toxicity, and OE of YTHDC2 can mitigate the toxicity of Mn.
Collapse
Affiliation(s)
- Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Yanan Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Department of Preventive Health, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, People's Republic of China.
| | - Haibo Yang
- Department of Occupational Diseases, Linyi People's Hospital, Shandong, People's Republic of China.
| | - Xinxin Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Haiying Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Bingchen Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Yuan Yuan
- Center of Experiment, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Gang Wang
- Center of Experiment, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
18
|
Dubey PK, Patil M, Singh S, Dubey S, Ahuja P, Verma SK, Krishnamurthy P. Increased m6A-RNA methylation and FTO suppression is associated with myocardial inflammation and dysfunction during endotoxemia in mice. Mol Cell Biochem 2022; 477:129-141. [PMID: 34581943 PMCID: PMC8758538 DOI: 10.1007/s11010-021-04267-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/17/2021] [Indexed: 01/03/2023]
Abstract
Endotoxemia triggers life-threatening immune and cardiovascular response that leads to tissue damage, multi-organ failure, and death. The understanding of underlying molecular mechanisms is still evolving. N6-methyladenosine (m6A)-RNA modification plays key regulatory role in numerous biological processes. However, it remains unclear whether endotoxemia alters RNA methylation in the myocardium. In the current study, we investigated the effect of lipopolysaccharide (LPS)-induced endotoxemia on m6A-RNA methylation and its implications on myocardial inflammation and left ventricular (LV) function. Following LPS administration, mice showed increases in m6A-RNA methylation in the myocardium with a corresponding decrease in the expression of fat mass and obesity-associated protein (FTO, an m6A eraser/demethylase). The changes were associated with a significant increase in expression of myocardial inflammatory cytokine genes, such as IL-6, TNF-α, IL-1β, and reduced LV function. Moreover, rat cardiomyoblasts (H9c2) exposed to LPS showed similar changes (with increase in m6A-RNA methylation and inflammatory cytokine genes, whereas downregulation of FTO). Furthermore, methylated RNA immunoprecipitation assay showed hypermethylation and increase in the expression of IL-6 and TNF-α genes in LPS-treated H9c2 cells as compared to untreated cells. Interestingly, FTO knockdown in cardiomyocytes mimicked the above effects. Taken together, these data suggest that endotoxemia-induced m6A methylation might play a critical role in expression of cardiac proinflammatory cytokines, and modulation of m6A methylation might limit myocardial inflammation and dysfunction during endotoxemia.
Collapse
Affiliation(s)
- Praveen K Dubey
- Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Mallikarjun Patil
- Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sarojini Singh
- Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Shubham Dubey
- Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Paras Ahuja
- Science and Technology Honors College, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
19
|
Liu X, Wang H, Liu B, Qi Z, Li J, Xu B, Liu W, Xu Z, Deng Y. The Latest Research Progress of m 6A Modification and Its Writers, Erasers, Readers in Infertility: A Review. Front Cell Dev Biol 2021; 9:681238. [PMID: 34568313 PMCID: PMC8461070 DOI: 10.3389/fcell.2021.681238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023] Open
Abstract
Eukaryotic messenger mRNAs contain many RNA methyl chemical modifications, in which N6-methyladenosine (m6A) plays a very important role. The modification process of RNA methylation is a dynamic reversible regulatory process that is mainly catalyzed by "Writer" m6A methyltransferase, removed by "Eraser" m6A demethylase, and recognized by the m6A binding protein, thereby, linking m6A modification with other mRNA pathways. At various stages of the life cycle, m6A modification plays an extremely important role in regulating mRNA splicing, processing, translation, as well as degradation, and is associated with gametogenesis and fertility for both sexes. Normal gametogenesis is a basic guarantee of fertility. Infertility leads to trauma, affects harmony in the family and seriously affects the quality of life. We review the roles and mechanisms of RNA m6A methylation modification in infertility and provide a potential target for infertility treatment, which can be used for drug development.
Collapse
Affiliation(s)
- Xuda Liu
- Department of Public Health, China Medical University, Shenyang, China
| | - Haiying Wang
- Department of Public Health, China Medical University, Shenyang, China
| | - Bingchen Liu
- Department of Public Health, China Medical University, Shenyang, China
| | - Zhipeng Qi
- Department of Public Health, China Medical University, Shenyang, China
| | - Jiashuo Li
- Department of Public Health, China Medical University, Shenyang, China
| | - Bin Xu
- Department of Public Health, China Medical University, Shenyang, China
| | - Wei Liu
- Department of Public Health, China Medical University, Shenyang, China
| | - Zhaofa Xu
- Department of Public Health, China Medical University, Shenyang, China
| | - Yu Deng
- Department of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Sokpor G, Xie Y, Nguyen HP, Tuoc T. Emerging Role of m 6 A Methylome in Brain Development: Implications for Neurological Disorders and Potential Treatment. Front Cell Dev Biol 2021; 9:656849. [PMID: 34095121 PMCID: PMC8170044 DOI: 10.3389/fcell.2021.656849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Dynamic modification of RNA affords proximal regulation of gene expression triggered by non-genomic or environmental changes. One such epitranscriptomic alteration in RNA metabolism is the installation of a methyl group on adenosine [N6-methyladenosine (m6A)] known to be the most prevalent modified state of messenger RNA (mRNA) in the mammalian cell. The methylation machinery responsible for the dynamic deposition and recognition of m6A on mRNA is composed of subunits that play specific roles, including reading, writing, and erasing of m6A marks on mRNA to influence gene expression. As a result, peculiar cellular perturbations have been linked to dysregulation of components of the mRNA methylation machinery or its cofactors. It is increasingly clear that neural tissues/cells, especially in the brain, make the most of m6A modification in maintaining normal morphology and function. Neurons in particular display dynamic distribution of m6A marks during development and in adulthood. Interestingly, such dynamic m6A patterns are responsive to external cues and experience. Specific disturbances in the neural m6A landscape lead to anomalous phenotypes, including aberrant stem/progenitor cell proliferation and differentiation, defective cell fate choices, and abnormal synaptogenesis. Such m6A-linked neural perturbations may singularly or together have implications for syndromic or non-syndromic neurological diseases, given that most RNAs in the brain are enriched with m6A tags. Here, we review the current perspectives on the m6A machinery and function, its role in brain development and possible association with brain disorders, and the prospects of applying the clustered regularly interspaced short palindromic repeats (CRISPR)–dCas13b system to obviate m6A-related neurological anomalies.
Collapse
Affiliation(s)
- Godwin Sokpor
- Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Yuanbin Xie
- Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, China
| | - Huu P Nguyen
- Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Tran Tuoc
- Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| |
Collapse
|
21
|
Chen J, Liao Y, Fan X. Prognostic and clinicopathological value of BUB1B expression in patients with lung adenocarcinoma: a meta-analysis. Expert Rev Anticancer Ther 2021; 21:795-803. [PMID: 33764838 DOI: 10.1080/14737140.2021.1908132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Abnormal BUB1B expression has been proven to be related to the poor prognosis of various tumors. This meta-analysis aimed to identify the prognostic role of BUB1B in patients with lung adenocarcinoma (LUAD). RESEARCH DESIGN AND METHODS Relevant studies from the PubMed, Embase, Web of Science, and Cochrane Library databases and two public databases that stored sequencing data were retrieved. The standardized mean difference (SMD) and 95% confidence intervals (CIs) for the association between the BUB1B expression level and clinical characteristics were calculated. Pooled hazard ratios (HRs) and 95% CIs were calculated to estimate the association between BUB1B expression and survival outcomes. RESULTS A total of 16 studies involving 2771 LUAD patients with BUB1B expression were included in this meta-analysis. Patients with older age showed low BUB1B expression. High BUB1B expression was associated with male sex, a smoking history, and an advanced TNM stage. High BUB1B expression was predictive of poor overall survival (OS) and progression-free survival (PFS). In addition, no publication bias was found. CONCLUSIONS This meta-analysis demonstrates that BUB1B is a significant biomarker for a poor prognosis and poor clinicopathological outcomes in patients with LUAD.
Collapse
Affiliation(s)
- Jie Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Office of Disciplines Construction & Academic Degree, Graduate School of Southwest Medical University, Luzhou, China
| | - Yi Liao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xianming Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
22
|
Fang F, Wang X, Li Z, Ni K, Xiong C. Epigenetic regulation of mRNA N6-methyladenosine modifications in mammalian gametogenesis. Mol Hum Reprod 2021; 27:6212059. [PMID: 33823008 DOI: 10.1093/molehr/gaab025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent epigenetic modification of mRNAs and broadly influences various biological processes by regulating post-transcriptional gene expression in eukaryotes. The reversible m6A modification is catalyzed by methyltransferases, METTL3 and METTL14 (writers), removed by the demethylases FTO and ALKBH5 (erasers) and recognized by m6A-binding proteins, namely the YTH domain-containing family of proteins (readers). Both m6A modification and the related enzymes are involved in the regulation of normal gametogenesis and embryonic development in many species. Recent studies showed that loss of m6A compromises gamete maturation, sex hormone synthesis, fertility and early embryonic development. In this review, we have summarized the most recent findings on the role of mRNA m6A modification in mammalian gametogenesis to emphasize the epigenetic regulation of mRNA in the reproductive system.
Collapse
Affiliation(s)
- Fang Fang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zili Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Ni
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chengliang Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan 430013, China
| |
Collapse
|
23
|
Wu X, Sheng H, Wang L, Xia P, Wang Y, Yu L, Lv W, Hu J. A five-m6A regulatory gene signature is a prognostic biomarker in lung adenocarcinoma patients. Aging (Albany NY) 2021; 13:10034-10057. [PMID: 33795529 PMCID: PMC8064222 DOI: 10.18632/aging.202761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
We analyzed the prognostic value of N6-methyladenosine (m6A) regulatory genes in lung adenocarcinoma (LADC) and their association with tumor immunity and immunotherapy response. Seventeen of 20 m6A regulatory genes were differentially expressed in LDAC tissue samples from the TCGA and GEO databases. We developed a five-m6A regulatory gene prognostic signature based on univariate and Lasso Cox regression analysis. Western blot analysis confirmed that the five prognostic m6A regulatory proteins were highly expressed in LADC tissues. We constructed a nomogram with five-m6A regulatory gene prognostic risk signature and AJCC stages. ROC curves and calibration curves showed that the nomogram was well calibrated and accurately distinguished high-risk and low-risk LADC patients. Weighted gene co-expression analysis showed significant correlation between prognostic risk signature genes and the turquoise module enriched with cell cycle genes. The high-risk LADC patients showed significantly higher PD-L1 levels, increased tumor mutational burden, and a lower proportion of CD8+ T cells in the tumor tissues and improved response to immune checkpoint blockade therapy. These findings show that this five-m6A regulatory gene signature is a prognostic biomarker in LADC and that immune checkpoint blockade is a potential therapeutic option for high-risk LADC patients.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hongxu Sheng
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Luming Wang
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Pinghui Xia
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yiqing Wang
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Li Yu
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wang Lv
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian Hu
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
24
|
Cai Z, Niu Y, Li H. RNA N6-methyladenosine modification, spermatogenesis, and human male infertility. Mol Hum Reprod 2021; 27:6179814. [PMID: 33749751 DOI: 10.1093/molehr/gaab020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/15/2021] [Indexed: 12/28/2022] Open
Abstract
RNA N6-methyladenosine (m6A) modification is one of the main forms of posttranscriptional modification, and its dysregulation is involved in a series of pathological processes. RNA m6A regulators, which mediate dynamic RNA m6A modification, are expressed in almost all types of testicular cells, including spermatogenetic cells and somatic cells. Cumulative studies have found that knockout of RNA m6A regulators in the testis leads to abnormal metabolism of the target mRNAs, which eventually causes spermatogenetic disorders and infertility. To date, a role for dysregulated RNA m6A modification in human male infertility remains elusive; however, dysregulated expression of RNA m6A regulators in abnormal human semen samples, including oligospermia, asthenozoospermia and azoospermia, has been found. Therefore, we speculate that abnormal RNA m6A methylation may be an important mechanism of male infertility. In this review, we summarize the recent findings regarding the spatiotemporal expression of RNA m6A regulators in the testes, mechanisms of RNA m6A modification in spermatogenesis and the relation between dysregulated RNA m6A regulators and human male infertility. In addition, we also discuss future directions in studying the molecular mechanism of male infertility and exploring their clinical applications from the viewpoint of RNA m6A modification.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Fumonisin B 1 alters global m6A RNA methylation and epigenetically regulates Keap1-Nrf2 signaling in human hepatoma (HepG2) cells. Arch Toxicol 2021; 95:1367-1378. [PMID: 33496827 DOI: 10.1007/s00204-021-02986-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/14/2021] [Indexed: 12/29/2022]
Abstract
FB1 is a common contaminant of cereal grains that affects human and animal health. It has become increasingly evident that epigenetic changes are implicated in FB1 toxicity. N6-methyladenosine (m6A), the most abundant post-transcriptional RNA modification, is influenced by fluctuations in redox status. Since oxidative stress is a characteristic of FB1 exposure, we determined if there is cross-talk between oxidative stress and m6A in FB1-exposed HepG2 cells. Briefly, HepG2 cells were treated with FB1 (0, 5, 50, 100, 200 µM; 24 h) and ROS, LDH and m6A levels were quantified. qPCR was used to determine the expression of m6A modulators, Nrf2, Keap1 and miR-27b, while western blotting was used to quantify Keap1 and Nrf2 protein expression. Methylation status of Keap1 and Nrf2 promoters was assessed and RNA immunoprecipitation quantified m6A-Keap1 and m6A-Nrf2 levels. FB1 induced accumulation of intracellular ROS (p ≤ 0.001) and LDH leakage (p ≤ 0.001). Elevated m6A levels (p ≤ 0.05) were accompanied by an increase in m6A "writers" [METLL3 (p ≤ 0.01) and METLL14 (p ≤ 0.01)], and "readers" [YTHDF1 (p ≤ 0.01), YTHDF2 (p ≤ 0.01), YTHDF3 (p ≤ 0.001) and YTHDC2 (p ≤ 0.01)] and a decrease in m6A "erasers" [ALKBH5 (p ≤ 0.001) and FTO (p ≤ 0.001)]. Hypermethylation and hypomethylation occurred at Keap1 (p ≤ 0.001) and Nrf2 (p ≤ 0.001) promoters, respectively. MiR-27b was reduced (p ≤ 0.001); however, m6A-Keap1 (p ≤ 0.05) and m6A-Nrf2 (p ≤ 0.01) levels were upregulated. This resulted in the ultimate decrease in Keap1 (p ≤ 0.001) and increase in Nrf2 (p ≤ 0.001) expression. Our findings reveal that m6A RNA methylation can be modified by exposure to FB1, and a cross-talk between m6A and redox regulators does occur.
Collapse
|
26
|
Zhong D, Chen M, Zhang L, Chen H, Shi D, Liu Q, Li H. Aberrant regulation of RNA methylation during spermatogenesis. Reprod Domest Anim 2020; 56:3-11. [PMID: 33174242 DOI: 10.1111/rda.13856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
Natural modifications of cellular RNA include various chemical modifications, such as N6-methyladenosine (m6 A), which enable the orderly metabolism and function of RNA structural diversity, thereby affecting gene expression. Spermatogenesis is a complex differentiating developmental process, which includes the proliferation of spermatogonial stem cells, spermatocyte meiosis and sperm maturation. Emerging evidence has shown that RNA methylation can influence RNA splicing, exportation and translation, which are controlled in the male germline in order to ensure coordinated gene expression. In this review, we summarize the typical characteristics of different types of RNA methylation during the process of spermatogenesis. In particular, we emphasize the functions of the RNA methylation effectors during the male germ cell development.
Collapse
Affiliation(s)
- Dandan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lei Zhang
- Shanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Hong Chen
- Shanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China.,Shanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| |
Collapse
|
27
|
Xiao MZ, Liu JM, Xian CL, Chen KY, Liu ZQ, Cheng YY. Therapeutic potential of ALKB homologs for cardiovascular disease. Biomed Pharmacother 2020; 131:110645. [PMID: 32942149 DOI: 10.1016/j.biopha.2020.110645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading causes of human death. Recently, ALKB homologs, including ALKBH1-8 and FTO, have been found to have a variety of biological functions, such as histone demethylation, RNA demethylation, and DNA demethylation. These functions may regulate the physiological and pathological processes of CVDs, including inflammation, oxidative stress, cell apoptosis, and mitochondrial, endothelial, and fat metabolism dysfunction. In the present review, we summarize the biological functions of ALKB homologs and the relationship between the ALKB homologs and CVDs. Importantly, we discuss the roles of ALKB homologs in the regulation of oxidative stress, inflammation, autophagy, and DNA damage in CVDs, as well as the practical applications of ALKB homologs inhibitors or agonists in treating CVDs. In conclusion, the ALKBH family might be a promising target for CVDs therapy.
Collapse
Affiliation(s)
- Ming-Zhu Xiao
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jia-Ming Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Cui-Ling Xian
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Keng-Yu Chen
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; The Second Affiliated Hospital of Guangdong Pharmaceutical University, Yunfu, 527300, China
| | - Zhong-Qiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Yuan-Yuan Cheng
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
28
|
Zhou Y, Kong Y, Fan W, Tao T, Xiao Q, Li N, Zhu X. Principles of RNA methylation and their implications for biology and medicine. Biomed Pharmacother 2020; 131:110731. [PMID: 32920520 DOI: 10.1016/j.biopha.2020.110731] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
RNA methylation is a post-transcriptional level of regulation. At present, more than 150 kinds of RNA modifications have been identified. They are widely distributed in messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), noncoding small RNA (sncRNA) and long-chain non-coding RNA (lncRNA). In recent years, with the discovery of RNA methylation related proteins and the development of high-throughput sequencing technology, the mystery of RNA methylation has been gradually revealed, and its biological function and application value have gradually emerged. In this review, a large number of research results of RNA methylation in recent years are collected. Through systematic summary and refinement, this review introduced RNA methylation modification-related proteins and RNA methylation sequencing technologies, as well as the biological functions of RNA methylation, expressions and applications of RNA methylation-related genes in physiological or pathological states such as cancer, immunity and virus infection, and discussed the potential therapeutic strategies.
Collapse
Affiliation(s)
- Yujia Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Ying Kong
- Department of Clinical Laboratory, Hubei No.3 People's Hospital of Jianghan University, Wuhan, China
| | - Wenguo Fan
- Department of Anesthesiology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China.
| | - Qin Xiao
- Department of Blood Transfusion, Peking University Shenzhen Hospital, Shenzhen, China
| | - Na Li
- College of Basic Medicine, Chongqing Medical University, Chongqing, China.
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China.
| |
Collapse
|
29
|
Ye Z, Wang S, Chen W, Zhang X, Chen J, Jiang J, Wang M, Zhang L, Xuan Z. Fat mass and obesity-associated protein promotes the tumorigenesis and development of liver cancer. Oncol Lett 2020; 20:1409-1417. [PMID: 32724383 PMCID: PMC7377176 DOI: 10.3892/ol.2020.11673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is the fourth leading cause of cancer-associated mortality worldwide. Statistics indicate that the incidence of liver cancer has been increasing and that its prognosis remains poor. Fat mass and obesity-associated protein (FTO) is a demethylase that is involved in N6-methyladenosine (m6a) RNA modification; however, to the best of our knowledge, its role in tumorigenesis and development of liver cancer remains unknown. In the present study, cell proliferation, colony formation, apoptosis, Transwell and wound healing assays of small interfering (si)RNA-FTO HepG2 cells were performed, and the levels of m6A RNA methylation were assessed. Additionally, the prognostic value of FTO in liver cancer was analyzed using immunohistochemistry analysis. The results from the EpiQuik m6A RNA methylation quantitative assay revealed that knockdown of FTO increased the total m6A methylation level. Notably, FTO promoted the proliferation and migration of liver cancer cells. Additionally, FTO expression was upregulated in patients with liver cancer and was associated with a high Edmondson Grade, which served as an independent prognostic factor for liver cancer. Results from the Kaplan-Meier survival analysis revealed that low expression levels of FTO predicted a good prognosis. The 5-year overall survival of the low FTO expression group was 68% compared with 48% in the high FTO expression group (P=0.077). In conclusion, the present study suggested that FTO regulates the tumorigenesis and development of liver cancer.
Collapse
Affiliation(s)
- Ziqi Ye
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shibing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province and Clinical Research Institute, Hangzhou, Zhejiang 310014, P.R. China
| | - Wanyuan Chen
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xin Zhang
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Jie Chen
- Department of Pharmacy, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jinying Jiang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Mingshan Wang
- Department of Infection Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Li Zhang
- Department of Emergency Medicine, The Central Hospital of Lishui, Lishui, Zhejiang 323000, P.R. China
| | - Zixue Xuan
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
30
|
In Vitro Cytotoxicity Effects of Zinc Oxide Nanoparticles on Spermatogonia Cells. Cells 2020; 9:cells9051081. [PMID: 32357578 PMCID: PMC7290761 DOI: 10.3390/cells9051081] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
Zinc Oxide Nanoparticles (ZnO NPs) are a type of metal oxide nanoparticle with an extensive use in biomedicine. Several studies have focused on the biosafety of ZnO NPs, since their size and surface area favor entrance and accumulation in the body, which can induce toxic effects. In previous studies, ZnO NPs have been identified as a dose- and time-dependent cytotoxic inducer in testis and male germ cells. However, the consequences for the first cell stage of spermatogenesis, spermatogonia, have never been evaluated. Therefore, the aim of the present work is to evaluate in vitro the cytotoxic effects of ZnO NPs in spermatogonia cells, focusing on changes in cytoskeleton and nucleoskeleton. For that purpose, GC-1 cell line derived from mouse testes was selected as a model of spermatogenesis. These cells were treated with different doses of ZnO NPs for 6 h and 12 h. The impact of GC-1 cells exposure to ZnO NPs on cell viability, cell damage, and cytoskeleton and nucleoskeleton dynamics was assessed. Our results clearly indicate that higher concentrations of ZnO NPs have a cytotoxic effect in GC-1 cells, leading to an increase of intracellular Reactive Oxygen Species (ROS) levels, DNA damage, cytoskeleton and nucleoskeleton dynamics alterations, and consequently cell death. In conclusion, it is here reported for the first time that ZnO NPs induce cytotoxic effects, including changes in cytoskeleton and nucleoskeleton in mouse spermatogonia cells, which may compromise the progression of spermatogenesis in a time- and dose-dependent manner.
Collapse
|