1
|
Cheng J, Xing Q, Pan Y, Yang Y, Zhang R, Shi D, Deng Y. CircTEC Inhibits the Follicular Atresia in Buffalo ( Bubalus bubalis) via Targeting miR-144-5p/FZD3 Signaling Axis. Int J Mol Sci 2024; 26:153. [PMID: 39796015 PMCID: PMC11719787 DOI: 10.3390/ijms26010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
The specific expression profile and function of circular RNA (circRNA) in follicular atresia remain largely unknown. Here, the circRNA expression profiles of granulosa cells derived from healthy follicles (HFs) and antral follicles (AFs) in buffalo were analyzed by RNA-seq, and the mechanism of a differentially expressed circRNA (DEcircRNA) circTEC regulating the granulosa cell function that affects follicular atresia was further explored. RNA-seq results showed that a total of 112 DEcircRNAs were identified. Among them, circTEC was highly expressed in HF, and its circular structure was confirmed by RNase R digestion assay, reversed PCR and Sanger sequencing. Functional experiments demonstrated that circTEC promotes the proliferation and steroid hormone synthesis of buffalo granulosa cells (bGCs), and it also inhibits their apoptosis. In-depth mechanism analysis showed that the expression level of circTEC in bGCs from AFs was adversely related to miR-144-5p and consistent with FZD3. CircTEC acts as an endogenous sponge of miR-144-5p to regulate the expression of the target gene FZD3 in AFs, which promotes the proliferation of bGCs and inhibits bGCs apoptosis, thereby inhibiting follicular atresia in buffalo. In summary, our study revealed the regulatory role of the circTEC/miR-144-5p/FZD3 axis during follicular atresia in buffalo. These results provided new insights into the biological mechanism underlying follicular atresia.
Collapse
Affiliation(s)
- Juanru Cheng
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.C.); (Q.X.); (Y.Y.); (R.Z.)
| | - Qinghua Xing
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.C.); (Q.X.); (Y.Y.); (R.Z.)
| | - Yu Pan
- Chongqing Academy of Animal Sciences, Chongqing 402460, China;
| | - Yanyan Yang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.C.); (Q.X.); (Y.Y.); (R.Z.)
| | - Ruimen Zhang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.C.); (Q.X.); (Y.Y.); (R.Z.)
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.C.); (Q.X.); (Y.Y.); (R.Z.)
| | - Yanfei Deng
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.C.); (Q.X.); (Y.Y.); (R.Z.)
| |
Collapse
|
2
|
Guo Z, Lv L, Liu D, Ma H, Radović Č. Effect of SNPs on Litter Size in Swine. Curr Issues Mol Biol 2024; 46:6328-6345. [PMID: 39057020 PMCID: PMC11276056 DOI: 10.3390/cimb46070378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/28/2024] Open
Abstract
Although sows do not directly enter the market, they play an important role in piglet breeding on farms. They consume large amounts of feed, resulting in a significant environmental burden. Pig farms can increase their income and reduce environmental pollution by increasing the litter size (LS) of swine. PCR-RFLP/SSCP and GWAS are common methods to evaluate single-nucleotide polymorphisms (SNPs) in candidate genes. We conducted a systematic meta-analysis of the effect of SNPs on pig LS. We collected and analysed data published over the past 30 years using traditional and network meta-analyses. Trial sequential analysis (TSA) was used to analyse population data. Gene set enrichment analysis and protein-protein interaction network analysis were used to analyse the GWAS dataset. The results showed that the candidate genes were positively correlated with LS, and defects in PCR-RFLP/SSCP affected the reliability of candidate gene results. However, the genotypes with high and low LSs did not have a significant advantage. Current breeding and management practices for sows should consider increasing the LS while reducing lactation length and minimizing the sows' non-pregnancy period as much as possible.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Lei Lv
- Wood Science Research Institute, Heilongjiang Academy of Forestry, No. 134 Haping Road, Harbin 150080, China
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Hong Ma
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Čedomir Radović
- Department of Pig Breeding and Genetics, Institute for Animal Husbandry, Autoput 16, 11080 Belgrade, Serbia
| |
Collapse
|
3
|
Yin Y, Zhang J, Li X, Duan M, Zhao M, Zhang F, Chamba Y, Shang P. Application of RNA-Seq Technology for Screening Reproduction-Related Differentially Expressed Genes in Tibetan and Yorkshire Pig Ovarian Tissue. Vet Sci 2024; 11:283. [PMID: 39057967 PMCID: PMC11281381 DOI: 10.3390/vetsci11070283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
The purpose of this study was to explore and verify genes that regulate the reproductive traits of Tibetan pigs at the mRNA level. The ovarian tissues of Tibetan pigs (TPs) and Yorkshire pigs (YPs) were selected as research objects, and cDNA libraries of the ovarian tissue transcripts of Tibetan pigs and Yorkshire pigs were successfully constructed by the RNA-Seq technique. A total of 651 differentially expressed genes (DEGs) were screened, including 414 up-regulated genes and 237 down-regulated genes. Through GO and KEGG enrichment analysis, it was found that these differentially expressed genes were significantly enriched in cell process, reproductive process, reproduction, cell proliferation, binding, and catalytic activity, as well as oxidative phosphorylation, endocrine resistance, thyroid hormone, Notch, and other signal transduction pathways. Genes significantly enriched in pathways closely related to reproductive regulation were analyzed and selected, and the AR, CYP11A1, CYP17A1, INHBA, ARRB2, EGFR, ETS1, HSD17B1, IGF1R, MIF, SCARB1, and SMAD4 genes were identified as important candidate genes. Twelve differentially expressed genes related to reproduction were verified by RT-qPCR. The results showed that the expression of the AR, CYP17A1, EGFR, ETS1, IGF1R, and SMAD4 genes was significantly higher in Tibetan pigs than in Yorkshire pigs, while the expression of the CYP11A1, INHBA, ARRB2, HSD17B, MIF, and SCARB1 genes in Tibetan pigs was significantly lower than in Yorkshire pigs. The purpose of this study is to provide a theoretical basis for exploring the molecular mechanism of reproductive trait effect genes and the application of molecular breeding in Tibetan pigs.
Collapse
Affiliation(s)
- Yikai Yin
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China; (Y.Y.); (J.Z.); (X.L.); (M.D.); (M.Z.); (F.Z.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Jian Zhang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China; (Y.Y.); (J.Z.); (X.L.); (M.D.); (M.Z.); (F.Z.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Xindi Li
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China; (Y.Y.); (J.Z.); (X.L.); (M.D.); (M.Z.); (F.Z.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Mengqi Duan
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China; (Y.Y.); (J.Z.); (X.L.); (M.D.); (M.Z.); (F.Z.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Mingxuan Zhao
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China; (Y.Y.); (J.Z.); (X.L.); (M.D.); (M.Z.); (F.Z.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Feifan Zhang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China; (Y.Y.); (J.Z.); (X.L.); (M.D.); (M.Z.); (F.Z.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China; (Y.Y.); (J.Z.); (X.L.); (M.D.); (M.Z.); (F.Z.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China; (Y.Y.); (J.Z.); (X.L.); (M.D.); (M.Z.); (F.Z.)
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi 860000, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi 860000, China
| |
Collapse
|
4
|
Xiong H, Li W, Wang L, Wang X, Tang B, Cui Z, Liu L. Whole transcriptome analysis revealed the regulatory network and related pathways of non-coding RNA regulating ovarian atrophy in broody hens. Front Vet Sci 2024; 11:1399776. [PMID: 38868501 PMCID: PMC11168117 DOI: 10.3389/fvets.2024.1399776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
Poultry broodiness can cause ovarian atresia, which has a detrimental impact on egg production. Non-coding RNAs (ncRNAs) have become one of the most talked-about topics in life sciences because of the increasing evidence of their novel biological roles in regulatory systems. However, the molecular mechanisms of ncRNAs functions and processes in chicken ovarian development remain largely unknown. Whole-transcriptome RNA sequencing of the ovaries of broodiness and laying chickens was thus performed to identify the ncRNA regulatory mechanisms associated with ovarian atresia in chickens. Subsequent analysis revealed that the ovaries of laying chickens and those with broodiness had 40 differentially expressed MicroRNA (miRNAs) (15 up-regulated and 25 down-regulated), 379 differentially expressed Long Noncoding RNA (lncRNAs) (213 up-regulated and 166 down-regulated), and 129 differentially expressed circular RNA (circRNAs) (63 up-regulated and 66 down-regulated). The competing endogenous RNAs (ceRNA) network analysis further revealed the involvement of ECM-receptor interaction, AGE-RAGE signaling pathway, focal adhesion, cytokine-cytokine receptor interaction, inflammatory mediator regulation of TRP channels, renin secretion, gap junction, insulin secretion, serotonergic synapse, and IL-17 signaling pathways in broodiness. Upon further analysis, it became evident that THBS1 and MYLK are significant candidate genes implicated in the regulation of broodiness. The expression of these genes is linked to miR-155-x, miR-211-z, miR-1682-z, gga-miR-155, and gga-miR-1682, as well as to the competitive binding of novel_circ_014674 and MSTRG.3306.4. The findings of this study reveal the existence of a regulatory link between non-coding RNAs and their competing mRNAs, which provide a better comprehension of the ncRNA function and processes in chicken ovarian development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Jaglan K, Dhaka SS, Magotra A, Patil CS, Ghanghas A. Exploring MicroRNA biogenesis, applications and bioinformatics analysis in livestock: A comprehensive review. Reprod Domest Anim 2024; 59:e14529. [PMID: 38268204 DOI: 10.1111/rda.14529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Small non-coding RNAs called microRNAs (miRNAs) control the expression of genes post-transcriptionally. Their correlation with commercial economic traits including milk, meat and egg production, as well as their effective role in animal productivity, fertility, embryo survival and disease resistance, make them significant in livestock research. The miRNAs exhibit distinct spatial and temporal expression patterns, offering insights into their functional roles within cells and tissues. Aberrant miRNA production can disrupt vital cellular processes and genetic networks, contributing to conditions like metabolic disorders and viral diseases. These short RNA molecules are present in extracellular fluids, displaying remarkable stability against RNA degradation enzymes and extreme environmental conditions. miRNAs preservation is facilitated through packaging in lipid vesicles or complex formation with RNA-binding proteins. Numerous studies have illuminated the roles of miRNAs in diverse physiological processes, including embryonic stem cell differentiation, haematopoietic stem cell proliferation and differentiation and the coordinated development of organ systems. The integration of miRNA profiling, next-generation sequencing and bioinformatics analysis paves the way for transformative advancements in livestock research and industry. The present review underscores the applications of miRNAs in livestock, showcasing their potential to improve breeding strategies, diagnose diseases and enhance our understanding of fundamental biological processes.
Collapse
Affiliation(s)
- Komal Jaglan
- Department of Animal Genetics & Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - S S Dhaka
- Department of Animal Genetics & Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ankit Magotra
- Department of Animal Genetics & Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - C S Patil
- Department of Animal Genetics & Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Amandeep Ghanghas
- Department of Livestock Production Management, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
6
|
Lyu M, Su A, Zhang L, Gao W, Liu K, Yue F, Jing Y, Ma X, Liu L. Recombinant human granulocyte colony stimulating factor (rhG-CSF) participates in the progression of implantation via the hsa_circ_0001550-miRNA-mRNA interaction network. HUM FERTIL 2023; 26:1061-1072. [PMID: 35791760 DOI: 10.1080/14647273.2022.2093137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 02/17/2022] [Indexed: 11/04/2022]
Abstract
Inadequate endometrial receptivity is a key factor affecting the successful implantation of embryos. Recombinant human granulocyte colony stimulating factor (rhG-CSF) can increase endometrial thickness and improve the outcomes of assisted reproductive technologies (ARTs). In this preliminary study, the function and possible molecular mechanisms of recombinant human granulocyte colony stimulating factor (rhG-CSF) which affects endometrial receptivity and implantation in human Embryonic Stem Cells (hESCs) were investigated. The cell viability of endometrial stromal cells treated with rhG-CSF 0.5 ng/ml for 24 h was significantly increased. Moreover, the expression of hsa_circ_0001550 was downregulated in endometrial stromal cells treated with rhG-CSF. Furthermore, the hsa_circ_0001550-miRNA-mRNA network was constructed and the downstream target genes (including 4 miRNAs and 117 mRNAs) of hsa_circ_0001550 were mainly involved in the cAMP and calcium signalling pathways, which play important roles in regulating endometrial receptivity and embryo implantation. We conclude that rhG-CSF participates in the regulation of embryo implantation by regulating the hsa_circ_0001550-miRNA-mRNA interaction network.
Collapse
Affiliation(s)
- Meng Lyu
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Anchen Su
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lili Zhang
- The Reproductive Medicine Center, First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Reproductive Medicine and Embryo, Lanzhou, China
| | - Wenxin Gao
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Kun Liu
- The Reproductive Medicine Center, First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Reproductive Medicine and Embryo, Lanzhou, China
| | - Feng Yue
- The Reproductive Medicine Center, First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Reproductive Medicine and Embryo, Lanzhou, China
| | - Yuanxue Jing
- The Reproductive Medicine Center, First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Reproductive Medicine and Embryo, Lanzhou, China
| | - Xiaoling Ma
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, China
- The Reproductive Medicine Center, First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Reproductive Medicine and Embryo, Lanzhou, China
| | - Lin Liu
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, China
- The Reproductive Medicine Center, First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Reproductive Medicine and Embryo, Lanzhou, China
| |
Collapse
|
7
|
Wang W, Wu B, Liu Z, Sun X, Zhou L, Xu W, Yu T, Zheng Y, Zhang S. Comprehensive analysis on the regulation of differentially expressed of mRNA and ncRNA in different ovarian stages of ark shell Scapharca broughtonii. BMC Genomics 2023; 24:563. [PMID: 37736709 PMCID: PMC10515027 DOI: 10.1186/s12864-023-09648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Ovarian development is an important prerequisite and basis for animal reproduction. In many vertebrates, it is regulated by multiple genes and influenced by sex steroid hormones and environmental factors. However, relative information is limited in shellfish. To explore the biological functions and molecular mechanisms of mRNA and non-coding RNA that regulate ovarian development in Scapharca broughtonii, we performed whole transcriptome sequencing analysis on ovaries at three developmental stages. Furthermore, the biological processes involved in the differential expression of mRNA and ncRNA were analyzed. RESULTS A total of 11,342 mRNAs, 6897 lncRNAs, 135 circRNAs, and 275 miRNAs were differentially expressed. By mapping the differentially expressed RNAs from the three developmental stages of Venn diagram, multiple groups of shared mRNAs and lncRNAs were found to be associated with ovarian development, with some mRNA and ncRNA functions associated with steroid hormone. In addition, we constructed and visualized the lncRNA/circRNA-miRNA-mRNA network based on ceRNA targeting relationships. CONCLUSIONS These findings may facilitate our further understanding the mRNA and ncRNAs roles in the regulation of shellfish reproduction.
Collapse
Affiliation(s)
- Wenjing Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306, Shanghai, China
| | - Biao Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, 266237, Qingdao, China.
| | - Zhihong Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, 266237, Qingdao, China
| | - Xiujun Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, 266237, Qingdao, China
| | - Liqing Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, 266237, Qingdao, China
| | - Wandong Xu
- Administrative Examination and Approval Service Bureau of Kenli District, Dongying, China, 257500
| | - Tao Yu
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China, 265800
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China, 265800
| | - Shihao Zhang
- Shandong Anhai lnvestment , Jinan, China, Co., Ltd, 250013
| |
Collapse
|
8
|
Zhang J, Wang C, Jia C, Zhang Y, Qing X, Zhang Y, Liu J, Xu S, Pan Z. The Role of Circular RNAs in the Physiology and Pathology of the Mammalian Ovary. Int J Mol Sci 2022; 23:15204. [PMID: 36499522 PMCID: PMC9737273 DOI: 10.3390/ijms232315204] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) are an abundant class of endogenous non-coding RNAs (ncRNAs) generated from exonic, intronic, or untranslated regions of protein-coding genes or intergenic regions. The diverse, stable, and specific expression patterns of circRNAs and their possible functions through cis/trans regulation and protein-coding mechanisms make circRNA a research hotspot in various biological and pathological processes. It also shows practical value as biomarkers, diagnostic indicators, and therapeutic targets. This review summarized the characteristics, classification, biogenesis and elimination, detection and confirmation, and functions of circRNAs. We focused on research advances circRNAs in the mammalian ovary under conditions including ovarian cancer, polycystic ovarian syndrome (PCOS), and maternal aging, as well as during reproductive status, including ovarian follicle development and atresia. The roles of circRNAs in high reproductive traits in domestic animals were also summarized. Finally, we outlined some obstructive factors and prospects to work with circRNA, aiming to provide insights into the functional research interests of circRNAs in the reproduction and gynecology areas.
Collapse
Affiliation(s)
- Jinbi Zhang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Caixia Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinxin Qing
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuge Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingge Liu
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Shiyong Xu
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Chen W, Ma H, Li B, Yang F, Xiao Y, Gong Y, Li Z, Li T, Zeng Q, Xu K, Duan Y. Spatiotemporal Regulation of Circular RNA Expression during Liver Development of Chinese Indigenous Ningxiang Pigs. Genes (Basel) 2022; 13:746. [PMID: 35627131 PMCID: PMC9141790 DOI: 10.3390/genes13050746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND There have been many studies on the relationship between circRNAs and fat deposition. Although the liver is a central organ for fat metabolism, there are few reports on the relationship between circRNAs in the liver and fat deposition. METHODS In this study, we systematically analyzed circular RNAs in the liver of Ningxiang pigs, at four time points after birth (30 days, 90 days, 150 days and 210 days). RESULTS A total of 3705 circRNAs were coexpressed in four time periods were found, and KEGG analysis showed that the significantly upregulated pathways were mainly enriched in lipid metabolism and amino acid metabolism, while significantly downregulated pathways were mainly related to signal transduction, such as ECM-receptor interaction, MAPK signaling pathway, etc. Short time-series expression miner (STEM) analysis showed multiple model spectra that were significantly enriched over time in the liver. By constructing a competing endogenous RNA (ceRNA) regulatory network, 9187 pairs of networks related to the change in development time were screened. CONCLUSIONS The expression profiles of circRNAs in Ningxiang pig liver were revealed at different development periods, and it was determined that there is differential coexpression. Through enrichment analysis of these circRNAs, it was revealed that host genes were involved in metabolism-related signaling pathways and fatty acid anabolism. Through STEM analysis, many circRNAs involved in fat metabolism, transport, and deposition pathways were screened, and the first circRNA-miRNA-mRNA regulation network map in Ningxiang pig liver was constructed. The highly expressed circRNAs related to fat deposition were verified and were consistent with RNA-Seq results.
Collapse
Affiliation(s)
- Wenwu Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.C.); (F.Y.); (Y.X.); (Y.G.); (Z.L.); (T.L.); (Q.Z.)
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.C.); (F.Y.); (Y.X.); (Y.G.); (Z.L.); (T.L.); (Q.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Biao Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.C.); (F.Y.); (Y.X.); (Y.G.); (Z.L.); (T.L.); (Q.Z.)
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610000, China
| | - Fang Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.C.); (F.Y.); (Y.X.); (Y.G.); (Z.L.); (T.L.); (Q.Z.)
| | - Yu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.C.); (F.Y.); (Y.X.); (Y.G.); (Z.L.); (T.L.); (Q.Z.)
| | - Yan Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.C.); (F.Y.); (Y.X.); (Y.G.); (Z.L.); (T.L.); (Q.Z.)
| | - Zhi Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.C.); (F.Y.); (Y.X.); (Y.G.); (Z.L.); (T.L.); (Q.Z.)
| | - Ting Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.C.); (F.Y.); (Y.X.); (Y.G.); (Z.L.); (T.L.); (Q.Z.)
| | - Qinghua Zeng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.C.); (F.Y.); (Y.X.); (Y.G.); (Z.L.); (T.L.); (Q.Z.)
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Kang Xu
- Ningxiang Pig Farm of Dalong Livestock Technology Co., Ltd., Ningxiang 410600, China; (K.X.); (Y.D.)
| | - Yehui Duan
- Ningxiang Pig Farm of Dalong Livestock Technology Co., Ltd., Ningxiang 410600, China; (K.X.); (Y.D.)
| |
Collapse
|
10
|
Xu G, Hu Y, Yu D, Chen X, Li X, Duan S, Zhang N, Xu G, Hu J, Yang G, Sun S, Liu Y. Discovery of Differentially Expressed MicroRNAs in Porcine Ovaries With Smaller and Larger Litter Size. Front Genet 2022; 13:762124. [PMID: 35222529 PMCID: PMC8864311 DOI: 10.3389/fgene.2022.762124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
The number of live births in a litter is an important reproductive trait, and is one of the main indicators which reflect the production level and economic benefit of a pig farm. The ovary is an important reproductive organ of the sow, and it undergoes a series of biological processes during each estrous cycle. A complex transcriptional network containing coding and non-coding RNAs in the ovary closely regulates the reproductive capability of sows. However, the molecular regulation mechanisms affecting sow litter size are still unclear. We investigated the expression profiles of microRNAs (miRNAs) in porcine ovaries from sows with smaller than average litter sizes (SLS) and those with larger litter sizes (LLS). In total, 411 miRNAs were identified, and of these 17 were significantly down-regulated and 16 miRNAs were up-regulated when comparing sows with LLS and SLS, respectively. We further characterized the role of miR-183 which was one of the most up-regulated miRNAs. CCK-8, EdU incorporation and western blotting assays demonstrated that miR-183 promoted the proliferation of granulosa cells (GCs) in pig ovaries. Moreover, miR-183 inhibited the synthesis of estradiol in GCs and promoted the synthesis of progesterone. These results will help in gaining understanding of the role of miRNAs in regulating porcine litter size.
Collapse
Affiliation(s)
- Gaoxiao Xu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, China
- Teaching and Research Section of Biotechnology, Nanning University, Nanning, China
| | - Yamei Hu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Dongling Yu
- Teaching and Research Section of Biotechnology, Nanning University, Nanning, China
| | - Xingfa Chen
- Nanning Dabeinong Feed Technology Co., Ltd., Nanning, China
| | - Xiao Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Saixing Duan
- Teaching and Research Section of Biotechnology, Nanning University, Nanning, China
| | - Ning Zhang
- Nanning Dabeinong Feed Technology Co., Ltd., Nanning, China
| | - Gaoyu Xu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, China
| | - Jianhong Hu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Gongshe Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Shiduo Sun
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Yong Liu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, China
- *Correspondence: Yong Liu,
| |
Collapse
|
11
|
Abstract
Circular RNAs (circRNAs) are a newly discovered class of noncoding RNAs (ncRNAs) present in various tissues and cells. However, the functions of most circRNAs have not been verified experimentally. Here, using deltacoronavirus as a model, differentially expressed circRNAs in cells with or without deltacoronavirus infection were analyzed by RNA sequencing to characterize the cellular responses to RNA virus infection. More than 57,000 circRNA candidates were detected, and seven significantly dysregulated circRNAs were quantitated by real-time reverse transcription-PCR. We discovered a previously unidentified circRNA derived from the TNFAIP3 gene, named circTNFAIP3, which is distributed and expressed widely in various tissues. RNA viruses, including deltacoronaviruses, rather than DNA viruses tend to activate the expression of endogenous circTNFAIP3. Overexpression of circTNFAIP3 promoted deltacoronavirus replication by reducing the apoptosis, while silencing of circTNFAIP3 inhibited deltacoronavirus replication by enhancing the apoptosis. In summary, our work provides useful circRNA-related information to facilitate investigation of the underlying mechanism of deltacoronavirus infection and identifies a novel circTNFAIP3 that promotes deltacoronavirus replication via regulating apoptosis.
Collapse
|
12
|
Huang Y, Wang Y, Zhang C, Sun X. Biological functions of circRNAs and their progress in livestock and poultry. Reprod Domest Anim 2020; 55:1667-1677. [DOI: 10.1111/rda.13816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Yong Huang
- College of Animal Science and Technology Henan University of Science and Technology Luoyang China
| | - Yanli Wang
- Development Planning Office Henan University of Science and Technology Luoyang China
| | - Cai Zhang
- College of Animal Science and Technology Henan University of Science and Technology Luoyang China
| | - Xihong Sun
- Development Planning Office Henan University of Science and Technology Luoyang China
| |
Collapse
|