1
|
Sun H, Xia Z, Li M, Yu Z, Wang Z, Xing S, Cheng P, Zhang H, Li L. Identification of genetic factors underlying severe retinopathy of prematurity in preterm infants. Mol Vis 2025; 31:33-43. [PMID: 40084286 PMCID: PMC11901423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
Objective Retinopathy of prematurity (ROP) is a pathological condition characterized by abnormal proliferation of retinal vessels and it represents the primary cause of visual impairment in preterm infants. There is increasing backing for the involvement of genetic factors in the onset of ROP. Methods A prospective cohort study assessed the allele frequency and genotype distribution of gene polymorphisms in angiogenesis, inflammation and oxygen-sensing pathways in preterm infants with severe ROP. The role of genetic polymorphism in ROP development was investigated using next-generation sequencing (NGS) combined with candidate genes and data mining methods. Results A total of 47 confirmed severe ROP cases and gestational age, birthweight and days of oxygen therapy plus 35 similar control infants were enrolled in this study. In the initial hypothesis-generating survey, we selected a p value of 0.01 to minimize false positives while retaining true positives. Using this criterion, we identified 19 single-nucleotide polymorphisms across 11 genes that were associated with the occurrence of ROP (ZNF717, IHH, SEC22B, IGSF3, HYDIN), GGT1, FRG1, CDC27, LRRC37A3, CTAGE4 and ADAMTS7; all p<0.001). Compared with the control group, 62 single-nucleotide polymorphisms in 19 candidate genes (VEGF, EPO, EPAS-1, HIF1A, RUNX1, ESR1, CFH, PDGFB, JAK, STAT, IGF-1, IGFBP2, GPX4, TLR4, ROS1, CYP, TP53BP1, NOS3, TNF) representing angiogenic, inflammation, oxygen-sensing pathways and proliferative retinopathic diseases were found to be associated with the development of severe ROP (all p<0.01). Conclusions Using NGS gene analysis suggests that genetic risk factors may play an important role in susceptibility to the development of ROP.
Collapse
Affiliation(s)
- Huiqing Sun
- Department of Neonatology, Children’s Hospital affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Zhiyi Xia
- Key Laboratories of Children's Genetic Metabolic Diseases, Henan Province, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
| | - Mingchao Li
- Department of Neonatology, Children’s Hospital affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Zengyuan Yu
- Department of Neonatology, Children’s Hospital affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Zhangsheng Wang
- Department of Neonatology, Shangqiu People’s Hospital, Shangqiu, China
| | - Shan Xing
- Department of Neonatology, Children’s Hospital affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Ping Cheng
- Department of Neonatology, Children’s Hospital affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Hongbo Zhang
- Department of Neonatology, Children’s Hospital affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Lifeng Li
- Department of Neonatology, Children’s Hospital affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Keane AJ, Sanz-Nogués C, Jayasooriya D, Creane M, Chen X, Lyons CJ, Sikri I, Goljanek-Whysall K, O'Brien T. miR-1, miR-133a, miR-29b and skeletal muscle fibrosis in chronic limb-threatening ischaemia. Sci Rep 2024; 14:29393. [PMID: 39592654 PMCID: PMC11599917 DOI: 10.1038/s41598-024-76415-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024] Open
Abstract
Chronic limb-threatening ischaemia (CLTI), the most severe manifestation of peripheral arterial disease (PAD), is associated with a poor prognosis and high amputation rates. Despite novel therapeutic approaches being investigated, no significant clinical benefits have been observed yet. Understanding the molecular pathways of skeletal muscle dysfunction in CLTI is crucial for designing successful treatments. This study aimed to identify miRNAs dysregulated in muscle biopsies from PAD cohorts. Using MIcroRNA ENrichment TURned NETwork (MIENTURNET) on a publicly accessible RNA-sequencing dataset of PAD cohorts, we identified a list of miRNAs that were over-represented among the upregulated differentially expressed genes (DEGs) in CLTI. Next, we validated the altered expression of these miRNAs and their targets in mice with hindlimb ischaemia (HLI). Our results showed a significant downregulation of miR-1, miR-133a, and miR-29b levels in the ischaemic limbs versus the contralateral non-ischaemic limb. A miRNA target protein-protein interaction network identified extracellular matrix components, including collagen-1a1, -3a1, and -4a1, fibronectin-1, fibrin-1, matrix metalloproteinase-2 and -14, and Sparc, which were upregulated in the ischaemic muscle of mice. This is the first study to identify miR-1, miR-133a, and miR-29b as potential contributors to fibrosis and vascular pathology in CLTI muscle, which supports their potential as novel therapeutic agents for this condition.
Collapse
Affiliation(s)
- Alan J Keane
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Clara Sanz-Nogués
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland.
- CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| | - Dulan Jayasooriya
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Michael Creane
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Xizhe Chen
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Caomhán J Lyons
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Isha Sikri
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
- CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Sanz-Nogués C, Keane AJ, Creane M, Hynes SO, Chen X, Lyons CJ, Horan E, Elliman SJ, Goljanek-Whysall K, O’Brien T. Mesenchymal stromal cell transplantation ameliorates fibrosis and microRNA dysregulation in skeletal muscle ischemia. Stem Cells 2024; 42:976-991. [PMID: 39283740 PMCID: PMC11541228 DOI: 10.1093/stmcls/sxae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/23/2024] [Indexed: 11/08/2024]
Abstract
Peripheral arterial disease (PAD) is associated with lower-extremity muscle wasting. Hallmark features of PAD-associated skeletal muscle pathology include loss of skeletal muscle mass, reduced strength and physical performance, increased inflammation, fibrosis, and adipocyte infiltration. At the molecular level, skeletal muscle ischemia has also been associated with gene and microRNA (miRNA) dysregulation. Mesenchymal stromal cells (MSCs) have been shown to enhance muscle regeneration and improve muscle function in various skeletal muscle injuries. This study aimed to evaluate the effects of intramuscularly delivered human umbilical cord-derived MSCs (hUC-MSCs) on skeletal muscle ischemia. Herein, we report an hUC-MSC-mediated amelioration of ischemia-induced skeletal muscle atrophy and function via enhancement of myofiber regeneration, reduction of tissue inflammation, adipocyte accumulation, and tissue fibrosis. These changes were observed in the absence of cell-mediated enhancement of blood flow recovery as measured by laser Doppler imaging. Furthermore, reduced tissue fibrosis in the hUC-MSC-treated group was associated with upregulation of miR-1, miR-133a, and miR-29b and downregulation of targeted pro-fibrotic genes such as Col1a1 and Fn1. Our results support the use of hUC-MSCs as a novel approach to reduce fibrosis and promote skeletal muscle regeneration after ischemic injury in patients with PAD.
Collapse
Affiliation(s)
- Clara Sanz-Nogués
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Alan J Keane
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Michael Creane
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Sean O Hynes
- Discipline of Pathology, University of Galway, Galway, Ireland
- Division of Anatomic Pathology, University Hospital Galway, Galway, Ireland
| | - Xizhe Chen
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Caomhán J Lyons
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Emma Horan
- Orbsen Therapeutics Ltd., Galway, Ireland
| | | | - Katarzyna Goljanek-Whysall
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Timothy O’Brien
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Siddiqui MS, Shahi MH, Castresana JS. The role of the adenylate kinase 5 gene in various diseases and cancer. J Clin Transl Sci 2024; 8:e96. [PMID: 39655021 PMCID: PMC11626602 DOI: 10.1017/cts.2024.536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/21/2024] [Accepted: 05/01/2024] [Indexed: 12/12/2024] Open
Abstract
Adenylate kinases (AKs) are important enzymes involved in cellular energy metabolism. Among AKs, AK5 (adenylate kinase 5), a cytosolic protein, is emerging as a significant contributor to various diseases and cellular processes. This comprehensive review integrates findings from various research groups on AK5 since its discovery, shedding light on its multifaceted roles in nucleotide metabolism, energy regulation, and cellular differentiation. We investigate its implications in a spectrum of diseases, including autoimmune encephalitis, epilepsy, neurodegenerative disorders such as Alzheimer's and Parkinson's, diabetes, lower extremity arterial disease, celiac disease, and various cancers. Notably, AK5's expression levels and methylation status have been associated with cancer progression and patient outcomes, indicating its potential as a prognostic indicator. Furthermore, AK5 is implicated in regulating cellular processes in breast cancer, gastric cancer, colorectal carcinoma, prostate cancer, and colon adenocarcinoma, suggesting its relevance across different cancer types. However, a limitation lies in the need for more robust clinical validation and a deeper understanding of AK5's precise mechanisms in disease pathogenesis, despite its association with various pathophysiological conditions. Nonetheless, AK5 holds promise as a therapeutic target, with emerging evidence suggesting its potential in therapy development.
Collapse
Affiliation(s)
- M. Sarim Siddiqui
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh202002, India
| | - Mehdi H. Shahi
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh202002, India
| | - Javier S. Castresana
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona31008, Spain
| |
Collapse
|
5
|
Machiraju P, Srinivas R, Kannan R, George R, Heymans S, Mukhopadhyay R, Ghosh A. Paired Transcriptomic Analyses of Atheromatous and Control Vessels Reveal Novel Autophagy and Immunoregulatory Genes in Peripheral Artery Disease. Cells 2024; 13:1269. [PMID: 39120300 PMCID: PMC11312159 DOI: 10.3390/cells13151269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Peripheral artery disease (PAD), a significant health burden worldwide, affects lower extremities due to atherosclerosis in peripheral vessels. Although the mechanisms of PAD have been well studied, the molecular milieu of the plaques localized within peripheral arteries are not well understood. Thus, to identify PAD-lesion-specific gene expression profiles precluding genetic, environmental, and dietary biases, we studied the transcriptomic profile of nine plaque tissues normalized to non-plaque tissues from the same donors. A total of 296 upregulated genes, 274 downregulated genes, and 186 non-coding RNAs were identified. STAG1, SPCC3, FOXQ1, and E2F3 were key downregulated genes, and CD93 was the top upregulated gene. Autophagosome assembly, cellular response to UV, cytoskeletal organization, TCR signaling, and phosphatase activity were the key dysregulated pathways identified. Telomerase regulation and autophagy were identified as novel interacting pathways using network analysis. The plaque tissue was predominantly composed of immune cells and dedifferentiated cell populations indicated by cell-specific marker-imputed gene expression analysis. This study identifies novel genes, non-coding RNAs, associated regulatory pathways, and the cell composition of the plaque tissue in PAD patients. The autophagy and immunoregulatory genes may drive novel mechanisms, resulting in atheroma. These novel interacting networks and genes have potential for PAD-specific therapeutic applications.
Collapse
Affiliation(s)
- Praveen Machiraju
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, India; (P.M.); (R.K.)
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Rajesh Srinivas
- Department of Vascular and Endovascular Surgery, Narayana Health, Bangalore 560099, India; (R.S.); (R.G.)
| | - Ramaraj Kannan
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, India; (P.M.); (R.K.)
| | - Robbie George
- Department of Vascular and Endovascular Surgery, Narayana Health, Bangalore 560099, India; (R.S.); (R.G.)
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, bus911, 3000 Leuven, Belgium
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, India; (P.M.); (R.K.)
| |
Collapse
|
6
|
Zalewski D, Chmiel P, Kołodziej P, Kocki M, Feldo M, Kocki J, Bogucka-Kocka A. Key Regulators of Angiogenesis and Inflammation Are Dysregulated in Patients with Varicose Veins. Int J Mol Sci 2024; 25:6785. [PMID: 38928491 PMCID: PMC11204110 DOI: 10.3390/ijms25126785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Varicose veins (VVs) are the most common manifestation of chronic venous disease (CVD) and appear as abnormally enlarged and tortuous superficial veins. VVs result from functional abnormalities in the venous circulation of the lower extremities, such as venous hypertension, venous valve incompetence, and venous reflux. Previous studies indicate that enhanced angiogenesis and inflammation contribute to the progression and onset of VVs; however, dysregulations in signaling pathways associated with these processes in VVs patients are poorly understood. Therefore, in our study, we aimed to identify key regulators of angiogenesis and inflammation that are dysregulated in patients with VVs. Expression levels of 18 genes were analyzed in peripheral blood mononuclear cells (PBMC) using real-time PCR, as well as plasma levels of 6 proteins were investigated using ELISA. Higher levels of CCL5, PDGFA, VEGFC, TGF-alpha, TGF-beta 1, and VEGF-A, as well as lower levels of VEGFB and VEGF-C, were found to be statistically significant in the VV group compared to the control subjects without VVs. None of the analyzed factors was associated with the venous localization of the varicosities. The presented study identified dysregulations in key angiogenesis- and inflammation-related factors in PBMC and plasma from VVs patients, providing new insight into molecular mechanisms that could contribute to the development of VVs and point out promising candidates for circulatory biomarkers of this disease.
Collapse
Affiliation(s)
- Daniel Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.C.); (A.B.-K.)
| | - Paulina Chmiel
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.C.); (A.B.-K.)
| | - Przemysław Kołodziej
- Laboratory of Diagnostic Parasitology, Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| | - Marcin Kocki
- Department of Neonatology and Neonatal Intensive Care, Independent Public Hospital No. 4 in Lublin, 8 Jaczewski St., 20-954 Lublin, Poland;
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland;
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.C.); (A.B.-K.)
| |
Collapse
|
7
|
Saenz-Pipaon G, Jover E, van der Bent ML, Orbe J, Rodriguez JA, Fernández-Celis A, Quax PHA, Paramo JA, López-Andrés N, Martín-Ventura JL, Nossent AY, Roncal C. Role of LCN2 in a murine model of hindlimb ischemia and in peripheral artery disease patients, and its potential regulation by miR-138-5P. Atherosclerosis 2023; 385:117343. [PMID: 37871404 DOI: 10.1016/j.atherosclerosis.2023.117343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/07/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND AND AIMS Peripheral arterial disease (PAD) is a leading cause of morbimortality worldwide. Lipocalin-2 (LCN2) has been associated with higher risk of amputation or mortality in PAD and might be involved in muscle regeneration. Our aim is to unravel the role of LCN2 in skeletal muscle repair and PAD. METHODS AND RESULTS WT and Lcn2-/- mice underwent hindlimb ischemia. Blood and crural muscles were analyzed at the inflammatory and regenerative phases. At day 2, Lcn2-/- male mice, but not females, showed increased blood and soleus muscle neutrophils, and elevated circulating pro-inflammatory monocytes (p < 0.05), while locally, total infiltrating macrophages were reduced (p < 0.05). Moreover, Lcn2-/- soleus displayed an elevation of Cxcl1 (p < 0.001), and Cxcr2 (p < 0.01 in males), and a decrease in Ccl5 (p < 0.05). At day 15, Lcn2 deficiency delayed muscle recovery, with higher density of regenerating myocytes (p < 0.04) and arterioles (αSMA+, p < 0.025). Reverse target prediction analysis identified miR-138-5p as a potential regulator of LCN2, showing an inverse correlation with Lcn2 mRNA in skeletal muscles (rho = -0.58, p < 0.01). In vitro, miR-138-5p mimic reduced Lcn2 expression and luciferase activity in murine macrophages (p < 0.05). Finally, in human serum miR-138-5p was inversely correlated with LCN2 (p ≤ 0.001 adjusted, n = 318), and associated with PAD (Odds ratio 0.634, p = 0.02, adjusted, PAD n = 264, control n = 54). CONCLUSIONS This study suggests a possible dual role of LCN2 in acute and chronic conditions, with a probable role in restraining inflammation early after skeletal muscle ischemia, while being associated with vascular damage in PAD, and identifies miR-138-5p as one potential post-transcriptional regulator of LCN2.
Collapse
Affiliation(s)
- Goren Saenz-Pipaon
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Eva Jover
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - M Leontien van der Bent
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Josune Orbe
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; RICORS-ICTUS, ISCIII, Madrid, Spain
| | - Jose A Rodriguez
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; CIBERCV, ISCIII, Madrid, Spain
| | - Amaya Fernández-Celis
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Paul H A Quax
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jose A Paramo
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; CIBERCV, ISCIII, Madrid, Spain; Hematology Service, Clínica Universidad de Navarra, Pamplona, Spain
| | - Natalia López-Andrés
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | | | - Anne Yaël Nossent
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Carmen Roncal
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; CIBERCV, ISCIII, Madrid, Spain.
| |
Collapse
|
8
|
Zalewski D, Chmiel P, Kołodziej P, Borowski G, Feldo M, Kocki J, Bogucka-Kocka A. Dysregulations of Key Regulators of Angiogenesis and Inflammation in Abdominal Aortic Aneurysm. Int J Mol Sci 2023; 24:12087. [PMID: 37569462 PMCID: PMC10418409 DOI: 10.3390/ijms241512087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a chronic vascular disease caused by localized weakening and broadening of the abdominal aorta. AAA is a clearly underdiagnosed disease and is burdened with a high mortality rate (65-85%) from AAA rupture. Studies indicate that abnormal regulation of angiogenesis and inflammation contributes to progression and onset of this disease; however, dysregulations in the molecular pathways associated with this disease are not yet fully explained. Therefore, in our study, we aimed to identify dysregulations in the key regulators of angiogenesis and inflammation in patients with AAA in peripheral blood mononuclear cells (using qPCR) and plasma samples (using ELISA). Expression levels of ANGPT1, CXCL8, PDGFA, TGFB1, VEGFB, and VEGFC and plasma levels of TGF-alpha, TGF-beta 1, VEGF-A, and VEGF-C were found to be significantly altered in the AAA group compared to the control subjects without AAA. Associations between analyzed factors and risk factors or biochemical parameters were also explored. Any of the analyzed factors was associated with the size of the aneurysm. The presented study identified dysregulations in key angiogenesis- and inflammation-related factors potentially involved in AAA formation, giving new insight into the molecular pathways involved in the development of this disease and providing candidates for biomarkers that could serve as diagnostic or therapeutic targets.
Collapse
Affiliation(s)
- Daniel Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.C.); (P.K.); (A.B.-K.)
| | - Paulina Chmiel
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.C.); (P.K.); (A.B.-K.)
| | - Przemysław Kołodziej
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.C.); (P.K.); (A.B.-K.)
| | - Grzegorz Borowski
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (G.B.); (M.F.)
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (G.B.); (M.F.)
| | - Janusz Kocki
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland;
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (P.C.); (P.K.); (A.B.-K.)
| |
Collapse
|
9
|
Wang Y, Luo Y, Fu S, He L, Pan G, Fan D, Wen Q, Fan Y. Zinc finger and SCAN domain-containing protein 18 is a potential DNA methylation-modified tumor suppressor and biomarker in breast cancer. Front Endocrinol (Lausanne) 2023; 14:1095604. [PMID: 37223020 PMCID: PMC10200902 DOI: 10.3389/fendo.2023.1095604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/18/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Zinc finger and SCAN domain-containing protein 18 (ZSCAN18) has been investigated as a putative biomarker of multiple human cancers. However, the expression profile, epigenetic modification, prognostic value, transcription regulation, and molecular mechanism of ZSCAN18 in breast cancer (BC) remain unknown. Methods In the study, we present an integrated analysis of ZSCAN18 in BC based on public omics datasets with the use of multiple bioinformatics tools. Genes potentially regulated through restoration of ZSCAN18 expression in MDA-MB-231 cells were investigated to identify pathways associated with BC. Results We observed that ZSCAN18 was downregulated in BC and mRNA expression was significantly correlated with clinicopathological parameters. Low expression of ZSCAN18 was found in the HER2-positive and TNBC subtypes. High expression of ZSCAN18 was associated with good prognosis. As compared to normal tissues, the extent of ZSCAN18 DNA methylation was greater with fewer genetic alterations in BC tissues. ZSCAN18 was identified as a transcription factor that might be involved in intracellular molecular and metabolic processes. Low ZSCAN18 expression was associated with the cell cycle and glycolysis signaling pathway. Overexpression of ZSCAN18 inhibited mRNA expression of genes associated with the Wnt/β-catenin and glycolysis signaling pathways, including CTNNB1, BCL9, TSC1, and PFKP. ZSCAN18 expression was negatively correlated with infiltrating B cells and dendritic cells (DCs), as determined by the TIMER web server and reference to the TISIDB. ZSCAN18 DNA methylation was positively correlated with activated B cells, activated CD8+ and CD4+ T cells, macrophages, neutrophils, and activated DCs. Moreover, five ZSCAN18-related hub genes (KDM6B, KAT6A, KMT2D, KDM1A, and HSPBP1) were identified. ZSCAN18, ZNF396, and PGBD1 were identified as components of a physical complex. Conclusion ZSCAN18 is a potential tumor suppressor in BC, as expression is modified by DNA methylation and associated with patient survival. In addition, ZSCAN18 plays important roles in transcription regulation, the glycolysis signaling pathway, and the tumor immune microenvironment.
Collapse
Affiliation(s)
- Yu Wang
- Health Management Department, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Lijia He
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Guangrui Pan
- Department of Breast Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dongmei Fan
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Yu Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| |
Collapse
|
10
|
Berchiolli R, Bertagna G, Adami D, Canovaro F, Torri L, Troisi N. Chronic Limb-Threatening Ischemia and the Need for Revascularization. J Clin Med 2023; 12:jcm12072682. [PMID: 37048765 PMCID: PMC10095037 DOI: 10.3390/jcm12072682] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Patients presenting with critical limb-threatening ischemia (CLTI) have been increasing in number over the years. They represent a high-risk population, especially in terms of major amputation and mortality. Despite multiple guidelines concerning their management, it continues to be challenging. Decision-making between surgical and endovascular procedures should be well established, but there is still a lack of consensus concerning the best treatment strategy. The aim of this manuscript is to offer an overview of the contemporary management of CLTI patients, with a focus on the concept that evidence-based revascularization (EBR) could help surgeons to provide more appropriate treatment, avoiding improper procedures, as well as too-high-risk ones. METHODS We performed a search on MEDLINE, Embase, and Scopus from 1 January 1995 to 31 December 2022 and reviewed Global and ESVS Guidelines. A total of 150 articles were screened, but only those of high quality were considered and included in a narrative synthesis. RESULTS Global Vascular Guidelines have improved and standardized the way to classify and manage CLTI patients with evidence-based revascularization (EBR). Nevertheless, considering that not all patients are suitable for revascularization, a key strategy could be to stratify unfit patients by considering both clinical and non-clinical risk factors, in accordance with the concept of individual residual risk for every patient. The recent BEST-CLI trial established the superiority of autologous vein bypass graft over endovascular therapy for the revascularization of CLTI patients. However, no-option CLTI patients still represent a critical issue. CONCLUSIONS The surgeon's experience and skillfulness are the cornerstones of treatment and of a multidisciplinary approach. The recent BEST-CLI trial established that open surgical peripheral vascular surgery could guarantee better outcomes than the less invasive endovascular approach.
Collapse
Affiliation(s)
- Raffaella Berchiolli
- Vascular Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Giulia Bertagna
- Vascular Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Daniele Adami
- Vascular Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesco Canovaro
- Vascular Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Lorenzo Torri
- Vascular Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Nicola Troisi
- Vascular Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
11
|
Ruszel KP, Zalewski DP, Stępniewski A, Gałkowski D, Bogucki J, Feldo M, Płachno BJ, Kocki J, Bogucka-Kocka A. Next-Generation Sequencing in the Assessment of the Transcriptomic Landscape of DNA Damage Repair Genes in Abdominal Aortic Aneurysm, Chronic Venous Disease and Lower Extremity Artery Disease. Int J Mol Sci 2022; 24:551. [PMID: 36614026 PMCID: PMC9820637 DOI: 10.3390/ijms24010551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Vascular diseases are one of the most common causes of death and morbidity. Lower extremity artery disease (LEAD), abdominal aortic aneurysm (AAA) and chronic venous disease (CVD) belong to this group of conditions and exhibit various presentations and courses; thus, there is an urgent need for revealing new biomarkers for monitoring and potential treatment. Next-generation sequencing of mRNA allows rapid and detailed transcriptome analysis, allowing us to pinpoint the most pronounced differences between the mRNA expression profiles of vascular disease patients. Comparison of expression data of 519 DNA-repair-related genes obtained from mRNA next-generation sequencing revealed significant transcriptomic marks characterizing AAA, CVD and LEAD. Statistical, gene set enrichment analysis (GSEA), gene ontology (GO) and literature analyses were applied and highlighted many DNA repair and accompanying processes, such as cohesin functions, oxidative stress, homologous recombination, ubiquitin turnover, chromatin remodelling and DNA double-strand break repair. Surprisingly, obtained data suggest the contribution of genes engaged in the regulatory function of DNA repair as a key component that could be used to distinguish between analyzed conditions. DNA repair-related genes depicted in the presented study as dysregulated in AAA, CVD and LEAD could be utilized in the design of new biomarkers or therapies associated with these diseases.
Collapse
Affiliation(s)
- Karol P. Ruszel
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland
| | - Daniel P. Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Andrzej Stępniewski
- Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Głęboka St., 20-612 Lublin, Poland
| | - Dariusz Gałkowski
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903, USA
| | - Jacek Bogucki
- Chair and Department of Organic Chemistry, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| |
Collapse
|
12
|
Mei L, Zheng Y, Gao X, Ma T, Xia B, Hao Y, Wei B, Wei Y, Luo Z, Huang J. Hsa-let-7f-1-3p targeting the circadian gene Bmal1 mediates intervertebral disc degeneration by regulating autophagy. Pharmacol Res 2022; 186:106537. [DOI: 10.1016/j.phrs.2022.106537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
|
13
|
Inflammatory and Prothrombotic Biomarkers, DNA Polymorphisms, MicroRNAs and Personalized Medicine for Patients with Peripheral Arterial Disease. Int J Mol Sci 2022; 23:ijms231912054. [PMID: 36233355 PMCID: PMC9569699 DOI: 10.3390/ijms231912054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 12/24/2022] Open
Abstract
Classical risk factors play a major role in the initiation and development of atherosclerosis. However, the estimation of risk for cardiovascular events based only on risk factors is often insufficient. Efforts have been made to identify biomarkers that indicate ongoing atherosclerosis. Among important circulating biomarkers associated with peripheral arterial disease (PAD) are inflammatory markers which are determined by the expression of different genes and epigenetic processes. Among these proinflammatory molecules, interleukin-6, C-reactive protein, several adhesion molecules, CD40 ligand, osteoprotegerin and others are associated with the presence and progression of PAD. Additionally, several circulating prothrombotic markers have a predictive value in PAD. Genetic polymorphisms significantly, albeit moderately, affect risk factors for PAD via altered lipoprotein metabolism, diabetes, arterial hypertension, smoking, inflammation and thrombosis. However, most of the risk variants for PAD are located in noncoding regions of the genome and their influence on gene expression remains to be explored. MicroRNAs (miRNAs) are single-stranded, noncoding RNAs that modulate gene expression at the post-transcriptional level. Patterns of miRNA expression, to some extent, vary in different atherosclerotic cardiovascular diseases. miRNAs appear to be useful in the detection of PAD and the prediction of progression and revascularization outcomes. In conclusion, taking into account one’s predisposition to PAD, i.e., DNA polymorphisms and miRNAs, together with circulating inflammatory and coagulation markers, holds promise for more accurate prediction models and personalized therapeutic options.
Collapse
|
14
|
Ismaeel A, Fletcher E, Miserlis D, Wechsler M, Papoutsi E, Haynatzki G, Smith RS, Bohannon WT, Koutakis P. Skeletal muscle MiR-210 expression is associated with mitochondrial function in peripheral artery disease patients. Transl Res 2022; 246:66-77. [PMID: 35288364 PMCID: PMC9197925 DOI: 10.1016/j.trsl.2022.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022]
Abstract
Previous studies have demonstrated that circulating microRNA (miR)-210 levels are elevated in peripheral artery disease (PAD) patients. MiR-210 is known to be a negative regulator of mitochondrial respiration; however, the relationship between miR-210 and mitochondrial function has yet to be studied in PAD. We aimed to compare skeletal muscle miR-210 expression of PAD patients to non-PAD controls (CON) and to examine the relationship between miR-210 expression and mitochondrial function. Skeletal muscle biopsies from CON (n = 20), intermittent claudication (IC) patients (n = 20), and critical limb ischemia (CLI) patients (n = 20) were analyzed by high-resolution respirometry to measure mitochondrial respiration of permeabilized fibers. Samples were also analyzed for miR-210 expression by real-time PCR. MiR-210 expression was significantly elevated in IC and CLI muscle compared to CON (P = 0.008 and P < 0.001, respectively). Mitochondrial respiration of electron transport chain (ETC) Complexes II (P = 0.001) and IV (P < 0.001) were significantly reduced in IC patients. Further, CLI patients demonstrated significant reductions in respiration during Complexes I (state 2: P = 0.04, state 3: P = 0.003), combined I and II (P < 0.001), II (P < 0.001), and IV (P < 0.001). The expression of the miR-210 targets, cytochrome c oxidase assembly factor heme A: farnesyltransferase (COX10), and iron-sulfur cluster assembly enzyme (ISCU) were down-regulated in PAD muscle. MiR-210 may play a role in the cellular adaptation to hypoxia and may be involved in the metabolic myopathy associated with PAD.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, Texas
| | - Emma Fletcher
- Department of Biology, Baylor University, Waco, Texas
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Marissa Wechsler
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | | | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Robert S Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | - William T Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | | |
Collapse
|
15
|
Zalewski DP, Ruszel KP, Stępniewski A, Gałkowski D, Feldo M, Kocki J, Bogucka-Kocka A. miRNA Regulatory Networks Associated with Peripheral Vascular Diseases. J Clin Med 2022; 11:3470. [PMID: 35743538 PMCID: PMC9224609 DOI: 10.3390/jcm11123470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
A growing body of evidence indicates a crucial role of miRNA regulatory function in a variety of mechanisms that contribute to the development of diseases. In our previous work, alterations in miRNA expression levels and targeted genes were shown in peripheral blood mononuclear cells (PBMCs) from patients with lower extremity artery disease (LEAD), abdominal aortic aneurysm (AAA), and chronic venous disease (CVD) in comparison with healthy controls. In this paper, previously obtained miRNA expression profiles were compared between the LEAD, AAA, and CVD groups to find either similarities or differences within the studied diseases. Differentially expressed miRNAs were identified using the DESeq2 method implemented in the R programming software. Pairwise comparisons (LEAD vs. AAA, LEAD vs. CVD, and AAA vs. CVD) were performed and revealed 10, 8, and 17 differentially expressed miRNA transcripts, respectively. The functional analysis of the obtained miRNAs was conducted using the miRNet 2.0 online tool and disclosed associations with inflammation and cellular differentiation, motility, and death. The miRNet 2.0 tool was also used to identify regulatory interactions between dysregulated miRNAs and target genes in patients with LEAD, AAA, and CVD. The presented research provides new information about similarities and differences in the miRNA-dependent regulatory mechanisms involved in the pathogenesis of LEAD, AAA, and CVD.
Collapse
Affiliation(s)
- Daniel P. Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| | - Karol P. Ruszel
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.K.)
| | - Andrzej Stępniewski
- Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Głęboka St., 20-612 Lublin, Poland;
| | - Dariusz Gałkowski
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903-0019, USA;
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.K.)
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| |
Collapse
|
16
|
Giovannetti A, Bianco SD, Traversa A, Panzironi N, Bruselles A, Lazzari S, Liorni N, Tartaglia M, Carella M, Pizzuti A, Mazza T, Caputo V. MiRLog and dbmiR: prioritization and functional annotation tools to study human microRNA sequence variants. Hum Mutat 2022; 43:1201-1215. [PMID: 35583122 PMCID: PMC9546175 DOI: 10.1002/humu.24399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022]
Abstract
The recent identification of noncoding variants with pathogenic effects suggests that these variations could underlie a significant number of undiagnosed cases. Several computational methods have been developed to predict the functional impact of noncoding variants, but they exhibit only partial concordance and are not integrated with functional annotation resources, making the interpretation of these variants still challenging. MicroRNAs (miRNAs) are small noncoding RNA molecules that act as fine regulators of gene expression and play crucial functions in several biological processes, such as cell proliferation and differentiation. An increasing number of studies demonstrate a significant impact of miRNA single nucleotide variants (SNVs) both in Mendelian diseases and complex traits. To predict the functional effect of miRNA SNVs, we implemented a new meta‐predictor, MiRLog, and we integrated it into a comprehensive database, dbmiR, which includes a precompiled list of all possible miRNA allelic SNVs, providing their biological annotations at nucleotide and miRNA levels. MiRLog and dbmiR were used to explore the genetic variability of miRNAs in 15,708 human genomes included in the gnomAD project, finding several ultra‐rare SNVs with a potentially deleterious effect on miRNA biogenesis and function representing putative contributors to human phenotypes.
Collapse
Affiliation(s)
- Agnese Giovannetti
- Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Salvatore Daniele Bianco
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Alice Traversa
- Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Noemi Panzironi
- Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Lazzari
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Niccolò Liorni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Massimo Carella
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Tommaso Mazza
- Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
MicroRNA expression biomarkers of chronic venous disease. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2022. [DOI: 10.2478/cipms-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Chronic venous disease (CVD) is a common disease caused by hemodynamic disorders of the venous circulation in the lower extremities. The clinical image of this disease is complex and includes such signs as telangiectases, varicose veins, leg edema and skin changes, usually accompanied with ache, pain, tightness, heaviness, swelling and muscle cramps of legs. Venous ulcers develop in the advanced stages of the disease and lead to significant impairment of patient abilities and reduction of the quality of life. CVD is diagnosed based on physical and image examinations, and main treatment options include compression therapy, invasive treatments like endovenous ablation and foam sclerotherapy, as well as pharmacotherapy. Currently, there is no biochemical and molecular biomarkers utilized in diagnosis or treatment of CVD. With regard to this situation, one of the most investigated fields for identification of disease biomarkers is microRNA (miRNA). These constitute a pool of small, non-coding RNAs that play crucial roles in maintaining cellular homeostasis through posttranscriptional regulation of genes expression. Dysregulations of miRNA expression profiles have been found in patients with various diseases, and this situation provides information about potential miRNA signatures involved in pathophysiology. In this review, the studies focused on investigations of miRNA expression patterns in patients with CVD were collected. The performed literature analysis provides contemporary knowledge in the field of miRNA-dependent mechanisms involved in the etiopathogenesis of CVD and shows gaps that need to be filled in further studies.
Collapse
|
18
|
Application of OpenArray RT-qPCR for identification of microRNA expression signatures of lower extremity artery disease. J Appl Genet 2022; 63:497-512. [DOI: 10.1007/s13353-022-00692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022]
|
19
|
Zalewski DP, Ruszel KP, Stępniewski A, Gałkowski D, Feldo M, Kocki J, Bogucka-Kocka A. Relationships between Indicators of Lower Extremity Artery Disease and miRNA Expression in Peripheral Blood Mononuclear Cells. J Clin Med 2022; 11:1619. [PMID: 35329950 PMCID: PMC8948757 DOI: 10.3390/jcm11061619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 12/24/2022] Open
Abstract
Lower extremity artery disease (LEAD) is an underdiagnosed and globally underestimated vascular disease caused by the progressive and chronic formation of atherosclerotic plaques in the arteries of the lower limbs. Much evidence indicates that the abnormal course of pathophysiological processes underlying LEAD development is associated with altered miRNA modulatory function. In the presented study, relationships between miRNA expression and clinical indicators of this disease (ABI, claudication distance, length of arterial occlusion, Rutherford category, and plaque localization) were identified. MiRNA expression profiles were obtained using next-generation sequencing in peripheral blood mononuclear cells (PBMCs) of 40 LEAD patients. Correlation analysis performed using the Spearman rank correlation test revealed miRNAs related to ABI, claudication distance, and length of arterial occlusion. In the DESeq2 analysis, five miRNAs were found to be dysregulated in patients with Rutherford category 3 compared to patients with Rutherford category 2. No miRNAs were found to be differentially expressed between patients with different plaque localizations. Functional analysis performed using the miRNet 2.0 website tool determined associations of selected miRNAs with processes underlying vascular pathology, such as vascular smooth muscle cell differentiation, endothelial cell apoptosis, response to hypoxia, inflammation, lipid metabolism, and circadian rhythm. The most enriched functional terms for genes targeted by associated miRNAs were linked to regulation of the cell cycle, regulation of the transcription process, and nuclear cellular compartment. In conclusion, dysregulations of miRNA expression in PBMCs of patients with LEAD are indicative of the disease and could potentially be used in the prediction of LEAD progression.
Collapse
Affiliation(s)
- Daniel P. Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| | - Karol P. Ruszel
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.K.)
| | - Andrzej Stępniewski
- Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Głęboka St., 20-612 Lublin, Poland;
| | - Dariusz Gałkowski
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903-0019, USA;
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.K.)
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| |
Collapse
|
20
|
Lee CY, Lin SJ, Wu TC. miR-548j-5p regulates angiogenesis in peripheral artery disease. Sci Rep 2022; 12:838. [PMID: 35039547 PMCID: PMC8764034 DOI: 10.1038/s41598-022-04770-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Peripheral artery disease (PAD) is a vascular disease involving diffuse atherosclerosis, and is associated with increased cardiovascular mortality and morbidity. Critical limb ischemia (CLI) is the most severe complication of PAD. In addition to medical and interventional treatment, therapeutic angiogenesis is a novel therapy for PAD. Circulating microRNAs (miRNAs) are considered key regulators of gene expression, but their role in ischemic-induced angiogenesis is poorly-characterized. There is currently a limited understanding of the specific miRNAs associated with PAD. To determine the regulation of miRNAs, we obtained miRNA profiles using RNA isolated from patients with PAD and a control group. The effects of specific miRNAs on angiogenesis were evaluated by assessing the in vitro angiogenic function of endothelial progenitor cells (EPCs), performing an in vivo angiogenesis assay, and employing a mouse hindlimb ischemic model. Our results demonstrated that circulating miR-548j-5p was significantly reduced in patients with PAD as compared with the controls. miR-548j-5p promoted EPC angiogenesis by enhancing migration and tube formation. The endothelial nitric oxide synthase (NOS) and stromal cell-derived factor (SDF)-1 signaling pathways appeared to be potential targets of miR-548j-5p. Furthermore, the results of a directed in vivo angiogenesis assay of EPCs and a hindlimb ischemia mouse model demonstrated that miR-548j-5p enhanced the capillary density and blood flow recovery in hindlimb ischemia. In conclusion, our data indicated that up-regulation of miR-548j-5p promotes angiogenesis in ischemic tissue and may represent a novel therapeutic approach for PAD.
Collapse
Affiliation(s)
- Chiu-Yang Lee
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shing-Jong Lin
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Section 2, Shih-Pai Road, Taipei, 112, Taiwan.,Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tao-Cheng Wu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Section 2, Shih-Pai Road, Taipei, 112, Taiwan. .,Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
21
|
Rozhkova AV, Dmitrieva VG, Nosova EV, Dergunov AD, Limborska SA, Dergunova LV. Genomic Variants and Multilevel Regulation of ABCA1, ABCG1, and SCARB1 Expression in Atherogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8120170. [PMID: 34940525 PMCID: PMC8707585 DOI: 10.3390/jcdd8120170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Atheroprotective properties of human plasma high-density lipoproteins (HDLs) are determined by their involvement in reverse cholesterol transport (RCT) from the macrophage to the liver. ABCA1, ABCG1, and SR-BI cholesterol transporters are involved in cholesterol efflux from macrophages to lipid-free ApoA-I and HDL as a first RCT step. Molecular determinants of RCT efficiency that may possess diagnostic and therapeutic meaning remain largely unknown. This review summarizes the progress in studying the genomic variants of ABCA1, ABCG1, and SCARB1, and the regulation of their function at transcriptional and post-transcriptional levels in atherosclerosis. Defects in the structure and function of ABCA1, ABCG1, and SR-BI are caused by changes in the gene sequence, such as single nucleotide polymorphism or various mutations. In the transcription initiation of transporter genes, in addition to transcription factors, long noncoding RNA (lncRNA), transcription activators, and repressors are also involved. Furthermore, transcription is substantially influenced by the methylation of gene promoter regions. Post-transcriptional regulation involves microRNAs and lncRNAs, including circular RNAs. The potential biomarkers and targets for atheroprotection, based on molecular mechanisms of expression regulation for three transporter genes, are also discussed in this review.
Collapse
Affiliation(s)
- Alexandra V. Rozhkova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Veronika G. Dmitrieva
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Elena V. Nosova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Correspondence:
| | - Svetlana A. Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Liudmila V. Dergunova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| |
Collapse
|
22
|
Izzo M, Carrizzo A, Izzo C, Cappello E, Cecere D, Ciccarelli M, Iannece P, Damato A, Vecchione C, Pompeo F. Vitamin D: Not Just Bone Metabolism but a Key Player in Cardiovascular Diseases. Life (Basel) 2021; 11:life11050452. [PMID: 34070202 PMCID: PMC8158519 DOI: 10.3390/life11050452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Vitamin D is the first item of drug expenditure for the treatment of osteoporosis. Its deficiency is a condition that affects not only older individuals but also young people. Recently, the scientific community has focused its attention on the possible role of vitamin D in the development of several chronic diseases such as cardiovascular and metabolic diseases. This review aims to highlight the possible role of vitamin D in cardiovascular and metabolic diseases. In particular, here we examine (1) the role of vitamin D in diabetes mellitus, metabolic syndrome, and obesity, and its influence on insulin secretion; (2) its role in atherosclerosis, in which chronic vitamin D deficiency, lower than 20 ng/mL (50 nmol/L), has emerged among the new risk factors; (3) the role of vitamin D in essential hypertension, in which low plasma levels of vitamin D have been associated with both an increase in the prevalence of hypertension and diastolic hypertension; (4) the role of vitamin D in peripheral arteriopathies and aneurysmal pathology, reporting that patients with peripheral artery diseases had lower vitamin D values than non-suffering PAD controls; (5) the genetic and epigenetic role of vitamin D, highlighting its transcriptional regulation capacity; and (6) the role of vitamin D in cardiac remodeling and disease. Despite the many observational studies and meta-analyses supporting the critical role of vitamin D in cardiovascular physiopathology, clinical trials designed to evaluate the specific role of vitamin D in cardiovascular disease are scarce. The characterization of the importance of vitamin D as a marker of pathology should represent a future research challenge.
Collapse
Affiliation(s)
- Marcello Izzo
- Department of Mathematics for Technology, Medicine and Biosciences Research Center, University of Ferrara, 44121 Ferrara, Italy
- Specialist Medical Center-Via Cimitile, 80035 Nola, Italy
- Correspondence:
| | - Albino Carrizzo
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (E.C.); (D.C.); (A.D.); (C.V.); (F.P.)
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (C.I.); (M.C.); (P.I.)
| | - Carmine Izzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (C.I.); (M.C.); (P.I.)
| | - Enrico Cappello
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (E.C.); (D.C.); (A.D.); (C.V.); (F.P.)
| | - Domenico Cecere
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (E.C.); (D.C.); (A.D.); (C.V.); (F.P.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (C.I.); (M.C.); (P.I.)
| | - Patrizia Iannece
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (C.I.); (M.C.); (P.I.)
| | - Antonio Damato
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (E.C.); (D.C.); (A.D.); (C.V.); (F.P.)
| | - Carmine Vecchione
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (E.C.); (D.C.); (A.D.); (C.V.); (F.P.)
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (C.I.); (M.C.); (P.I.)
| | - Francesco Pompeo
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (E.C.); (D.C.); (A.D.); (C.V.); (F.P.)
| |
Collapse
|
23
|
Saenz-Pipaon G, Martinez-Aguilar E, Orbe J, González Miqueo A, Fernandez-Alonso L, Paramo JA, Roncal C. The Role of Circulating Biomarkers in Peripheral Arterial Disease. Int J Mol Sci 2021; 22:ijms22073601. [PMID: 33808453 PMCID: PMC8036489 DOI: 10.3390/ijms22073601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Peripheral arterial disease (PAD) of the lower extremities is a chronic illness predominantly of atherosclerotic aetiology, associated to traditional cardiovascular (CV) risk factors. It is one of the most prevalent CV conditions worldwide in subjects >65 years, estimated to increase greatly with the aging of the population, becoming a severe socioeconomic problem in the future. The narrowing and thrombotic occlusion of the lower limb arteries impairs the walking function as the disease progresses, increasing the risk of CV events (myocardial infarction and stroke), amputation and death. Despite its poor prognosis, PAD patients are scarcely identified until the disease is advanced, highlighting the need for reliable biomarkers for PAD patient stratification, that might also contribute to define more personalized medical treatments. In this review, we will discuss the usefulness of inflammatory molecules, matrix metalloproteinases (MMPs), and cardiac damage markers, as well as novel components of the liquid biopsy, extracellular vesicles (EVs), and non-coding RNAs for lower limb PAD identification, stratification, and outcome assessment. We will also explore the potential of machine learning methods to build prediction models to refine PAD assessment. In this line, the usefulness of multimarker approaches to evaluate this complex multifactorial disease will be also discussed.
Collapse
Affiliation(s)
- Goren Saenz-Pipaon
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, 31008 Pamplona, Spain; (G.S.-P.); (J.O.); (J.A.P.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (E.M.-A.); (A.G.M.); (L.F.-A.)
| | - Esther Martinez-Aguilar
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (E.M.-A.); (A.G.M.); (L.F.-A.)
- Departamento de Angiología y Cirugía Vascular, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Josune Orbe
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, 31008 Pamplona, Spain; (G.S.-P.); (J.O.); (J.A.P.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (E.M.-A.); (A.G.M.); (L.F.-A.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Arantxa González Miqueo
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (E.M.-A.); (A.G.M.); (L.F.-A.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Laboratory of Heart Failure, Program of Cardiovascular Diseases, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Leopoldo Fernandez-Alonso
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (E.M.-A.); (A.G.M.); (L.F.-A.)
- Departamento de Angiología y Cirugía Vascular, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Jose Antonio Paramo
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, 31008 Pamplona, Spain; (G.S.-P.); (J.O.); (J.A.P.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (E.M.-A.); (A.G.M.); (L.F.-A.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Hematology Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Carmen Roncal
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, 31008 Pamplona, Spain; (G.S.-P.); (J.O.); (J.A.P.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (E.M.-A.); (A.G.M.); (L.F.-A.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-948194700
| |
Collapse
|
24
|
Zalewski DP, Ruszel KP, Stępniewski A, Gałkowski D, Bogucki J, Kołodziej P, Szymańska J, Płachno BJ, Zubilewicz T, Feldo M, Kocki J, Bogucka-Kocka A. Identification of Transcriptomic Differences between Lower Extremities Arterial Disease, Abdominal Aortic Aneurysm and Chronic Venous Disease in Peripheral Blood Mononuclear Cells Specimens. Int J Mol Sci 2021; 22:3200. [PMID: 33801150 PMCID: PMC8004090 DOI: 10.3390/ijms22063200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 01/10/2023] Open
Abstract
Several human tissues are investigated in studies of molecular biomarkers associated with diseases development. Special attention is focused on the blood and its components due to combining abundant information about systemic responses to pathological processes as well as high accessibility. In the current study, transcriptome profiles of peripheral blood mononuclear cells (PBMCs) were used to compare differentially expressed genes between patients with lower extremities arterial disease (LEAD), abdominal aortic aneurysm (AAA) and chronic venous disease (CVD). Gene expression patterns were generated using the Ion S5XL next-generation sequencing platform and were analyzed using DESeq2 and UVE-PLS methods implemented in R programming software. In direct pairwise analysis, 21, 58 and 10 differentially expressed genes were selected from the comparison of LEAD vs. AAA, LEAD vs. CVD and AAA vs. CVD patient groups, respectively. Relationships between expression of dysregulated genes and age, body mass index, creatinine levels, hypertension and medication were identified using Spearman rank correlation test and two-sided Mann-Whitney U test. The functional analysis, performed using DAVID website tool, provides potential implications of selected genes in pathological processes underlying diseases studied. Presented research provides new insight into differences of pathogenesis in LEAD, AAA and CVD, and selected genes could be considered as potential candidates for biomarkers useful in diagnosis and differentiation of studied diseases.
Collapse
Affiliation(s)
- Daniel P. Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| | - Karol P. Ruszel
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.K.)
| | - Andrzej Stępniewski
- Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Głęboka St., 20-612 Lublin, Poland;
| | - Dariusz Gałkowski
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903-0019, USA;
| | - Jacek Bogucki
- Chair and Department of Organic Chemistry, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| | - Przemysław Kołodziej
- Laboratory of Diagnostic Parasitology, Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| | - Jolanta Szymańska
- Department of Integrated Paediatric Dentistry, Chair of Integrated Dentistry, Medical University of Lublin, 6 Chodźki St., 20-093 Lublin, Poland;
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland;
| | - Tomasz Zubilewicz
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (T.Z.); (M.F.)
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (T.Z.); (M.F.)
| | - Janusz Kocki
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.K.)
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| |
Collapse
|
25
|
Ghobadi MZ, Emamzadeh R, Mozhgani SH. Deciphering microRNA-mRNA regulatory network in adult T-cell leukemia/lymphoma; the battle between oncogenes and anti-oncogenes. PLoS One 2021; 16:e0247713. [PMID: 33630973 PMCID: PMC7906381 DOI: 10.1371/journal.pone.0247713] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is virus-caused cancer that originates from the infection by human T-cell leukemia virus type 1. ATLL dysregulates various biological pathways related to the viral infection and cancer progression through the dysexpression of miRNAs and mRNAs. In this study, the potential regulatory subnetworks were constructed aiming to shed light on the pathogenesis mechanism of ATLL. For this purpose, two mRNA and one miRNA expression datasets were firstly downloaded from the GEO database. Next, the differentially expressed genes and miRNAs (DEGs and DE-miRNAs, respectively), as well as differentially co-expressed gene pairs (DCGs), were determined. Afterward, common DEGs and DCGs targeted by experimentally validated DE-miRNAs were explored. The oncogenic and anti-oncogenic miRNA-mRNA regulatory subnetworks were then generated. The expression levels of four genes and two miRNAs were examined in the blood samples by qRT-PCR. The members of three oncogenic/anti-oncogenic subnetworks were generally enriched in immune, virus, and cancer-related pathways. Among them, FZD6, THBS4, SIRT1, CPNE3, miR-142-3p, and miR-451a were further validated by real-time PCR. The significant up-regulation of FZD6, THBS4, and miR-451a as well as down-regulation of CPNE3, SIRT1, and miR-142-3p were found in ATLL samples than normal samples. The identified oncogenic/anti-oncogenic subnetworks are pieces of the pathogenesis puzzle of ATLL. The ultimate winner is probably an oncogenic network that determines the final fate of the disease. The identified genes and miRNAs are proposed as novel prognostic biomarkers for ATLL.
Collapse
Affiliation(s)
- Mohadeseh Zarei Ghobadi
- Faculty of Biological Science and Technology, Department of Cell and Molecular Biology and Microbiology, University of Isfahan, Isfahan, Iran
| | - Rahman Emamzadeh
- Faculty of Biological Science and Technology, Department of Cell and Molecular Biology and Microbiology, University of Isfahan, Isfahan, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
26
|
Chi Q, Geng X, Xu K, Wang C, Zhao H. Potential targets and molecular mechanism of miR-331-3p in hepatocellular carcinoma identified by weighted gene coexpression network analysis. Biosci Rep 2020; 40:BSR20200124. [PMID: 32537629 PMCID: PMC7317601 DOI: 10.1042/bsr20200124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumor. miR-331-3p has been reported relevant to the progression of HCC, but the molecular mechanism of its regulation is still unclear. In the study, we comprehensively studied the role of miR-331-3p in HCC through weighted gene coexpression network analysis (WGCNA) based on The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Oncomine. WGCNA was applied to build gene co-expression networks to examine the correlation between gene sets and clinical characteristics, and to identify potential biomarkers. Five hundred one target genes of miR-331-3p were obtained by overlapping differentially expressed genes (DEGs) from the TCGA database and target genes predicted by miRWalk. The critical turquoise module and its eight key genes were screened by WGCNA. Enrichment analysis was implemented based on the genes in the turquoise module. Moreover, 48 genes with a high degree of connectivity were obtained by protein-protein interaction (PPI) analysis of the genes in the turquoise module. From overlapping genes analyzed by WGCNA and PPI, two hub genes were obtained, namely coatomer protein complex subunit zeta 1 (COPZ1) and elongation factor Tu GTP binding domain containing 2 (EFTUD2). In addition, the expression of both hub genes was also significantly higher in tumor tissues compared with normal tissues, as confirmed by analysis based on TCGA and Oncomine. Both hub genes were correlated with poor prognosis based on TCGA data. Receiver operating characteristic (ROC) curve validated that both hub genes exhibited excellent diagnostic efficiency for normal and tumor tissues.
Collapse
Affiliation(s)
- Qingjia Chi
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China
| | - Xinge Geng
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China
| | - Kang Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chunli Wang
- ‘111’ Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Han Zhao
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| |
Collapse
|
27
|
Zalewski DP, Ruszel KP, Stępniewski A, Gałkowski D, Bogucki J, Komsta Ł, Kołodziej P, Chmiel P, Zubilewicz T, Feldo M, Kocki J, Bogucka-Kocka A. Dysregulation of microRNA Modulatory Network in Abdominal Aortic Aneurysm. J Clin Med 2020; 9:jcm9061974. [PMID: 32599769 PMCID: PMC7355415 DOI: 10.3390/jcm9061974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/13/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
Abdominal artery aneurysm (AAA) refers to abdominal aortic dilatation of 3 cm or greater. AAA is frequently underdiagnosed due to often asymptomatic character of the disease, leading to elevated mortality due to aneurysm rupture. MiRNA constitute a pool of small RNAs controlling gene expression and is involved in many pathologic conditions in human. Targeted panel detecting altered expression of miRNA and genes involved in AAA would improve early diagnosis of this disease. In the presented study, we selected and analyzed miRNA and gene expression signatures in AAA patients. Next, generation sequencing was applied to obtain miRNA and gene-wide expression profiles from peripheral blood mononuclear cells in individuals with AAA and healthy controls. Differential expression analysis was performed using DESeq2 and uninformative variable elimination by partial least squares (UVE-PLS) methods. A total of 31 miRNAs and 51 genes were selected as the most promising biomarkers of AAA. Receiver operating characteristics (ROC) analysis showed good diagnostic ability of proposed biomarkers. Genes regulated by selected miRNAs were determined in silico and associated with functional terms closely related to cardiovascular and neurological diseases. Proposed biomarkers may be used for new diagnostic and therapeutic approaches in management of AAA. The findings will also contribute to the pool of knowledge about miRNA-dependent regulatory mechanisms involved in pathology of that disease.
Collapse
Affiliation(s)
- Daniel P. Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (D.P.Z.); (P.C.)
| | - Karol P. Ruszel
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.B.); (J.K.)
| | - Andrzej Stępniewski
- Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Głęboka St., 20-612 Lublin, Poland;
| | - Dariusz Gałkowski
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903-0019, USA;
| | - Jacek Bogucki
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.B.); (J.K.)
| | - Łukasz Komsta
- Chair and Department of Medicinal Chemistry, Medical University of Lublin, 4 Jaczewskiego St., 20-090 Lublin, Poland;
| | - Przemysław Kołodziej
- Laboratory of Diagnostic Parasitology, Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| | - Paulina Chmiel
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (D.P.Z.); (P.C.)
| | - Tomasz Zubilewicz
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (T.Z.); (M.F.)
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (T.Z.); (M.F.)
| | - Janusz Kocki
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.B.); (J.K.)
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (D.P.Z.); (P.C.)
- Correspondence: ; Tel.: +48-81-448-7232
| |
Collapse
|
28
|
Zalewski DP, Ruszel KP, Stępniewski A, Gałkowski D, Bogucki J, Komsta Ł, Kołodziej P, Chmiel P, Zubilewicz T, Feldo M, Kocki J, Bogucka-Kocka A. Dysregulations of MicroRNA and Gene Expression in Chronic Venous Disease. J Clin Med 2020; 9:jcm9051251. [PMID: 32344947 PMCID: PMC7287878 DOI: 10.3390/jcm9051251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic venous disease (CVD) is a vascular disease of lower limbs with high prevalence worldwide. Pathologic features include varicose veins, venous valves dysfunction and skin ulceration resulting from dysfunction of cell proliferation, apoptosis and angiogenesis. These processes are partly regulated by microRNA (miRNA)-dependent modulation of gene expression, pointing to miRNA as a potentially important target in diagnosis and therapy of CVD progression. The aim of the study was to analyze alterations of miRNA and gene expression in CVD, as well as to identify miRNA-mediated changes in gene expression and their potential link to CVD development. Using next generation sequencing, miRNA and gene expression profiles in peripheral blood mononuclear cells of subjects with CVD in relation to healthy controls were studied. Thirty-one miRNAs and 62 genes were recognized as potential biomarkers of CVD using DESeq2, Uninformative Variable Elimination by Partial Least Squares (UVE-PLS) and ROC (Receiver Operating Characteristics) methods. Regulatory interactions between potential biomarker miRNAs and genes were projected. Functional analysis of microRNA-regulated genes revealed terms closely related to cardiovascular diseases and risk factors. The study shed new light on miRNA-dependent regulatory mechanisms involved in the pathology of CVD. MicroRNAs and genes proposed as CVD biomarkers may be used to develop new diagnostic and therapeutic methods.
Collapse
Affiliation(s)
- Daniel P. Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (D.P.Z.); (P.K.); (P.C.)
| | - Karol P. Ruszel
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.B.); (J.K.)
| | - Andrzej Stępniewski
- Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Głęboka St., 20-612 Lublin, Poland;
| | - Dariusz Gałkowski
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903-0019, USA;
| | - Jacek Bogucki
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.B.); (J.K.)
| | - Łukasz Komsta
- Chair and Department of Medicinal Chemistry, Medical University of Lublin, 4 Jaczewskiego St., 20-090 Lublin, Poland;
| | - Przemysław Kołodziej
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (D.P.Z.); (P.K.); (P.C.)
| | - Paulina Chmiel
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (D.P.Z.); (P.K.); (P.C.)
| | - Tomasz Zubilewicz
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (T.Z.); (M.F.)
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (T.Z.); (M.F.)
| | - Janusz Kocki
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.B.); (J.K.)
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (D.P.Z.); (P.K.); (P.C.)
- Correspondence: ; Tel.: +48-81-448-7232
| |
Collapse
|