1
|
Kumar A, Yap KCH, BharathwajChetty B, Lyu J, Hegde M, Abbas M, Alqahtani MS, Khadlikar S, Zarrabi A, Khosravi A, Kumar AP, Kunnumakkara AB. Regulating the regulators: long non-coding RNAs as autophagic controllers in chronic disease management. J Biomed Sci 2024; 31:105. [PMID: 39716252 DOI: 10.1186/s12929-024-01092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/23/2024] [Indexed: 12/25/2024] Open
Abstract
The increasing prevalence of chronic diseases and their associated morbidities demands a deeper understanding of underlying mechanism and causative factors, with the hope of developing novel therapeutic strategies. Autophagy, a conserved biological process, involves the degradation of damaged organelles or protein aggregates to maintain cellular homeostasis. Disruption of this crucial process leads to increased genomic instability, accumulation of reactive oxygen species (ROS), decreased mitochondrial functions, and suppression of ubiquitination, leading to overall decline in quality of intracellular components. Such deregulation has been implicated in a wide range of pathological conditions such as cancer, cardiovascular, inflammatory, and neurological disorders. This review explores the role of long non-coding RNAs (lncRNAs) as modulators of transcriptional and post-transcriptional gene expression, regulating diverse physiological process like proliferation, development, immunity, and metabolism. Moreover, lncRNAs are known to sequester autophagy related microRNAs by functioning as competing endogenous RNAs (ceRNAs), thereby regulating this vital process. In the present review, we delineate the multitiered regulation of lncRNAs in the autophagic dysfunction of various pathological diseases. Moreover, by highlighting recent findings on the modulation of lncRNAs in different stages of autophagy, and the emerging clinical landscape that recognizes lncRNAs in disease diagnosis and therapy, this review highlights the potential of lncRNAs as biomarkers and therapeutic targets in clinical settings of different stages of autophagic process by regulating ATG and its target genes. This focus on lncRNAs could lead to breakthroughs in personalized medicine, offering new avenues for diagnosis and treatment of complex diseases.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Kenneth Chun-Hong Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Juncheng Lyu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Soham Khadlikar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, 34396, Istanbul, Türkiye
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, 34959, Istanbul, Türkiye
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Eid N, Davamani F. Human β-defensin-1 activates autophagy in human colon cancer cells via regulation of long non-coding RNA TCONS_00014506. World J Gastrointest Oncol 2024; 16:2894-2901. [PMID: 39072156 PMCID: PMC11271776 DOI: 10.4251/wjgo.v16.i7.2894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 07/12/2024] Open
Abstract
Macroautophagy (hereafter referred to as autophagy) is a prosurvival mechanism for the clearance of damaged cellular components, specifically related to exposure to various stressors such as starvation, excessive ethanol intake, and chemotherapy. This editorial reviews and comments on an article by Zhao et al, to be published in World J Gastrointestinal Oncology in 2024. Based on various molecular biology methodologies, they found that human β-defensin-1 reduced the proliferation of colon cancer cells, which was associated with the inhibition of the mammalian target of rapamycin, resulting in autophagy activation. The activation of autophagy is evidenced by increased levels of Beclin1 and LC3II/I proteins and mediated by the upregulation of long non-coding RNA TCONS_00014506. Our study discusses the impact of autophagy activation and mechanisms of autophagy, including autophagic flux, on cancer cells. Additionally, we emphasize the importance of describing the detailed methods for isolating long noncoding RNAs TCONS_00014506. Our review will benefit the scientific community and improve the overall clarity of the paper.
Collapse
Affiliation(s)
- Nabil Eid
- Anatomy Department, Division of Human Biology, School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Fabian Davamani
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
3
|
Liu ZY, Tang JM, Yang MQ, Yang ZH, Xia JZ. The role of LncRNA-mediated autophagy in cancer progression. Front Cell Dev Biol 2024; 12:1348894. [PMID: 38933333 PMCID: PMC11199412 DOI: 10.3389/fcell.2024.1348894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are a sort of transcripts that are more than 200 nucleotides in length. In recent years, many studies have revealed the modulatory role of lncRNAs in cancer. Typically, lncRNAs are linked to a variety of essential events, such as apoptosis, cellular proliferation, and the invasion of malignant cells. Simultaneously, autophagy, an essential intracellular degradation mechanism in eukaryotic cells, is activated to respond to multiple stressful circumstances, for example, nutrient scarcity, accumulation of abnormal proteins, and organelle damage. Autophagy plays both suppressive and promoting roles in cancer. Increasingly, studies have unveiled how dysregulated lncRNAs expression can disrupt autophagic balance, thereby contributing to cancer progression. Consequently, exploring the interplay between lncRNAs and autophagy holds promising implications for clinical research. In this manuscript, we methodically compiled the advances in the molecular mechanisms of lncRNAs and autophagy and briefly summarized the implications of the lncRNA-mediated autophagy axis.
Collapse
Affiliation(s)
- Zi-yuan Liu
- Gastroenterological Surgery, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Jia-ming Tang
- Department of Neurology, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Meng-qi Yang
- Gastroenterological Surgery, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Zhi-hui Yang
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Jia-zeng Xia
- Gastroenterological Surgery, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| |
Collapse
|
4
|
Zhang M, Yang DY, He ZY, Wu Y, Tian XY, Huang QY, Ma WB, Deng M, Wang QZ, Yan SJ, Zheng HL. Auranofin inhibits the occurrence of colorectal cancer by promoting mTOR-dependent autophagy and inhibiting epithelial-mesenchymal transformation. Anticancer Drugs 2024; 35:129-139. [PMID: 37615540 DOI: 10.1097/cad.0000000000001540] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Colorectal cancer (CRC) is one of the world's most common and deadly cancers. According to GLOBOCAN2020's global incidence rate and mortality estimates, CRC is the third main cause of cancer and the second leading cause of cancer-related deaths worldwide. The US Food and Drug Administration has approved auranofin for the treatment of rheumatoid arthritis. It is a gold-containing chemical that inhibits thioredoxin reductase. Auranofin has a number of biological activities, including anticancer activity, although it has not been researched extensively in CRC, and the mechanism of action on CRC cells is still unknown. The goal of this research was to see how Auranofin affected CRC cells in vivo and in vitro . The two chemical libraries were tested for drugs that make CRC cells more responsive. The CCK-8 technique was used to determine the cell survival rate. The invasion, migration, and proliferation of cells were assessed using a transwell test and a colony cloning experiment. An electron microscope was used to observe autophagosome formation. Western blotting was also used to determine the degree of expression of related proteins in cells. Auranofin's tumor-suppressing properties were further tested in a xenograft tumor model of human SW620 CRC cells. Auranofin dramatically reduced the occurrence of CRC by decreasing the proliferation, migration, and invasion of CRC cells, according to our findings. Through a mTOR-dependent mechanism, auranofin inhibits the epithelial-mesenchymal transition (EMT) and induces autophagy in CRC cells. Finally, in-vivo tests revealed that auranofin suppressed tumor growth in xenograft mice while causing no harm. In summary, auranofin suppresses CRC cell growth, invasion, and migration. Auranofin inhibits the occurrence and progression of CRC by decreasing EMT and inducing autophagy in CRC cells via a mTOR-dependent mechanism. These findings suggest that auranofin could be a potential chemotherapeutic medication for the treatment of human CRC.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Dong-Yuan Yang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Zhi-Yi He
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Yu Wu
- School of Pharmacy, Bengbu Medical College/Anhui Biochemical Drug Engineering Technology Research Center, Bengbu, China
| | - Xiu-Yun Tian
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Qing-Yang Huang
- School of Pharmacy, Bengbu Medical College/Anhui Biochemical Drug Engineering Technology Research Center, Bengbu, China
| | - Wang-Bo Ma
- School of Pharmacy, Bengbu Medical College/Anhui Biochemical Drug Engineering Technology Research Center, Bengbu, China
| | - Min Deng
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Qi-Zhi Wang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Shan-Jun Yan
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Hai-Lun Zheng
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| |
Collapse
|
5
|
Islam Khan MZ, Law HKW. Suppression of small nucleolar RNA host gene 8 (SNHG8) inhibits the progression of colorectal cancer cells. Noncoding RNA Res 2023; 8:224-232. [PMID: 36860208 PMCID: PMC9969251 DOI: 10.1016/j.ncrna.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies around the world with high mortality. Accumulating evidences demonstrate that long non-coding RNAs (lncRNAs) play critical roles in CRC tumorigenesis by regulating different pathways of carcinogenesis. SNHG8 (small nucleolar RNA host gene 8), a lncRNA, is highly expressed in several cancers and acts as an oncogene that promotes cancer progression. However, the oncogenic role of SNHG8 in CRC carcinogenesis and the underlying molecular mechanisms remain unknown. In this study, we explored the role of SNHG8 in CRC cell lines by performing a series of functional experiments. Similar to the data reported in the Encyclopedia of RNA Interactome, our RT-qPCR results showed that SNHG8 expression was significantly upregulated in CRC cell lines (DLD-1, HT-29, HCT-116, and SW480) compared to the normal colon cell line (CCD-112CoN). We performed dicer-substrate siRNA transfection to knockdown the expression of SNHG8 in HCT-116 and SW480 cell lines which were expressing high levels of SNHG8. SNHG8 knockdown significantly reduced CRC cell growth and proliferation by inducing autophagy and apoptosis pathways through the AKT/AMPK/mTOR axis. We performed wound healing migration assay and demonstrated that SNHG8 knockdown significantly increased migration index in both cell lines, indicating reduced migration abilities of cells. Further investigation showed that SNHG8 knockdown suppresses epithelial to mesenchymal transition and reduces cellular migratory properties of CRC cells. Taken together, our study suggests that SNHG8 acts as an oncogene in CRC through the mTOR-dependent autophagy, apoptosis, and EMT pathways. Our study provides a better understanding the role of SNHG8 in CRC at molecular level and SNHG8 might be used as novel therapeutic target for CRC management.
Collapse
|
6
|
Abstract
ABSTRACT Preoperative neoadjuvant chemoradiotherapy, combined with total mesorectal excision, has become the standard treatment for advanced localized rectal cancer (RC). However, the biological complexity and heterogeneity of tumors may contribute to cancer recurrence and metastasis in patients with radiotherapy-resistant RC. The identification of factors leading to radioresistance and markers of radiosensitivity is critical to identify responsive patients and improve radiotherapy outcomes. MicroRNAs (miRNAs) are small, endogenous, and noncoding RNAs that affect various cellular and molecular targets. miRNAs have been shown to play important roles in multiple biological processes associated with RC. In this review, we summarized the signaling pathways of miRNAs, including apoptosis, autophagy, the cell cycle, DNA damage repair, proliferation, and metastasis during radiotherapy in patients with RC. Also, we evaluated the potential role of miRNAs as radiotherapeutic biomarkers for RC.
Collapse
|
7
|
Shao BZ, Chai NL, Yao Y, Li JP, Law HKW, Linghu EQ. Autophagy in gastrointestinal cancers. Front Oncol 2022; 12:975758. [PMID: 36091106 PMCID: PMC9459114 DOI: 10.3389/fonc.2022.975758] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal cancers are a group of cancers occurred in gastrointestinal tissues with high morbidity and mortality rate. Although numerous studies were conducted on the investigation of gastrointestinal cancers, the real mechanisms haven't been discovered, and no effective methods of prevention and treatment of gastrointestinal cancers have been developed. Autophagy, a vital catabolic process in organisms, have been proven to participate in various mechanisms and signaling pathways, thus producing a regulatory effect on various diseases. The role of autophagy in gastrointestinal cancers remains unclear due to its high complexity. In this review, firstly, the biological features of autophagy will be introduced. Secondly, the role of autophagy in three popular gastrointestinal cancers, namely esophageal cancer, gastric cancer, and colorectal cancer will be described and discussed by reviewing the related literature. We aimed to bring novel insights in exploring the real mechanisms for gastrointestinal cancers and developing effective and efficient therapeutic methods to treat gastrointestinal cancers.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hunghom, Hong Kong SAR, China
| | - Ning-Li Chai
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Yi Yao
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Jin-Ping Li
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Helen Ka Wai Law
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hunghom, Hong Kong SAR, China
| | - En-Qiang Linghu
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
8
|
Ghavami S, Zamani M, Ahmadi M, Erfani M, Dastghaib S, Darbandi M, Darbandi S, Vakili O, Siri M, Grabarek BO, Boroń D, Zarghooni M, Wiechec E, Mokarram P. Epigenetic regulation of autophagy in gastrointestinal cancers. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166512. [PMID: 35931405 DOI: 10.1016/j.bbadis.2022.166512] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
The development of novel therapeutic approaches is necessary to manage gastrointestinal cancers (GICs). Considering the effective molecular mechanisms involved in tumor growth, the therapeutic response is pivotal in this process. Autophagy is a highly conserved catabolic process that acts as a double-edged sword in tumorigenesis and tumor inhibition in a context-dependent manner. Depending on the stage of malignancy and cellular origin of the tumor, autophagy might result in cancer cell survival or death during the GICs' progression. Moreover, autophagy can prevent the progression of GIC in the early stages but leads to chemoresistance in advanced stages. Therefore, targeting specific arms of autophagy could be a promising strategy in the prevention of chemoresistance and treatment of GIC. It has been revealed that autophagy is a cytoplasmic event that is subject to transcriptional and epigenetic regulation inside the nucleus. The effect of epigenetic regulation (including DNA methylation, histone modification, and expression of non-coding RNAs (ncRNAs) in cellular fate is still not completely understood. Recent findings have indicated that epigenetic alterations can modify several genes and modulators, eventually leading to inhibition or promotion of autophagy in different cancer stages, and mediating chemoresistance or chemosensitivity. The current review focuses on the links between autophagy and epigenetics in GICs and discusses: 1) How autophagy and epigenetics are linked in GICs, by considering different epigenetic mechanisms; 2) how epigenetics may be involved in the alteration of cancer-related phenotypes, including cell proliferation, invasion, and migration; and 3) how epidrugs modulate autophagy in GICs to overcome chemoresistance.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Hematology and Oncology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland.
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mehran Erfani
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran; Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran; Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology, and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland; Department of Gynecology and Obstetrics in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology, and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland; Department of Gynecology and Obstetrics in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Maryam Zarghooni
- Department of Laboratory Medicine and Pathobiology, University of Toronto Alumni, Toronto, Canada
| | - Emilia Wiechec
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Chowdhury SG, Bhattacharya D, Karmakar P. Exosomal long noncoding RNAs - the lead thespian behind the regulation, cause and cure of autophagy-related diseases. Mol Biol Rep 2022; 49:7013-7024. [PMID: 35655053 DOI: 10.1007/s11033-022-07514-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022]
Abstract
Recent advances in exosome biology have revealed significant roles of exosome and their contents in intercellular communication. Among various exosomal content, long non-coding RNAs (lncRNAs), which have a large size (˃ 200 nt) and lack protein coding potential, are known to play key roles in intercellular communication and novel biomarkers of various metabolic disorders. Moreover, long non-coding RNAs are often involved in the regulation of various cellular processes such as autophagy, apoptosis, cell proliferation. On the other hand, autophagy is the central regulating point that controls the various metabolic functions of the body. This process is known to prevent diseases and promote longevity. Therefore, the present review discusses the relationship between diseases and autophagy, and also look into the biological functions of exosome-associated lncRNAs in regulating autophagy. Furthermore, this review will summarize some of the studies that provide novel insights into the pathogenesis of autophagy-related diseases followed by the non-canonical roles played by autophagy and related proteins in the development of exosome biogenesis.
Collapse
Affiliation(s)
| | | | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, 700032, Kolkata, India.
| |
Collapse
|
10
|
Non-coding RNAs associated with autophagy and their regulatory role in cancer therapeutics. Mol Biol Rep 2022; 49:7025-7037. [PMID: 35534587 DOI: 10.1007/s11033-022-07517-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Cancer widely affects the world's health population and ranks second leading cause of death globally. Because of poor prognosis of various types of cancer such as sarcoma, lymphoma, adenomas etc., their high recurrence and metastasis rate and low early diagnosis rate have become concern lately. Role of autophagy in cancer progression is being studied since long. Autophagy is cell's self-degradative mechanism towards stress and has role in degradation of the cytoplasmic macromolecules which has potential to damage other cytosolic molecules. Autophagy can promote as well as inhibit tumorigenesis depending upon the associated protein combinations in cancer cells. Recent studies have shown that non-coding RNAs (ncRNAs) do not code for protein but play essential role in modulation of gene expression. At transcriptional level, different ncRNAs like lncRNAs, miRNAs and circRNAs directly or indirectly affect different stages of autophagy like autophagy-dependent and non-apoptotic cell death in cancer cells. This review focuses on the involvement of ncRNAs in autophagy and the modulation of several cancer signal transduction pathways in cancers such as lung, breast, prostate, pancreatic, thyroid, and kidney cancer.
Collapse
|
11
|
Ghafouri-Fard S, Shoorei H, Mohaqiq M, Majidpoor J, Moosavi MA, Taheri M. Exploring the role of non-coding RNAs in autophagy. Autophagy 2022; 18:949-970. [PMID: 33525971 PMCID: PMC9196749 DOI: 10.1080/15548627.2021.1883881] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
As a self-degradative mechanism, macroautophagy/autophagy has a role in the maintenance of energy homeostasis during critical periods in the development of cells. It also controls cellular damage through the eradication of damaged proteins and organelles. This process is accomplished by tens of ATG (autophagy-related) proteins. Recent studies have shown the involvement of non-coding RNAs in the regulation of autophagy. These transcripts mostly modulate the expression of ATG genes. Both long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been shown to modulate the autophagy mechanism. Levels of several lncRNAs and miRNAs are altered in this process. In the present review, we discuss the role of lncRNAs and miRNAs in the regulation of autophagy in diverse contexts such as cancer, deep vein thrombosis, spinal cord injury, diabetes and its complications, acute myocardial infarction, osteoarthritis, pre-eclampsia and epilepsy.Abbreviations: AMI: acute myocardial infarction; ATG: autophagy-related; lncRNA: long non-coding RNA; miRNA: microRNA.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
de la Cruz-Ojeda P, Flores-Campos R, Navarro-Villarán E, Muntané J. The Role of Non-Coding RNAs in Autophagy During Carcinogenesis. Front Cell Dev Biol 2022; 10:799392. [PMID: 35309939 PMCID: PMC8926078 DOI: 10.3389/fcell.2022.799392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy (autophagy herein) is a cellular stress response and a survival pathway involved in self-renewal and quality control processes to maintain cellular homeostasis. The alteration of autophagy has been implicated in numerous diseases such as cancer where it plays a dual role. Autophagy serves as a tumor suppressor in the early phases of cancer formation with the restoration of homeostasis and eliminating cellular altered constituents, yet in later phases, autophagy may support and/or facilitate tumor growth, metastasis and may contribute to treatment resistance. Key components of autophagy interact with either pro- and anti-apoptotic factors regulating the proximity of tumor cells to apoptotic cliff promoting cell survival. Autophagy is regulated by key cell signaling pathways such as Akt (protein kinase B, PKB), mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) involved in cell survival and metabolism. The expression of critical members of upstream cell signaling, as well as those directly involved in the autophagic and apoptotic machineries are regulated by microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Consequently, non-coding RNAs play a relevant role in carcinogenesis and treatment response in cancer. The review is an update of the current knowledge in the regulation by miRNA and lncRNA of the autophagic components and their functional impact to provide an integrated and comprehensive regulatory network of autophagy in cancer.
Collapse
Affiliation(s)
- Patricia de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain.,Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD o Ciberehd), Institute of Health Carlos III, Madrid, Spain
| | - Rocío Flores-Campos
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Elena Navarro-Villarán
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain.,Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD o Ciberehd), Institute of Health Carlos III, Madrid, Spain
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain.,Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD o Ciberehd), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Mabeta P, Hull R, Dlamini Z. LncRNAs and the Angiogenic Switch in Cancer: Clinical Significance and Therapeutic Opportunities. Genes (Basel) 2022; 13:152. [PMID: 35052495 PMCID: PMC8774855 DOI: 10.3390/genes13010152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Angiogenesis is one of the hallmarks of cancer, and the establishment of new blood vessels is vital to allow for a tumour to grow beyond 1-2 mm in size. The angiogenic switch is the term given to the point where the number or activity of the pro-angiogenic factors exceeds that of the anti-angiogenic factors, resulting in the angiogenic process proceeding, giving rise to new blood vessels accompanied by increased tumour growth, metastasis, and potential drug resistance. Long noncoding ribonucleic acids (lncRNAs) have been found to play a role in the angiogenic switch by regulating gene expression, transcription, translation, and post translation modification. In this regard they play both anti-angiogenic and pro-angiogenic roles. The expression levels of the pro-angiogenic lncRNAs have been found to correlate with patient survival. These lncRNAs are also potential drug targets for the development of therapies that will inhibit or modify tumour angiogenesis. Here we review the roles of lncRNAs in regulating the angiogenic switch. We cover specific examples of both pro and anti-angiogenic lncRNAs and discuss their potential use as both prognostic biomarkers and targets for the development of future therapies.
Collapse
Affiliation(s)
- Peace Mabeta
- Angiogenesis Laboratory, Department of Physiology, Faculty of Health Sciences, University of Pretoria, Hatfield 0028, South Africa
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa;
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa;
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa;
| |
Collapse
|
14
|
Eng GWL, Zheng Y, Yap DWT, Teo AYT, Cheong JK. Autophagy and ncRNAs: Dangerous Liaisons in the Crosstalk between the Tumor and Its Microenvironment. Cancers (Basel) 2021; 14:cancers14010020. [PMID: 35008183 PMCID: PMC8750064 DOI: 10.3390/cancers14010020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tumor cells communicate with the stromal cells within the tumor microenvironment (TME) to create a conducive environment for tumor growth. One major avenue for mediating crosstalk between various cell types in the TME involves exchanges of molecular payloads in the form of extracellular vesicles/exosomes. Autophagy is a fundamental mechanism to maintain intracellular homeostasis but recent reports suggest that secretory autophagy plays an important role in promoting secretion of exosomes that are packaged with non-coding RNAs (ncRNAs) and other biomolecules from the donor cell. Uptake of exosomal autophagy-modulating ncRNAs by recipient cells may further perpetuate tumor progression. Abstract Autophagy is a fundamental cellular homeostasis mechanism known to play multifaceted roles in the natural history of cancers over time. It has recently been shown that autophagy also mediates the crosstalk between the tumor and its microenvironment by promoting the export of molecular payloads such as non-coding RNA (ncRNAs) via LC3-dependent Extracellular Vesicle loading and secretion (LDELS). In turn, the dynamic exchange of exosomal ncRNAs regulate autophagic responses in the recipient cells within the tumor microenvironment (TME), for both tumor and stromal cells. Autophagy-dependent phenotypic changes in the recipient cells further enhance tumor growth and metastasis, through diverse biological processes, including nutrient supplementation, immune evasion, angiogenesis, and therapeutic resistance. In this review, we discuss how the feedforward autophagy-ncRNA axis orchestrates vital communications between various cell types within the TME ecosystem to promote cancer progression.
Collapse
Affiliation(s)
- Gracie Wee Ling Eng
- Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore; (G.W.L.E.); (Y.Z.); (D.W.T.Y.); (A.Y.T.T.)
| | - Yilong Zheng
- Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore; (G.W.L.E.); (Y.Z.); (D.W.T.Y.); (A.Y.T.T.)
| | - Dominic Wei Ting Yap
- Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore; (G.W.L.E.); (Y.Z.); (D.W.T.Y.); (A.Y.T.T.)
| | - Andrea York Tiang Teo
- Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore; (G.W.L.E.); (Y.Z.); (D.W.T.Y.); (A.Y.T.T.)
| | - Jit Kong Cheong
- Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore; (G.W.L.E.); (Y.Z.); (D.W.T.Y.); (A.Y.T.T.)
- NUS Centre for Cancer Research, National University of Singapore, 14 Medical Dr, Centre for Translational Medicine #12-01, Singapore 117599, Singapore
- Department of Biochemistry, YLLSoM, National University of Singapore, 8 Medical Drive, MD7 #03-09, Singapore 117597, Singapore
- Correspondence: ; Tel.: +65-66016388
| |
Collapse
|
15
|
Shafabakhsh R, Arianfar F, Vosough M, Mirzaei HR, Mahjoubin-Tehran M, Khanbabaei H, Kowsari H, Shojaie L, Azar MEF, Hamblin MR, Mirzaei H. Autophagy and gastrointestinal cancers: the behind the scenes role of long non-coding RNAs in initiation, progression, and treatment resistance. Cancer Gene Ther 2021; 28:1229-1255. [PMID: 33432087 DOI: 10.1038/s41417-020-00272-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers comprise a heterogeneous group of complex disorders that affect different organs, including esophagus, stomach, gallbladder, liver, biliary tract, pancreas, small intestine, colon, rectum, and anus. Recently, an explosion in nucleic acid-based technologies has led to the discovery of long non-coding RNAs (lncRNAs) that have been found to possess unique regulatory functions. This class of RNAs is >200 nucleotides in length, and is characterized by their lack of protein coding. LncRNAs exert regulatory effects in GI cancer development by affecting different functions such as the proliferation and metastasis of cancer cells, apoptosis, glycolysis and angiogenesis. Over the past few decades, considerable evidence has revealed the important role of autophagy in both GI cancer progression and suppression. In addition, recent studies have confirmed a significant correlation between lncRNAs and the regulation of autophagy. In this review, we summarize how lncRNAs play a behind the scenes role in the pathogenesis of GI cancers through regulation of autophagy.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Arianfar
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Kowsari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
16
|
The LINC00152/miR-138 Axis Facilitates Gastric Cancer Progression by Mediating SIRT2. JOURNAL OF ONCOLOGY 2021; 2021:1173869. [PMID: 34697541 PMCID: PMC8541877 DOI: 10.1155/2021/1173869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/15/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC) is the most common gastrointestinal cancer and the main cause of tumor-related death. Exploring markers for early diagnosis and new therapeutic targets is always on the way. In the last 10 years, long noncoding RNAs (lncRNAs) have been widely proved to be involved in the progress of many tumors and are regarded as potential targets for tumor therapy. We found that LINC00152, a newly identified lncRNA, was significantly upregulated in GC tissues and affected clinicopathological characteristics in GC patients. Furthermore, we observed that LINC00152 knockdown can significantly reduce cell proliferation and promote apoptosis in human gastric cancer cells. Further bioinformatic analysis indicated that LINC00152 competitively bound with miR-138 and regulated the expression of miR-138. Moreover, SIRT2 was further proved to be a downstream target of miR-138. Overall, this study elucidates the molecular mechanism of LINC00152 underlying the malignant phenotype of GC cells by mediating miR-138/SIRT2 axis, which provides a new understanding of the role and molecular mechanism of lncRNA in GC and also provides a new way for the treatment of gastric cancer.
Collapse
|
17
|
Islam Khan MZ, Law HKW. RAMS11 promotes CRC through mTOR-dependent inhibition of autophagy, suppression of apoptosis, and promotion of epithelial-mesenchymal transition. Cancer Cell Int 2021; 21:321. [PMID: 34174900 PMCID: PMC8236194 DOI: 10.1186/s12935-021-02023-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), a class of non-coding RNAs (ncRNAs) associated with diverse biological processes of cells. Over the past decades, cumulating research evidences revealed that abnormal expressions of lncRNAs are associated with colorectal cancer (CRC) initiation, progression, metastasis, and resistance to therapies. Moreover, their usefulness as candidate biomarkers for CRC diagnosis and prognosis are well evident throughout previous literature. In the current study, we examined the role and molecular mechanisms of newly identified lncRNA named RNA associated with metastasis-11 (RAMS11) in CRC development. METHODS The expression of RAMS11 in CRC cell lines DLD-1, HT-29, HCT-116, and SW480 and colon normal cells CCD-112-CoN were evaluated by quantitative RT-qPCR. The results showed that the RAMS11 is significantly upregulated in CRC cell lines compared to the normal cells. The CCK-8 proliferation assay, colony formation assay, and migration assay were performed to evaluate the biological and physiological functions of RAMS11 in vitro. To decipher the molecular mechanisms of RAMS11 medicated CRC progression, we further performed western blot analysis of the key pathway proteins (e.g., AMPK, AKT, and mTOR). RESULTS Our results revealed that higher expression of RAMS11 is associated with increased CRC proliferation, migration, and development of metastasis. Knockdown of RAMS11 induced autophagy, apoptosis along with reduction of epithelial-mesenchymal transition (EMT) suggesting that RAMS11 is involved in CRC progression. The molecular mechanisms of RAMS11 indicated that knockdown of RAMS11 significantly inhibited CRC carcinogenesis through mTOR-dependent autophagy induction. CONCLUSIONS In sum, our results suggested that RAMS11 is an important oncogene in CRC pathogenesis. Targeting RAMS11 could be a potential therapeutic strategy for CRC management.
Collapse
Affiliation(s)
- Md Zahirul Islam Khan
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Helen Ka Wai Law
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
18
|
Tokgun O, Tokgun PE, Turel S, Inal B, Inci K, Tan S, Can Alvur O. Bryonia multiflora Extract Induces Autophagy via Regulating Long Non-coding RNAs in Breast Cancer Cells. Nutr Cancer 2021; 73:1792-1803. [PMID: 34024207 DOI: 10.1080/01635581.2021.1922717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bryonia multiflora, one of the species of Bryonia L. (Cucurbitaceae) genus, is a perennial, dioecious, herbaceous plant with rhizome-shaped roots. Bryonia species have anti-inflammatory, antimicrobial, cytotoxic, antioxidant, etc., activities and their components consume antitumoral effects. Purpose of the study to investigate the effect of Bryonia Multiflora extract (BMST) on breast cancer cells. Our results revealed that MCF-7 and MDA-MB-231 cells underwent significant morphological changes leading to cell rounding. No significant changes were observed in the cell viability by MTT. Acridine orange staining of our cells gave rise to think that BMST might lead our cells to autophagy. Therefore, possible molecular mechanisms underlying morphological changes such as autophagy (LC-3B, Beclin, AMBRA1) and apoptosis (Bcl-2) were evaluated on mRNA and protein levels. BMST treated MCF-7 and MDA-MB-231 cells had increased levels of autophagy markers whereas decreased levels of Bcl-2. p21 levels were also found to be increased in both cells. Analysis of lncRNA expressions has shown that BMST treatment led to changes in the expression levels of several lncRNAs playing roles in autophagy. The current study has shown that BMST induces autophagy in MCF-7 and MDA-MB-231 cells via regulating the lncRNAs revealing that BMST could be a promising therapeutic agent.
Collapse
Affiliation(s)
- Onur Tokgun
- Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey.,Department of Cancer Molecular Biology, Institute of Medical Sciences, Pamukkale University, Denizli, Turkey
| | - Pervin Elvan Tokgun
- Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Samet Turel
- Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Behcet Inal
- Faculty of Agriculture, Department of Agricultural Biotechnology, Siirt University, Siirt, Turkey
| | - Kubilay Inci
- Department of Cancer Molecular Biology, Institute of Medical Sciences, Pamukkale University, Denizli, Turkey
| | - Secil Tan
- Department of Cancer Molecular Biology, Institute of Medical Sciences, Pamukkale University, Denizli, Turkey
| | - Ozge Can Alvur
- Medical Biology, Faculty of Medicine, Yuzuncu Yıl University, Van, Turkey
| |
Collapse
|
19
|
Schmerer N, Schulte LN. Long noncoding RNAs in bacterial infection. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1664. [PMID: 33989449 DOI: 10.1002/wrna.1664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/10/2022]
Abstract
Infectious and inflammatory diseases remain major causes of mortality and morbidity worldwide. To combat bacterial infections, the mammalian immune system employs a myriad of regulators, which secure the effective initiation of inflammatory responses while preventing pathologies due to overshooting immunity. Recently, the human genome has been shown to be pervasively transcribed and to generate thousands of still poorly characterized long noncoding RNAs (lncRNAs). A growing body of literature suggests that lncRNAs play important roles in the regulatory circuitries controlling innate and adaptive immune responses to bacterial pathogens. This review provides an overview of the roles of lncRNAs in the interaction of human and rodent host cells with bacterial pathogens. Further decoding of the lncRNA networks that underlie pathological inflammation and immune subversion could provide new insights into the host cell mechanisms and microbial strategies that determine the outcome of bacterial infections. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Nils Schmerer
- Institute for Lung Research, Philipps-University, Marburg, Germany
| | - Leon N Schulte
- Institute for Lung Research, Philipps-University, Marburg, Germany.,German Center for Lung Research, Giessen, Germany
| |
Collapse
|
20
|
Li J, Du H, Chen W, Qiu M, He P, Ma Z. Identification of potential autophagy-associated lncRNA in prostate cancer. Aging (Albany NY) 2021; 13:13153-13165. [PMID: 33971627 PMCID: PMC8148478 DOI: 10.18632/aging.202997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
Background: Long non-coding RNAs (lncRNAs) have been linked to autophagy. It is urgent to identify and assess the hub autophagy-associated lncRNA in prostate cancer. Methods: Differentially expressed lncRNAs associated with autophagy were identified in prostate cancer based on The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) data. An autophagy-mediated competing endogenous RNA network was constructed to screen for autophagy-associated lncRNA, and the preselected lncRNAs were further validated using Gene Expression Omnibus (GEO) datasets. Furthermore, a prognostic lncRNA signature was established and assessed. Additionally, Gene Set Enrichment Analysis (GSEA) revealed the underlying molecular mechanisms. Results: Using a competing endogenous RNA network, 66 differentially expressed lncRNAs associated with autophagy were identified, and the differential expression of 7 lncRNAs were verified using the TCGA-PRAD, GSE21034, and GSE94767 datasets. Additionally, a lncRNA signature associated with autophagy, including MKNK1-AS1 and INE1, was identified as an independent indicator of survival with a C-index of 0.882. The GSEA analysis indicated that several autophagy-related signaling pathways were enriched in different risk groups. Conclusions: The lncRNAs associated with autophagy were identified, and a prediction model was developed that could be used as a prognostic predictor for prostate cancer, indicating the critical role of lncRNA in the regulation of prostate cancer autophagy regulation.
Collapse
Affiliation(s)
- Jun Li
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Du
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenqiang Chen
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxing Qiu
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng He
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiwei Ma
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
21
|
Islam Khan MZ, Law HKW. Cancer Susceptibility Candidate 9 (CASC9) Promotes Colorectal Cancer Carcinogenesis via mTOR-Dependent Autophagy and Epithelial-Mesenchymal Transition Pathways. Front Mol Biosci 2021; 8:627022. [PMID: 34017854 PMCID: PMC8129023 DOI: 10.3389/fmolb.2021.627022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer worldwide. Many recent studies have demonstrated that different long non-coding RNAs (lncRNAs) are involved in the initiation, advancement, and metastasis of many cancers including CRC. Cancer susceptibility candidate 9 (CASC9) is an lncRNA that has been reported in many cancers, but its role in CRC is poorly understood. In this study, we aimed to examine the expression of CASC9 in CRC cell lines and to determine the mechanism of action of CASC9 in CRC carcinogenesis. METHODS The expression of CASC9 in CRC tissues was compared with normal samples from publicly available datasets in The Cancer Genome Atlas (TCGA) and The Encyclopedia of RNA Interactomes (ENCORI). CASC9 expression was further verified in four CRC cell lines (DLD1, HT-29, SW480, and HCT-116) and normal colorectal cell line (CCD-112CoN) by real-time quantitative polymerase chain reaction (RT-qPCR). After gene silencing in HCT-116 and SW480, Cell Counting Kit-8 assay, clonogenic assay, and wound healing assay were performed to evaluate cell proliferation, viability, and migration index of cells. Western blotting was used to explore the key pathways involved. RESULTS CASC9 was significantly upregulated as analyzed from both public datasets TCGA and ENCORI where its overexpression was associated with poor survival of CRC patients. Similarly, CASC9 was significantly overexpressed in the CRC cell lines compared with normal cells studied. The silencing of CASC9 in HCT-116 and SW480 attenuated cell proliferation and migration significantly. Furthermore, pathways investigations showed that silencing of CASC9 significantly induced autophagy, promoted AMP-activated protein kinase (AMPK) phosphorylation, inhibited mTOR and AKT signaling pathways, and altered epithelial-mesenchymal transition (EMT) marker protein expression. CONCLUSION We demonstrated that silencing of CASC9 contributes to the reduced CRC cell proliferation and migration by regulating autophagy and AKT/mTOR/EMT signaling. Therefore, CASC9 plays an important role in carcinogenesis, and its expression may act as a prognostic biomarker and a potential therapeutic target of CRC management.
Collapse
Affiliation(s)
| | - Helen Ka Wai Law
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
22
|
Qin YR, Ma CQ, Wang DP, Zhang QQ, Liu MR, Zhao HR, Jiang JH, Fang Q. Bilobalide alleviates neuroinflammation and promotes autophagy in Alzheimer's disease by upregulating lincRNA-p21. Am J Transl Res 2021; 13:2021-2040. [PMID: 34017373 PMCID: PMC8129331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
EGb 761 has some protective effects on AD and can improve the cognitive functions of AD mice. However, the underlying molecular mechanisms are unknown. Here, we investigated the function of bilobalide, the effective component of EGb 761, in neuroinflammation and autophagy during AD. LPS-treated BV-2 cells were used as an in vitro model for neuroinflammation. The APP/PS1 AD mouse line was used to examine the function of bilobalide in AD. ELISA and qRT-PCR were used to measure the levels of proinflammatory cytokines, including TNF-α, IL-6 and IL-1β. Western blotting was employed to determine the protein levels of p-p65, iNOS, COX-2, LC3, beclin-1, p62 and p-STAT3. Immunostaining was applied to examine the number of autophagosomes. LPS treatment induced inflammatory responses and inhibited autophagy in BV-2 cells. Bilobalide suppressed LPS-induced neuroinflammation and promoted autophagy. Furthermore, bilobalide treatment increased the lincRNA-p21 levels, which suppressed STAT3 signalling. Knockdown of lincRNA-p21 reversed the effects of bilobalide. Overexpression of lincRNA-p21 promoted autophagy and inhibited neuroinflammation as well while STAT3 inhibitor blocked the effects of si-lincRNA-p21. In vivo experiments revealed that bilobalide improved the learning and memory capabilities of APP/PS1 AD mice. Bilobalide improves the cognitive functions of APP/PS1 AD mice. Mechanistically, bilobalide suppresses inflammatory responses and promotes autophagy possibly by upregulating lincRNA-p21 levels.
Collapse
Affiliation(s)
- Yi-Ren Qin
- Department of Neurology, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, China
| | - Chi-Qian Ma
- Department of Cardiology, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, China
| | - Da-Peng Wang
- Department of Neurology, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, China
| | - Quan-Quan Zhang
- Department of Neurology, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, China
| | - Mei-Rong Liu
- Department of Neurology, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, China
| | - Hong-Ru Zhao
- Department of Neurology, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, China
| | - Jian-Hua Jiang
- Department of Neurology, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, China
| |
Collapse
|
23
|
Wu A, Tang J, Guo Z, Dai Y, Nie J, Hu W, Liu N, Ye C, Li S, Pei H, Zhou G. Long Non-Coding RNA CRYBG3 Promotes Lung Cancer Metastasis via Activating the eEF1A1/MDM2/MTBP Axis. Int J Mol Sci 2021; 22:3211. [PMID: 33809929 PMCID: PMC8048704 DOI: 10.3390/ijms22063211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
The occurrence of distant tumor metastases is a major barrier in non-small cell lung cancer (NSCLC) therapy, and seriously affects clinical treatment and patient prognosis. Recently, long non-coding RNAs (lncRNAs) have been demonstrated to be crucial regulators of metastasis in lung cancer. The aim of this study was to reveal the underlying mechanisms of a novel lncRNA LNC CRYBG3 in regulating NSCLC metastasis. Experimental results showed that LNC CRYBG3 was upregulated in NSCLC cells compared with normal tissue cells, and its level was involved in these cells' metastatic ability. Exogenously overexpressed LNC CRYBG3 increased the metastatic ability and the protein expression level of the metastasis-associated proteins Snail and Vimentin in low metastatic lung cancer HCC827 cell line. In addition, LNC CRYBG3 contributed to HCC827 cell metastasis in vivo. Mechanistically, LNC CRYBG3 could directly combine with eEF1A1 and promote it to move into the nucleus to enhance the transcription of MDM2. Overexpressed MDM2 combined with MDM2 binding protein (MTBP) to reduce the binding of MTBP with ACTN4 and consequently increased cell migration mediated by ACTN4. In conclusion, the LNC CRYBG3/eEF1A1/MDM2/MTBP axis is a novel signaling pathway regulating tumor metastasis and may be a potential therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Anqing Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jiaxin Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Ziyang Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Yingchu Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Ningang Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Caiyong Ye
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Shihong Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
24
|
Long noncoding RNA H19 contributes to the proliferation and autophagy of glioma cells through mTOR/ULK1 pathway. Neuroreport 2021; 32:352-358. [PMID: 33661803 DOI: 10.1097/wnr.0000000000001602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Long noncoding RNA (LncRNA) H19 has been proven to be involved in many kinds of cancers including glioma, and a previous study has shown an autophagy regulation of H19. The mammalian target of rapamycin (mTOR) signaling pathway plays a key role in autophagy and Unc-51 like autophagy activating kinase 1 (ULK1) is also thought to be involved in autophagy signaling. In our study, we investigated the role of mTOR/ULK1 autophagy signaling in the H19-mediated promotion of glioma proliferation. Human glioma cells U87 and U251 and normal human astrocytes HA1800 were used in the study. First, the expression of H19 was determined in U87, U251, and HA1800 cells. Then, the cell proliferation and migration of glioma cells were detected, while the protein levels of main molecules of the mTOR/ULK1 pathway and autophagy-related proteins were also examined. Rapamycin, an inhibitor of mTOR, was used to further study the role of H19 in autophagy. We observed that overexpressed H19 promoted the proliferation and migration in glioma cells. The autophagy of U87 cells was suppressed when H19 was overexpressed and enhanced when H19 was silenced. H19 overexpression inhibited mTOR phosphorylation and promoted ULK1 phosphorylation. H19 promoted proliferation, migration, and autophagy by regulating mTOR signaling. In conclusion, we validate that H19 contributes to the proliferation and autophagy of glioma cells through the mTOR/ULK1 pathway.
Collapse
|
25
|
Wang J, Zhu Y, Ni S, Liu S. LncRNA GAS5 Suppressed Proliferation and Promoted Apoptosis in Laryngeal Squamous Cell Carcinoma by Targeting MiR-26a-5p and Modifying ULK2. Cancer Manag Res 2021; 13:871-887. [PMID: 33551645 PMCID: PMC7856352 DOI: 10.2147/cmar.s250778] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/18/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose Long noncoding RNAs growth arrest-specific 5 (GAS5) exerts important functions in modulating various tumor behaviors. However, the role of lncRNA GAS5 in laryngeal squamous cell carcinoma (LSCC) remains unknown. Materials and Methods Cell viability and apoptosis were, respectively, detected by cell counting kit-8 and flow cytometry, DIANA-LncBase V, Starbase, TargetScan and a dual-luciferase reporter gene assay were employed to assess the relationship among GAS5, miR-26a-5p and uncoordinated 51-like kinase 1 (ULK2), and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot were performed to detect the expression of autophagy-relative factors. Results The expression level of GAS5 was frequently decreased in LSCC cell lines, and up-regulated GAS5 inhibited AMC-HN-8 cells viability and induced apoptosis. More importantly, we found that GAS5 activated autophagy, with enhanced autophagy-related proteins after GAS5 overexpression. While down-regulated GAS5 had opposite results in Tu 177 cells, GAS5 was found to act as a microRNA sponge in a pathway to regulate miR-26a-5p and its target gene ULK2. MiR-26a-5p mimics inhibited apoptosis and autophagy, which were reversed by GAS5 and siGAS5 in AMC-HN-8 cells and Tu 177 cells, as well as ULK2 in AMC-HN-8 cells. Meanwhile, the concomitant downregulation of ULK2 and miRNA-26a-5p inhibitor decreased the miRNA-26a-5p inhibitor-induced apoptosis and autophagy. Conclusion This is the first report of LncRNA GAS5 acting as a tumor suppressor in LSCC by regulating the miR-26a-5p/ULK2 axis, and it could be a new target for gene therapy in LSCC.
Collapse
Affiliation(s)
- Jian Wang
- Department of Head and Neck Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Yiming Zhu
- Department of Head and Neck Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Song Ni
- Department of Head and Neck Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Shaoyan Liu
- Department of Head and Neck Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| |
Collapse
|
26
|
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13:6-65. [PMID: 33584986 PMCID: PMC7856864 DOI: 10.4254/wjh.v13.i1.6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71110, Greece
| | - Argryro Voumvouraki
- 1 Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54636, Greece
| | - Aikaterini Augoustaki
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece.
| |
Collapse
|
27
|
Qian X, Qu H, Zhang F, Peng S, Dou D, Yang Y, Ding Y, Xie M, Dong H, Liao Y, Han M. Exosomal long noncoding RNA AGAP2-AS1 regulates trastuzumab resistance via inducing autophagy in breast cancer. Am J Cancer Res 2021; 11:1962-1981. [PMID: 34094664 PMCID: PMC8167703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/13/2021] [Indexed: 03/11/2023] Open
Abstract
Trastuzumab has been widely used for treatment of HER-2-positive breast cancer patients, however, the clinical response has been restricted due to emergence of resistance. Recent studies indicate that long noncoding RNA AGAP2-AS1 (lncRNA AGAP2-AS1) plays an important role in cancer resistance. However, the precise regulatory function and therapeutic potential of AGAP2-AS1 in trastuzumab resistance is still not defined. In this study, we sought to reveal the essential role of AGAP2-AS1 in trastuzumab resistance. Our results suggest that AGAP2-AS1 disseminates trastuzumab resistance via packaging into exosomes. Exosomal AGAP2-AS1 induces trastuzumab resistance via modulating ATG10 expression and autophagy activity. Mechanically, AGAP2-AS1 is associated with ELAVL1 protein, and the AGAP2-AS1-ELAVL1 complex could directly bind to the promoter region of ATG10, inducing H3K27ac and H3K4me3 enrichment, which finally activates ATG10 transcription. AGAP2-AS1-targeting antisense oligonucleotides (ASO) substantially increased trastuzumab-induced cytotoxicity. Clinically, increased expression of serum exosomal AGAP2-AS1 was associate with poor response to trastuzumab treatment. In conclusion, exosomal AGAP2-AS1 increased trastuzumab resistance via promoting ATG10 expression and inducing autophagy. Therefore, AGAP2-AS1 may serve as predictive biomarker and therapeutic target for HER-2+ breast cancer patients.
Collapse
Affiliation(s)
- Xueke Qian
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, China
| | - Hongbo Qu
- Department of Breast and Thyroid Surgery, The First People's Hospital of Chenzhou City Hunan 423000, China
| | - Fan Zhang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University Haikou 570311, China
| | - Shujia Peng
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, Shaanxi, China
| | - Dongwei Dou
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, China
| | - Yunqing Yang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, China
| | - Yichao Ding
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University Haikou 570311, China
| | - Mingwei Xie
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University Haikou 570311, China
| | - Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University Haikou 570311, China
| | - Yue Liao
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University Haikou 570311, China.,Department of Obstetrics and Gynecology, University Hospital, LMU Munich Marchioninistr 15, Munich 81377, Germany
| | - Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, China
| |
Collapse
|
28
|
Aventaggiato M, Vernucci E, Barreca F, Russo MA, Tafani M. Sirtuins' control of autophagy and mitophagy in cancer. Pharmacol Ther 2020; 221:107748. [PMID: 33245993 DOI: 10.1016/j.pharmthera.2020.107748] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Mammalian cells use a specialized and complex machinery for the removal of altered proteins or dysfunctional organelles. Such machinery is part of a mechanism called autophagy. Moreover, when autophagy is specifically employed for the removal of dysfunctional mitochondria, it is called mitophagy. Autophagy and mitophagy have important physiological implications and roles associated with cellular differentiation, resistance to stresses such as starvation, metabolic control and adaptation to the changing microenvironment. Unfortunately, transformed cancer cells often exploit autophagy and mitophagy for sustaining their metabolic reprogramming and growth to a point that autophagy and mitophagy are recognized as promising targets for ongoing and future antitumoral therapies. Sirtuins are NAD+ dependent deacylases with a fundamental role in sensing and modulating cellular response to external stresses such as nutrients availability and therefore involved in aging, oxidative stress control, inflammation, differentiation and cancer. It is clear, therefore, that autophagy, mitophagy and sirtuins share many common aspects to a point that, recently, sirtuins have been linked to the control of autophagy and mitophagy. In the context of cancer, such a control is obtained by modulating transcription of autophagy and mitophagy genes, by post translational modification of proteins belonging to the autophagy and mitophagy machinery, by controlling ROS production or major metabolic pathways such as Krebs cycle or glutamine metabolism. The present review details current knowledge on the role of sirtuins, autophagy and mitophagy in cancer to then proceed to discuss how sirtuins can control autophagy and mitophagy in cancer cells. Finally, we discuss sirtuins role in the context of tumor progression and metastasis indicating glutamine metabolism as an example of how a concerted activation and/or inhibition of sirtuins in cancer cells can control autophagy and mitophagy by impinging on the metabolism of this fundamental amino acid.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Enza Vernucci
- Department of Internistic, Anesthesiologic and Cardiovascular Clinical Sciences, Italy; MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy
| | - Federica Barreca
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Matteo A Russo
- MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy; IRCCS San Raffaele, Via val Cannuta 247, 00166 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
29
|
Li X, Jin F, Li Y. A novel autophagy-related lncRNA prognostic risk model for breast cancer. J Cell Mol Med 2020; 25:4-14. [PMID: 33216456 PMCID: PMC7810925 DOI: 10.1111/jcmm.15980] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are well known as crucial regulators to breast cancer development and are implicated in controlling autophagy. LncRNAs are also emerging as valuable prognostic factors for breast cancer patients. It is critical to identify autophagy-related lncRNAs with prognostic value in breast cancer. In this study, we identified autophagy-related lncRNAs in breast cancer by constructing a co-expression network of autophagy-related mRNAs-lncRNAs from The Cancer Genome Atlas (TCGA). We evaluated the prognostic value of these autophagy-related lncRNAs by univariate and multivariate Cox proportional hazards analyses and eventually obtained a prognostic risk model consisting of 11 autophagy-related lncRNAs (U62317.4, LINC01016, LINC02166, C6orf99, LINC00992, BAIAP2-DT, AC245297.3, AC090912.1, Z68871.1, LINC00578 and LINC01871). The risk model was further validated as a novel independent prognostic factor for breast cancer patients based on the calculated risk score by Kaplan-Meier analysis, univariate and multivariate Cox regression analyses and time-dependent receiver operating characteristic (ROC) curve analysis. Moreover, based on the risk model, the low-risk and high-risk groups displayed different autophagy and oncogenic statues by principal component analysis (PCA) and Gene Set Enrichment Analysis (GSEA) functional annotation. Taken together, these findings suggested that the risk model of the 11 autophagy-related lncRNAs has significant prognostic value for breast cancer and might be autophagy-related therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
30
|
Aillaud M, Schulte LN. Emerging Roles of Long Noncoding RNAs in the Cytoplasmic Milieu. Noncoding RNA 2020; 6:ncrna6040044. [PMID: 33182489 PMCID: PMC7711603 DOI: 10.3390/ncrna6040044] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
While the important functions of long noncoding RNAs (lncRNAs) in nuclear organization are well documented, their orchestrating and architectural roles in the cytoplasmic environment have long been underestimated. However, recently developed fractionation and proximity labelling approaches have shown that a considerable proportion of cellular lncRNAs is exported into the cytoplasm and associates nonrandomly with proteins in the cytosol and organelles. The functions of these lncRNAs range from the control of translation and mitochondrial metabolism to the anchoring of cellular components on the cytoskeleton and regulation of protein degradation at the proteasome. In the present review, we provide an overview of the functions of lncRNAs in cytoplasmic structures and machineries und discuss their emerging roles in the coordination of the dense intracellular milieu. It is becoming apparent that further research into the functions of these lncRNAs will lead to an improved understanding of the spatiotemporal organization of cytoplasmic processes during homeostasis and disease.
Collapse
Affiliation(s)
- Michelle Aillaud
- Institute for Lung Research, Philipps University Marburg, 35043 Marburg, Germany;
| | - Leon N Schulte
- Institute for Lung Research, Philipps University Marburg, 35043 Marburg, Germany;
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- Correspondence:
| |
Collapse
|
31
|
Cao J, Zhang M, Zhang L, Lou J, Zhou F, Fang M. Non-coding RNA in thyroid cancer - Functions and mechanisms. Cancer Lett 2020; 496:117-126. [PMID: 32949678 DOI: 10.1016/j.canlet.2020.08.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/26/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022]
Abstract
Thyroid cancer is the most common endocrine malignant tumor, and its incidence has increased significantly in the past few years. A growing number of noncoding RNAs (ncRNAs) have shown abnormal expression patterns in human thyroid cancer in recent studies. Depending on size, ncRNAs are usually subdivided into two categories: short ncRNAs and long ncRNAs (longer than 200 nucleotides). Short ncRNAs include microRNAs (miRNAs), PIWI-interacting RNAs, small nucleolar RNAs, and endogenous small interfering RNAs, which have been extensively studied due to their roles in developmental and tumor biology. Compared to that of short ncRNAs, the involvement of lncRNAs in human cancers, especially in thyroid cancer, is not as well studied. Here, we reviewed the roles and clinical significance of miRNAs, lncRNAs, and circular RNA in thyroid development, tumorigenesis, and metastasis to offer a new approach to thyroid cancer treatment.
Collapse
Affiliation(s)
- Jun Cao
- Department of Rare and Head and Neck Oncology, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Mengdi Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jianlin Lou
- Department of Head and Neck Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| | - Meiyu Fang
- Department of Rare and Head and Neck Oncology, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
32
|
Han M, Qian X, Cao H, Wang F, Li X, Han N, Yang X, Yang Y, Dou D, Hu J, Wang W, Han J, Zhang F, Dong H. lncRNA ZNF649-AS1 Induces Trastuzumab Resistance by Promoting ATG5 Expression and Autophagy. Mol Ther 2020; 28:2488-2502. [PMID: 32735773 DOI: 10.1016/j.ymthe.2020.07.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/06/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
The regulatory mechanism of long non-coding RNAs (lncRNAs) in trastuzumab resistance is not well established to date. In this research, we identified differentially expressed lncRNA and investigated its regulatory role in trastuzumab resistance of breast cancer. HiSeq sequencing and quantitative real-time PCR were performed to identify the dysregulated lncRNAs. Mass spectrometry, RNA fluorescence in situ hybridization (RNA-FISH), and immunoprecipitation assays were performed to identify the direct interactions between ZNF649-AS1 and other associated targets, such as polypyrimidine tract binding protein 1 (PTBP1) and autophagy related 5 (ATG5). Our results showed that ZNF649-AS1 was more highly expressed in trastuzumab-resistant cells compared to sensitive cells. Increased expression of ZNF649-AS1 was associated with a poorer response and shorter survival time of breast cancer patients. ZNF649-AS1 was upregulated by H3K27ac modification at the presence of trastuzumab treatment, and knockdown of ZNF649-AS1 reversed trastuzumab resistance via modulating ATG5 expression and autophagy. Mechanically, ZNF649-AS1 was associated with PTBP1 protein, which further promoted the transcription activity of the ATG5 gene. In conclusion, we demonstrated that H3K27ac modification-induced upregulation of ZNF649-AS1 could cause autophagy and trastuzumab resistance through associating with PTBP1 and promoting ATG5 transcription.
Collapse
Affiliation(s)
- Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xueke Qian
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hui Cao
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Fang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiangke Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Na Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xue Yang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yunqing Yang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dongwei Dou
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Wei Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Jing Han
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Fan Zhang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| |
Collapse
|
33
|
Bu L, Zhang L, Tian M, Zheng Z, Tang H, Yang Q. LncRNA MIR210HG Facilitates Non-Small Cell Lung Cancer Progression Through Directly Regulation of miR-874/STAT3 Axis. Dose Response 2020; 18:1559325820918052. [PMID: 32699535 PMCID: PMC7357071 DOI: 10.1177/1559325820918052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Long noncoding RNAs are involved in the progression of multiple cancers. However, the expression and mechanism of microRNA (miR)210HG in non-small cell lung cancer (NSCLC) remain unclear. METHODS The levels of miR210HG and miR-874 were measured by quantitative real-time polymerase chain reaction in NSCLC tissue samples and cells. Non-small cell lung cancer cell proliferation, migration, and invasion were measured by Cell Counting Kit-8 and transwell assays. Luciferase analysis confirmed the interaction between miR210HG and miR-874. RESULTS Here, our data showed that miR210HG was overexpressed in NSCLC tissue samples and cells. In vitro functional assays showed that silencing miR210HG blocked NSCLC cell proliferation, migration, and invasion while promoting NSCLC cell radiosensitivity and chemoresistance. Mechanistically, miR-874 was directly regulated by miR210HG. Furthermore, miR-874 expression was reduced in NSCLC tissues and cells. The miR-874 mimic could mitigate the promoting effect of miR210HG on NSCLC cell progression. The data also showed that miR210HG promoted NSCLC cell progression through miR-181a expression by targeting STAT3. CONCLUSIONS Our observations suggest that miR210HG is associated with NSCLC cell progression by regulating the miR-874/STAT3 axis.
Collapse
Affiliation(s)
- Liang Bu
- The First People’s Hospital of Yunnan Province, Medical School of Kunming University of Science and Technology, Kunming, China
| | - Libin Zhang
- The First People’s Hospital of Yunnan Province, Medical School of Kunming University of Science and Technology, Kunming, China
| | - Mei Tian
- The First People’s Hospital of Yunnan Province, Medical School of Kunming University of Science and Technology, Kunming, China
| | - Zhoubin Zheng
- The First People’s Hospital of Yunnan Province, Medical School of Kunming University of Science and Technology, Kunming, China
| | - Huijie Tang
- Anesthesiology Department, No.1 People’s General Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Qiuju Yang
- Anesthesiology Department, No.1 People’s General Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
34
|
Pourhanifeh MH, Mahjoubin-Tehran M, Karimzadeh MR, Mirzaei HR, Razavi ZS, Sahebkar A, Hosseini N, Mirzaei H, Hamblin MR. Autophagy in cancers including brain tumors: role of MicroRNAs. Cell Commun Signal 2020; 18:88. [PMID: 32517694 PMCID: PMC7285723 DOI: 10.1186/s12964-020-00587-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy has a crucial role in many cancers, including brain tumors. Several types of endogenous molecules (e.g. microRNAs, AKT, PTEN, p53, EGFR, and NF1) can modulate the process of autophagy. Recently miRNAs (small non-coding RNAs) have been found to play a vital role in the regulation of different cellular and molecular processes, such as autophagy. Deregulation of these molecules is associated with the development and progression of different pathological conditions, including brain tumors. It was found that miRNAs are epigenetic regulators, which influence the level of proteins coded by the targeted mRNAs with any modification of the genetic sequences. It has been revealed that various miRNAs (e.g., miR-7-1-3p, miR-340, miR-17, miR-30a, miR-224-3p, and miR-93), as epigenetic regulators, can modulate autophagy pathways within brain tumors. A deeper understanding of the underlying molecular targets of miRNAs, and their function in autophagy pathways could contribute to the development of new treatment methods for patients with brain tumors. In this review, we summarize the various miRNAs, which are involved in regulating autophagy in brain tumors. Moreover, we highlight the role of miRNAs in autophagy-related pathways in different cancers. Video abstract
Collapse
Affiliation(s)
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Razavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nayyerehsadat Hosseini
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
35
|
Yan S, Khambu B, Hong H, Liu G, Huda N, Yin XM. Autophagy, Metabolism, and Alcohol-Related Liver Disease: Novel Modulators and Functions. Int J Mol Sci 2019; 20:ijms20205029. [PMID: 31614437 PMCID: PMC6834312 DOI: 10.3390/ijms20205029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023] Open
Abstract
Alcohol-related liver disease (ALD) is caused by over-consumption of alcohol. ALD can develop a spectrum of pathological changes in the liver, including steatosis, inflammation, cirrhosis, and complications. Autophagy is critical to maintain liver homeostasis, but dysfunction of autophagy has been observed in ALD. Generally, autophagy is considered to protect the liver from alcohol-induced injury and steatosis. In this review, we will summarize novel modulators of autophagy in hepatic metabolism and ALD, including autophagy-mediating non-coding RNAs (ncRNAs), and crosstalk of autophagy machinery and nuclear factors. We will also discuss novel functions of autophagy in hepatocytes and non-parenchymal hepatic cells during the pathogenesis of ALD and other liver diseases.
Collapse
Affiliation(s)
- Shengmin Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Bilon Khambu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Honghai Hong
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Gang Liu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Nazmul Huda
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
36
|
Potential of epigenetic events in human thyroid cancer. Cancer Genet 2019; 239:13-21. [PMID: 31472323 DOI: 10.1016/j.cancergen.2019.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/27/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022]
Abstract
Thyroid cancer remains the highest prevailing endocrine malignancy, and its incidence rate has progressively increased in the previous years. Above 95% of thyroid tumor are follicular cells types of carcinoma in which are considered invasive type of tumor. The pathogenesis and molecular mechanism of thyroid tumors are yet remains elucidated, in spite of activating RET, RAS and BRAF carcinogenesis have been well introduced. Nemours molecular alterations have been defined and have revealed promise for their diagnostic, prognostic and therapeutic capacity but still need further confirmation. Among different types of mechanisms, the current article reviews the importance of epigenetic modifications in thyroid cancer. Increasing data from previous reports demonstrate that acquired epigenetic abnormalities together with genetic changes plays an important role in alteration of gene expression patterns. Aberrant DNA methylation has been well known in the CpG regions and profile of microRNAs (mi-RNAs) expression also involved in cancer development. In addition, the gene expression through epigenetic control contribution to thyroid cancer is analyzed and it is semi considered in the clinic. However the epigenetic of the thyroid cancer is yet remains in its early stages, and it carries encouraging potential thyroid cancer detections in its early stages, assessment of prognosis and targeted cancer treatment.
Collapse
|