1
|
Sun Y, Wang N, Chen X, Peng F, Zhang J, Song H, Meng Y, Liu M, Huang H, Fan Y, Wang L, Yang Z, Zhang M, Chen X, Zhao L, Guo L, Lu X, Wang J, Wang S, Jiang J, Ye W. GHCYP706A7 governs anthocyanin biosynthesis to mitigate ROS under alkali stress in cotton. PLANT CELL REPORTS 2025; 44:61. [PMID: 39985587 DOI: 10.1007/s00299-025-03453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/07/2025] [Indexed: 02/24/2025]
Abstract
KEY MESSAGE Flavonoid 3'-hydroxylase synthesis gene-GHCYP706A7, enhanced cotton resistance to alkali stress by scavenging ROS to regulate anthocyanin synthesis. Anthocyanins are a class of flavonoids that play a significant role in mediating plant responses to adverse environmental conditions. Flavonoid 3'-hydroxylase (F3'H), a member of the cytochrome P-450 (CYP) family, is a pivotal enzyme involved in the biosynthesis of anthocyanins. The present study identified 398 CYPs in the Gossypium hirsutum genome, of which GHCYP706A7 was responsible for F3'H synthesis and its ability to respond to alkaline stress. GHCYP706A7 suppression through virus-induced gene silencing (VIGS) diminished tolerance to alkali stress in cotton, evidenced by significantly reduced anthocyanin synthesis, markedly decreased antioxidant capacity, notable increases in reactive oxygen species, severe cellular damage, and observably decreased stomatal opening. The cumulative effects of these physiological disruptions ultimately manifest in cotton wilting and fresh weight decline. These findings lay a foundation for further investigations into the role of CYPs in regulating anthocyanin synthesis and responding to alkali stress.
Collapse
Affiliation(s)
- Yuping Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Henan University, Kaifeng, 475004, Henan, China
| | - Ning Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Fanjia Peng
- Hunan Institute of Cotton Science, Changde, 415101, Hunan, China
| | - Junling Zhang
- Shawan City Xinyao Rural Property Rights Transfer Trading Center Co., LTD, Xinjiang, China
| | - Heling Song
- Shawan City Xinyao Rural Property Rights Transfer Trading Center Co., LTD, Xinjiang, China
| | - Yuan Meng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Mengyue Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Lidong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Zhining Yang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Menghao Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Xiao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Jing Jiang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Henan University, Kaifeng, 475004, Henan, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China.
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
2
|
Fang Y, Tai Z, Hu K, Luo L, Yang S, Liu M, Xie X. Comprehensive Review on Plant Cytochrome P450 Evolution: Copy Number, Diversity, and Motif Analysis From Chlorophyta to Dicotyledoneae. Genome Biol Evol 2024; 16:evae240. [PMID: 39506518 PMCID: PMC11586672 DOI: 10.1093/gbe/evae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024] Open
Abstract
Cytochrome P450 enzymes (CYPs) are widely distributed among various plant groups and constitute approximately 1% of the total number of protein-coding genes. Extensive studies suggest that CYPs are involved in nearly all molecular processes that occur in plants. Over the past two decades, the identification of CYP genes has expanded rapidly, with more than 40,000 CYP genes and 819 CYP families being discovered. Copy number variation is a significant evolutionary characteristic of gene families, yet a systematic characterization of the copy evolution patterns in plant CYP gene families has been lacking, resulting in confusion and challenges in understanding CYP functions. To address these concerns, this review provides comprehensive statistics and analyses of the copy number and diversity of almost all plant CYP gene families, focusing on CYP evolution from Chlorophyta to Dicotyledoneae. Additionally, we examined the subfamily characteristics of certain CYP families with restricted copy changes and identified several CYP subfamilies that play pivotal roles in this event. Furthermore, we analyzed the structural conservation of CYPs across different taxa and compiled a comprehensive database to support plant CYP studies. Our analysis revealed differences in the six core conserved motifs of plant CYP proteins among various clans and plant taxa, while demonstrating similar conservation patterns for the ERR (glutamic acid-arginine-arginine) triad motifs. These findings will significantly facilitate the understanding of plant CYP gene evolution and metabolic diversity and serve as a valuable reference for researchers studying CYP enzymes.
Collapse
Affiliation(s)
- Yuanpeng Fang
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Zheng Tai
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Keyi Hu
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Lingfeng Luo
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Sanwei Yang
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Mengmeng Liu
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xin Xie
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
3
|
Minerdi D, Sabbatini P. Impact of Cytochrome P450 Enzyme on Fruit Quality. Int J Mol Sci 2024; 25:7181. [PMID: 39000287 PMCID: PMC11241655 DOI: 10.3390/ijms25137181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Cytochrome P450 enzymes are monooxygenases widely diffused in nature ranging from viruses to man. They can catalyze a very wide range of reactions, including the ketonization of C-H bonds, N/O/S-dealkylation, C-C bond cleavage, N/S-oxidation, hydroxylation, and the epoxidation of C=C bonds. Their versatility makes them valuable across various fields such as medicine, chemistry, and food processing. In this review, we aim to highlight the significant contribution of P450 enzymes to fruit quality, with a specific focus on the ripening process, particularly in grapevines. Grapevines are of particular interest due to their economic importance in the fruit industry and their significance in winemaking. Understanding the role of P450 enzymes in grapevine fruit ripening can provide insights into enhancing grape quality, flavor, and aroma, which are critical factors in determining the market value of grapes and derived products like wine. Moreover, the potential of P450 enzymes extends beyond fruit ripening. They represent promising candidates for engineering crop species that are resilient to both biotic and abiotic stresses. Their involvement in metabolic engineering offers opportunities for enhancing fruit quality attributes, such as taste, nutritional content, and shelf life. Harnessing the capabilities of P450 enzymes in crop improvement holds immense promise for sustainable agriculture and food security.
Collapse
Affiliation(s)
- Daniela Minerdi
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy;
| | - Paolo Sabbatini
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy;
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Interdepartmental Centre for Grapevines and Wine Sciences, University of Turin, Corso Enotria 2/C, 12051 Alba, CN, Italy
| |
Collapse
|
4
|
Tang M, Zhang W, Lin R, Li L, He L, Yu J, Zhou Y. Genome-wide characterization of cytochrome P450 genes reveals the potential roles in fruit ripening and response to cold stress in tomato. PHYSIOLOGIA PLANTARUM 2024; 176:e14332. [PMID: 38710502 DOI: 10.1111/ppl.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Plant cytochrome P450 (CYP) superfamily, the largest enzyme metabolism family, has been identified in many species and plays a vital role in plant development and stress response via secondary metabolite biosynthesis. A comprehensive identification and functional investigation of CYPs in tomato plants would contribute to deeper understanding of their biological significance. In this study, 268 tomato CYP genes were identified and found to be unevenly located on 12 chromosomes. Based on the phylogenetic analysis, these 268 SlCYPs were classed into two distinct clades (A-type and non-A-type) and nine clans, including 48 families. Moreover, 67 tandem and 22 WGD (whole genome duplication)/segmental duplication events were detected, of which 12 SlCYP genes experienced both WGD/segmental and tandem duplication events, indicating that tandem duplication plays a major role in the expansion of the SlCYP family. Besides, 48 pairs containing 41 SlCYP and 44 AtCYP genes were orthologous, while 216 orthologous pairs were obtained between tomato and potato. The expression level of all SlCYP genes in tomato tissues at different development stages was analyzed, and most expressed SlCYPs showed a tissue-specific pattern. Meanwhile, 143 differentially expressed SlCYPs were identified under cold stress. Furthermore, the RT-qPCR results indicated that SlCYPs may be involved in fruit ripening and cold tolerance in tomato seedlings. These findings provide valuable insights into the evolutionary relationships and functional characteristics of SlCYPs, which can be utilized for further investigation of fruit metabolic pathways and cold tolerance in tomato.
Collapse
Affiliation(s)
- Mingjia Tang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenjing Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Rui Lin
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Lan Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Liqun He
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| |
Collapse
|
5
|
Wang H, Li P, Wang Y, Chi C, Ding G. Genome-wide identification of the CYP82 gene family in cucumber and functional characterization of CsCYP82D102 in regulating resistance to powdery mildew. PeerJ 2024; 12:e17162. [PMID: 38560464 PMCID: PMC10981884 DOI: 10.7717/peerj.17162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
The cytochrome P450 (CYP450) gene family plays a vital role in basic metabolism, hormone signaling, and enhances plant resistance to stress. Among them, the CYP82 gene family is primarily found in dicots, and they are typically activated in response to various specific environmental stresses. Nevertheless, their roles remain considerably obscure, particularly within the context of cucumber. In the present study, 12 CYP82 subfamily genes were identified in the cucumber genome. Bioinformatics analysis included gene structure, conserved motif, cis-acting promoter element, and so on. Subcellular localization predicted that all CYP82 genes were located in the endoplasmic reticulum. The results of cis element analysis showed that CYP82s may significantly affect the response to stress, hormones, and light exposure. Expression patterns of the CYP82 genes were characterized by mining available RNA-seq data followed by qRT-PCR (quantitative real-time polymerase chain reaction) analysis. Members of CYP82 genes display specific expression profiles in different tissues, and in response to PM and abiotic stresses in this study, the role of CsCYP82D102, a member of the CYP82 gene family, was investigated. The upregulation of CsCYP82D102 expression in response to powdery mildew (PM) infection and treatment with methyl jasmonate (MeJA) or salicylic acid (SA) was demonstrated. Further research found that transgenic cucumber plants overexpressing CsCYP82D102 display heightened resistance against PM. Wild-type (WT) leaves exhibited average lesion areas of approximately 29.7% at 7 dpi upon powdery mildew inoculation. In contrast, the two independent CsCYP82D102 overexpression lines (OE#1 and OE#3) displayed significantly reduced necrotic areas, with average lesion areas of approximately 13.4% and 5.7%. Additionally, this enhanced resistance is associated with elevated expression of genes related to the SA/MeJA signaling pathway in transgenic cucumber plants. This study provides a theoretical basis for further research on the biological functions of the P450 gene in cucumber plants.
Collapse
Affiliation(s)
- Hongyu Wang
- Harbin Normal University, Harbin, Harbin, China
| | - Pengfei Li
- Harbin Normal University, Harbin, Harbin, China
| | - Yu Wang
- Harbin Normal University, Harbin, Harbin, China
| | - Chunyu Chi
- Harbin Normal University, Harbin, Harbin, China
| | - Guohua Ding
- Harbin Normal University, Harbin, Harbin, China
| |
Collapse
|
6
|
Kong J, Zhao Y, Fan P, Wang Y, Xu X, Wang L, Li S, Duan W, Liang Z, Dai Z. Far-red light modulates grapevine growth by increasing leaf photosynthesis efficiency and triggering organ-specific transcriptome remodelling : Author. BMC PLANT BIOLOGY 2024; 24:189. [PMID: 38486149 PMCID: PMC10941557 DOI: 10.1186/s12870-024-04870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Growing evidence demonstrates that the synergistic interaction of far-red light with shorter wavelength lights could evidently improve the photosynthesis efficiency of multiple species. However, whether/how far-red light affects sink organs and consequently modulates the source‒sink relationships are largely unknown. RESULTS Here, equal intensities of white and far-red lights were added to natural light for grape plantlets to investigate the effects of far-red light supplementation on grapevine growth and carbon assimilate allocation, as well as to reveal the underlying mechanisms, through physiological and transcriptomic analysis. The results showed that additional far-red light increased stem length and carbohydrate contents in multiple organs and decreased leaf area, specific leaf weight and dry weight of leaves in comparison with their counterparts grown under white light. Compared to white light, the maximum net photosynthetic rate of the leaves was increased by 31.72% by far-red light supplementation, indicating that far-red light indeed elevated the photosynthesis efficiency of grapes. Transcriptome analysis revealed that leaves were most responsive to far-red light, followed by sink organs, including stems and roots. Genes related to light signaling and carbon metabolites were tightly correlated with variations in the aforementioned physiological traits. In particular, VvLHCB1 is involved in light harvesting and restoring the balance of photosystem I and photosystem II excitation, and VvCOP1 and VvPIF3, which regulate light signal transduction, were upregulated under far-red conditions. In addition, the transcript abundances of the sugar transporter-encoding genes VvSWEET1 and VvSWEET3 and the carbon metabolite-encoding genes VvG6PD, VvSUS7 and VvPGAM varied in line with the change in sugar content. CONCLUSIONS This study showed that far-red light synergistically functioning with white light has a beneficial effect on grape photosystem activity and is able to differentially affect the growth of sink organs, providing evidence for the possible addition of far-red light to the wavelength range of photosynthetically active radiation (PAR).
Collapse
Affiliation(s)
- Junhua Kong
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yan Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Peige Fan
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yongjian Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaobo Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Lijun Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Shaohua Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wei Duan
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhanwu Dai
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Montazerinezhad S, Solouki M, Emamjomeh A, Kavousi K, Taheri A, Shiri Y. Transcriptomic analysis of alternative splicing events for different stages of growth and development in Sistan Yaghooti grape clusters. Gene 2024; 896:148030. [PMID: 38008270 DOI: 10.1016/j.gene.2023.148030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Sistan Yaghooti grape variety, despite characteristics such as early ripening, is vulnerable to cluster rot due to small berries and dense clusters. In this regard, AS may serve as a regulatory mechanism during developmental processes and in response to environmental signals. RNA-Seq analysis was performed to measure gene expression and the extent of AS events in the cluster growth and development stages of Sistan Yaghooti grape. The number of AS events increased during stages, suggesting that it contributes to the grapevine's adaptability to various stresses. In addition, DEG and DAS genes showed little overlap in cluster growth stages. Functional analysis of 19,194 DAS -gene sets showed that VIT_06s0004g06670 gene is involved in the activation of calcium channels (Ca2+) through the activation of 5 PLC biosynthetic pathways. Among the 27,229 DEG -sets, VIT_07s0005g05320 gene showed higher expression. Interestingly, this gene is involved in the synthesis of an EF -hand domain-containing protein capable of binding to Ca2+ by activating 4 biochemical pathways. These genes increase cytosolic Ca2+ concentration, enhancing plant stress tolerance and resistance to cracking. These results show that AS can respond independently to different types of stress. Among the other DAS genes, the GA2ox gene (VvGA2ox) showed an increase in AS events during cluster development. This gene is critical for initiating the degradation process of GA and plays a crucial role in different stages of seed development. Therefore, it is very likely that this gene is one of the main factors responsible for the density and seedlessness of Sistan Yaghooti grape.
Collapse
Affiliation(s)
- Somayeh Montazerinezhad
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Mahmood Solouki
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran; Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Bioinformatics, Faculty of Basic Sciences, University of Zabol, Zabol, Iran.
| | - Kaveh Kavousi
- Institute of Biochemistry and Biophysics (IBB), Department of Bioinformatics, Laboratory of Complex Biological Systems and Bioinformatics (CBB), University of Tehran, Tehran, Iran
| | - Ali Taheri
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, Tenn, United States
| | - Yasoub Shiri
- Agronomy and Plant Breeding Department, Agriculture Research Center, Zabol Research Institute, Zabol, Iran; Department of Horticulture, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, Ardabil, Iran
| |
Collapse
|
8
|
Ackah M, Boateng NAS, Dhanasekaran S, Zhang H, Yang Q. Genome wide and comprehensive analysis of the cytochrome P450 (CYPs) gene family in Pyrus bretschneideri: Expression patterns during Sporidiobolus pararoseus Y16 enhanced with ascorbic acid (VC) treatment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108303. [PMID: 38154299 DOI: 10.1016/j.plaphy.2023.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/02/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Cytochrome P450s (CYPs) constitute the largest group of enzymes in plants and are involved in a variety of processes related to growth and protection. However, the CYP gene superfamily in pear (Pyrus bretschneideri) and their characteristics is unclear. Through a comprehensive genome-wide analysis, this article identified a total of 74 CYP genes in the P. bretschneideri genome, which were categorized into fourteen families. Motif analysis reveals that most of the ten motifs predicted were with the p450 conserved domain. The majority of the CYP genes have exon arrangements. Furthermore, promoter analysis unveiled a multitude of cis-acting elements associated with diverse responsiveness including hormones, light responsive, anoxic specific inducibility and anaerobic induction. Analysis of the transcriptome data reveal that about 80% of the pear CYPs genes were upregulated and they were positively correlated with the antioxidant's parameters such as total flavonoids and total phenol content as well as ABTS and DPPH radicals. RT-qPCR analysis confirmed that the CYP genes could be regulated in pear. Collectively, our results reveal comprehensive insights into the CYP superfamily in pear and make a valuable contribution to the ongoing process of functional validation.
Collapse
Affiliation(s)
- Michael Ackah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Nana Adwoa Serwah Boateng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China; Ho Technical University, P.O.BOX HP 217, Ho, Volta Region, Ghana
| | - Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Sabir IA, Manzoor MA, Shah IH, Ahmad Z, Liu X, Alam P, Wang Y, Sun W, Wang J, Liu R, Jiu S, Zhang C. Unveiling the effect of gibberellin-induced iron oxide nanoparticles on bud dormancy release in sweet cherry (Prunus avium L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108222. [PMID: 38016371 DOI: 10.1016/j.plaphy.2023.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Hydrogen cyanide has been extensively used worldwide for bud dormancy break in fruit trees, consequently enhancing fruit production via expedited cultivation, especially in areas with controlled environments or warmer regions. A novel and safety nanotechnology was developed since the hazard of hydrogen cyanide for the operators and environments, there is an urgent need for the development of novel and safety approaches to replace it to break bud dormancy for fruit trees. In current study, we have systematically explored the potential of iron oxide nanoparticles, specifically α-Fe2O3, to modulate bud dormancy in sweet cherry (Prunus avium). The synthesized iron oxide nanoparticles underwent meticulous characterization and assessment using various techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible infrared (UV-Vis) spectroscopy. Remarkably, when applied at a concentration of 10 mg L-1 alongside gibberellin (GA4+7), these iron oxide nanoparticles exhibited a substantial 57% enhancement in bud dormancy release compared to control groups, all achieved within a remarkably short time span of 4 days. Our RNA-seq analyses further unveiled that 2757 genes within the sweet cherry buds were significantly up-regulated when treated with 10 mg L-1 α-Fe2O3 nanoparticles in combination with GA, while 4748 genes related to dormancy regulation were downregulated in comparison to the control. Moreover, we discovered an array of 58 transcription factor families among the crucial differentially expressed genes (DEGs). Through hormonal quantification, we established that the increased bud burst was accompanied by a reduced concentration of abscisic acid (ABA) at 761.3 ng/g fresh weight in the iron oxide treatment group, coupled with higher levels of gibberellins (GAs) in comparison to the control. Comprehensive transcriptomic and metabolomic analyses unveiled significant alterations in hormone contents and gene expression during the bud dormancy-breaking process when α-Fe2O3 nanoparticles were combined with GA. In conclusion, our findings provide valuable insights into the intricate molecular mechanisms underlying the impact of iron oxide nanoparticles on achieving uniform bud dormancy break in sweet cherry trees.
Collapse
Affiliation(s)
- Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Iftikhar Hussain Shah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zishan Ahmad
- Bambo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Saudi Arabia
| | - Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Zhang K, Qin Y, Sun W, Shi H, Zhao S, He L, Li C, Zhao J, Pan J, Wang G, Han Z, Zhao C, Yang X. Phylogenomic Analysis of Cytochrome P450 Gene Superfamily and Their Association with Flavonoids Biosynthesis in Peanut ( Arachis hypogaea L.). Genes (Basel) 2023; 14:1944. [PMID: 37895293 PMCID: PMC10606413 DOI: 10.3390/genes14101944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Cytochrome P450s (CYPs) constitute extensive enzyme superfamilies in the plants, playing pivotal roles in a multitude of biosynthetic and detoxification pathways essential for growth and development, such as the flavonoid biosynthesis pathway. However, CYPs have not yet been systematically studied in the cultivated peanuts (Arachis hypogaea L.), a globally significant cash crop. This study addresses this knowledge deficit through a comprehensive genome-wide analysis, leading to the identification of 589 AhCYP genes in peanuts. Through phylogenetic analysis, all AhCYPs were systematically classified into 9 clans, 43 gene families. The variability in the number of gene family members suggests specialization in biological functions. Intriguingly, both tandem duplication and fragment duplication events have emerged as pivotal drivers in the evolutionary expansion of the AhCYP superfamily. Ka/Ks analysis underscored the substantial influence of strong purifying selection on the evolution of AhCYPs. Furthermore, we selected 21 genes encoding 8 enzymes associated with the flavonoid pathway. The results of quantitative real-time PCR (qRT-PCR) experiments unveiled stage-specific expression patterns during the development of peanut testa, with discernible variations between pink and red testa. Importantly, we identified a direct correlation between gene expression levels and the accumulation of metabolites. These findings offer valuable insights into elucidating the comprehensive functions of AhCYPs and the underlying mechanisms governing the divergent accumulation of flavonoids in testa of different colors.
Collapse
Affiliation(s)
- Kun Zhang
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China; (K.Z.); (Y.Q.); (J.Z.)
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Yongmei Qin
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China; (K.Z.); (Y.Q.); (J.Z.)
| | - Wei Sun
- Linyi Academy of Agricultural Sciences, Linyi 276003, China;
| | - Hourui Shi
- Shandong Seed Management Station, Jinan 250100, China;
| | - Shuzhen Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Liangqiong He
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.H.); (Z.H.)
| | - Changsheng Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Jin Zhao
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China; (K.Z.); (Y.Q.); (J.Z.)
| | - Jiaowen Pan
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Guanghao Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Zhuqiang Han
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.H.); (Z.H.)
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Xiangli Yang
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China; (K.Z.); (Y.Q.); (J.Z.)
| |
Collapse
|
11
|
Liu J, Shi K, Wang S, Zhu J, Wang X, Hong J, Wang Z. MsCYP71 is a positive regulator for drought resistance in alfalfa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107999. [PMID: 37678089 DOI: 10.1016/j.plaphy.2023.107999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Cytochrome P450 (CYP450) family proteins play key roles in plant growth, development, stress responses, and other physiological processes. Here, we cloned the cytochrome P450 gene MsCYP71 in alfalfa and found that the expression of MsCYP71 was induced by drought stress. Silencing the MsCYP71 gene using virus-induced gene silencing technology significantly decreased the drought resistance of alfalfa, as indicated by their lower relative water content, net photosynthetic rate, and chlorophyll fluorescence maximum (Fm); further, the heterologous overexpression of MsCYP71 in tobacco significantly enhanced the drought resistance and Fm of transgenic tobacco. Furthermore, the expression of MsCYP71 across 45 alfalfa accessions under drought stress was investigated. A significant positive correlation between drought resistance and MsCYP71 expression was observed. The 45 alfalfa accessions were clustered into four groups, and drought resistance, Fm, and MsCYP71 were higher in group I than in the other groups, indicating that group I accessions can be used as candidate germplasm resources for the breeding of drought-resistant alfalfa varieties. Overall, our findings indicated that MsCYP71 is a positive regulator of drought resistance in alfalfa, and its expression can be used to evaluate the drought resistance of alfalfa.
Collapse
Affiliation(s)
- Jia Liu
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kun Shi
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shaopeng Wang
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiahao Zhu
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xijuan Wang
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jun Hong
- National Animal Husbandry Services, Beijing, 100125, China
| | - Zan Wang
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Shen C, Li X. Genome-wide analysis of the P450 gene family in tea plant (Camellia sinensis) reveals functional diversity in abiotic stress. BMC Genomics 2023; 24:535. [PMID: 37697232 PMCID: PMC10494425 DOI: 10.1186/s12864-023-09619-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Cytochrome P450 (Cytochrome P450s) genes are involved in the catalysis of various reactions, including growth, development, and secondary metabolite biosynthetic pathways. However, little is known about the characteristics and functions of the P450 gene family in Camellia sinensis (C. sinensis). RESULTS To reveal the mechanisms of tea plant P450s coping with abiotic stresses, analyses of the tea plant P450 gene family were conducted using bioinformatics-based methods. In total, 273 putative P450 genes were identified from the genome database of C. sinensis. The results showed that P450s were well-balanced across the chromosomes I to XV of entire genome, with amino acid lengths of 268-612 aa, molecular weights of 30.95-68.5 kDa, and isoelectric points of 4.93-10.17. Phylogenetic analysis divided CsP450s into 34 subfamilies, of which CYP71 was the most abundant. The predicted subcellular localization results showed that P450 was distributed in a variety of organelles, with chloroplasts, plasma membrane,,and cytoplasm localized more frequently. The promoter region of CsP450s contained various cis-acting elements related to phytohormones and stress responses. In addition, ten conserved motifs (Motif1-Motif10) were identified in the CsP450 family proteins, with 27 genes lacking introns and only one exon. The results of genome large segment duplication showed that there were 37 pairs of genes with tandem duplication. Interaction network analysis showed that CsP450 could interact with multiple types of target genes, and there are protein interactions within the family. Tissue expression analysis showed that P450 was highly expressed in roots and stems. Moreover, qPCR analysis of the relative expression level of the gene under drought and cold stress correlated with the sequencing results. CONCLUSIONS This study lays the foundation for resolving the classification and functional study of P450 family genes and provides a reference for the molecular breeding of C. sinensis.
Collapse
Affiliation(s)
- Chuan Shen
- Shaannan Eco-Economy Research Center, Ankang University, Ankang, 725000, China.
| | - Xia Li
- Department of Electronic and Information Engineering, Ankang University, Ankang, 725000, China
| |
Collapse
|
13
|
Sahoo B, Nayak I, Parameswaran C, Kesawat MS, Sahoo KK, Subudhi HN, Balasubramaniasai C, Prabhukarthikeyan SR, Katara JL, Dash SK, Chung SM, Siddiqui MH, Alamri S, Samantaray S. A Comprehensive Genome-Wide Investigation of the Cytochrome 71 ( OsCYP71) Gene Family: Revealing the Impact of Promoter and Gene Variants (Ser33Leu) of OsCYP71P6 on Yield-Related Traits in Indica Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3035. [PMID: 37687282 PMCID: PMC10490456 DOI: 10.3390/plants12173035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
The cytochrome P450 (CYP450) gene family plays a critical role in plant growth and developmental processes, nutrition, and detoxification of xenobiotics in plants. In the present research, a comprehensive set of 105 OsCYP71 family genes was pinpointed within the genome of indica rice. These genes were categorized into twelve distinct subfamilies, where members within the same subgroup exhibited comparable gene structures and conserved motifs. In addition, 105 OsCYP71 genes were distributed across 11 chromosomes, and 36 pairs of OsCYP71 involved in gene duplication events. Within the promoter region of OsCYP71, there exists an extensive array of cis-elements that are associated with light responsiveness, hormonal regulation, and stress-related signaling. Further, transcriptome profiling revealed that a majority of the genes exhibited responsiveness to hormones and were activated across diverse tissues and developmental stages in rice. The OsCYP71P6 gene is involved in insect resistance, senescence, and yield-related traits in rice. Hence, understanding the association between OsCYP71P6 genetic variants and yield-related traits in rice varieties could provide novel insights for rice improvement. Through the utilization of linear regression models, a total of eight promoters were identified, and a specific gene variant (Ser33Leu) within OsCYP71P6 was found to be linked to spikelet fertility. Additionally, different alleles of the OsCYP71P6 gene identified through in/dels polymorphism in 131 rice varieties were validated for their allelic effects on yield-related traits. Furthermore, the single-plant yield, spikelet number, panicle length, panicle weight, and unfilled grain per panicle for the OsCYP71P6-1 promoter insertion variant were found to contribute 20.19%, 13.65%, 5.637%, 8.79%, and 36.86% more than the deletion variant, respectively. These findings establish a robust groundwork for delving deeper into the functions of OsCYP71-family genes across a range of biological processes. Moreover, these findings provide evidence that allelic variation in the promoter and amino acid substitution of Ser33Leu in the OsCYP71P6 gene could potentially impact traits related to rice yield. Therefore, the identified promoter variants in the OsCYP71P6 gene could be harnessed to amplify rice yields.
Collapse
Affiliation(s)
- Bijayalaxmi Sahoo
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
- Department of Botany, Ravenshaw University, Cuttack 753006, India;
| | - Itishree Nayak
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
- Department of Botany, Utkal University, Bhubaneswar 751004, India
| | - C. Parameswaran
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | - Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri University, Cuttack 754006, India
| | | | - H. N. Subudhi
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | - Cayalvizhi Balasubramaniasai
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | | | - Jawahar Lal Katara
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | - Sushanta Kumar Dash
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | - Sang-Min Chung
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea;
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.H.S.); (S.A.)
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.H.S.); (S.A.)
| | - Sanghamitra Samantaray
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| |
Collapse
|
14
|
Chakraborty P, Biswas A, Dey S, Bhattacharjee T, Chakrabarty S. Cytochrome P450 Gene Families: Role in Plant Secondary Metabolites Production and Plant Defense. J Xenobiot 2023; 13:402-423. [PMID: 37606423 PMCID: PMC10443375 DOI: 10.3390/jox13030026] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023] Open
Abstract
Cytochrome P450s (CYPs) are the most prominent family of enzymes involved in NADPH- and O2-dependent hydroxylation processes throughout all spheres of life. CYPs are crucial for the detoxification of xenobiotics in plants, insects, and other organisms. In addition to performing this function, CYPs serve as flexible catalysts and are essential for producing secondary metabolites, antioxidants, and phytohormones in higher plants. Numerous biotic and abiotic stresses frequently affect the growth and development of plants. They cause a dramatic decrease in crop yield and a deterioration in crop quality. Plants protect themselves against these stresses through different mechanisms, which are accomplished by the active participation of CYPs in several biosynthetic and detoxifying pathways. There are immense potentialities for using CYPs as a candidate for developing agricultural crop species resistant to biotic and abiotic stressors. This review provides an overview of the plant CYP families and their functions to plant secondary metabolite production and defense against different biotic and abiotic stresses.
Collapse
Affiliation(s)
- Panchali Chakraborty
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| | - Ashok Biswas
- Annual Bast Fiber Breeding Laboratory, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
- Department of Horticulture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Susmita Dey
- Annual Bast Fiber Breeding Laboratory, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
- Department of Plant Pathology and Seed Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Tuli Bhattacharjee
- Department of Chemistry, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Swapan Chakrabarty
- College of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA
- College of Computing, Department of Computer Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
15
|
Jiu S, Chen B, Dong X, Lv Z, Wang Y, Yin C, Xu Y, Zhang S, Zhu J, Wang J, Liu X, Sun W, Yang G, Li M, Li S, Zhang Z, Liu R, Wang L, Manzoor MA, José QG, Wang S, Lei Y, Yang L, Dirlewanger E, Dong Y, Zhang C. Chromosome-scale genome assembly of Prunus pusilliflora provides novel insights into genome evolution, disease resistance, and dormancy release in Cerasus L. HORTICULTURE RESEARCH 2023; 10:uhad062. [PMID: 37220556 PMCID: PMC10200261 DOI: 10.1093/hr/uhad062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/02/2023] [Indexed: 05/25/2023]
Abstract
Prunus pusilliflora is a wild cherry germplasm resource distributed mainly in Southwest China. Despite its ornamental and economic value, a high-quality assembled P. pusilliflora genome is unavailable, hindering our understanding of its genetic background, population diversity, and evolutionary processes. Here, we de novo assembled a chromosome-scale P. pusilliflora genome using Oxford Nanopore, Illumina, and chromosome conformation capture sequencing. The assembled genome size was 309.62 Mb, with 76 scaffolds anchored to eight pseudochromosomes. We predicted 33 035 protein-coding genes, functionally annotated 98.27% of them, and identified repetitive sequences covering 49.08% of the genome. We found that P. pusilliflora is closely related to Prunus serrulata and Prunus yedoensis, having diverged from them ~41.8 million years ago. A comparative genomic analysis revealed that P. pusilliflora has 643 expanded and 1128 contracted gene families. Furthermore, we found that P. pusilliflora is more resistant to Colletotrichum viniferum, Phytophthora capsici, and Pseudomonas syringae pv. tomato (Pst) DC3000 infections than cultivated Prunus avium. P. pusilliflora also has considerably more nucleotide-binding site-type resistance gene analogs than P. avium, which explains its stronger disease resistance. The cytochrome P450 and WRKY families of 263 and 61 proteins were divided into 42 and 8 subfamilies respectively in P. pusilliflora. Furthermore, 81 MADS-box genes were identified in P. pusilliflora, accompanying expansions of the SVP and AGL15 subfamilies and loss of the TM3 subfamily. Our assembly of a high-quality P. pusilliflora genome will be valuable for further research on cherries and molecular breeding.
Collapse
Affiliation(s)
| | | | - Xiao Dong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, P. R. China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chunjin Yin
- Dali Bai Autonomous Prefecture Academy of Agricultural Sciences and Extension, Dali, Yunnan Province, 671600, P. R. China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Sen Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jijun Zhu
- Shanghai Botanical Garden, Shanghai, 200231, P. R. China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guoqian Yang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Meng Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu Province, 200037, P. R. China
| | - Shufeng Li
- Dali Bai Autonomous Prefecture Academy of Agricultural Sciences and Extension, Dali, Yunnan Province, 671600, P. R. China
| | - Zhuo Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Quero-García José
- INRAe, UMR 1332 de Biologie du Fruit et Pathologie, 33140 Villenave d'Ornon, France
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yahui Lei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, P. R. China
| | - Ling Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, P. R. China
| | | | | | | |
Collapse
|
16
|
Wang Y, Xu Y, Xu J, Sun W, Lv Z, Manzoor MA, Liu X, Shen Z, Wang J, Liu R, Whiting MD, Jiu S, Zhang C. Oxygenation alleviates waterlogging-caused damages to cherry rootstocks. MOLECULAR HORTICULTURE 2023; 3:8. [PMID: 37789432 PMCID: PMC10515082 DOI: 10.1186/s43897-023-00056-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 10/05/2023]
Abstract
Waterlogging has occurred more frequently in recent years due to climate change, so it is a huge threat to crop yield and quality. Sweet cherry, a fruit tree with a high economic value, is sensitive to waterlogging stress. One of the most effective methods for enhancing the waterlogging tolerance of sweet cherries is to select waterlogging-tolerant rootstocks. However, the waterlogging tolerance of different cherry rootstocks, and the underlying mechanism remains uncharacterized. Thus, we first evaluated the waterlogging resistance of five sweet cherry rootstocks planted in China. The data showed that 'Gisela 12' and 'Colt' were the most waterlogging-sensitive and -tolerant among the five tested varieties, respectively. Oxygenation effectively alleviated the adverse impacts of waterlogging stress on cherry rootstocks. Moreover, we found that the waterlogging group had lower relative water content, Fv/Fm value, net photosynthetic rate, and higher antioxidant enzyme activities, whereas the oxygenated group performed better in all these parameters. RNA-Seq analysis revealed that numerous DEGs were involved in energy production, antioxidant metabolism, hormone metabolism pathways, and stress-related transcription factors. These findings will help provide management strategies to enhance the waterlogging tolerance of cherry rootstocks and thereby achieve higher yield and better quality of cherries.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jieming Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiyu Shen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Matthew D Whiting
- Department of Horticulture, Washington State University, Prosser, WA, 99350, USA
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
17
|
Das A, Begum K, Akhtar S, Ahmed R, Tamuli P, Kulkarni R, Banu S. Genome-wide investigation of Cytochrome P450 superfamily of Aquilaria agallocha: Association with terpenoids and phenylpropanoids biosynthesis. Int J Biol Macromol 2023; 234:123758. [PMID: 36812976 DOI: 10.1016/j.ijbiomac.2023.123758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/12/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023]
Abstract
Agarwood is a dark resinous wood, produced when Aquilaria tree responds to wounding and microbial infection resulting in the accumulation of fragrant metabolites. Sesquiterpenoids and 2-(2-phenylethyl) chromones are the major phytochemicals in agarwood and Cytochrome P450s (CYPs) are one of the important enzymes in the biosynthesis of these fragrant chemicals. Thus, understanding the repertoire of CYP superfamily in Aquilaria can not only give insights into the fundamentals of agarwood formation, but can also provide a tool for the overproduction of the aroma chemicals. Therefore, current study was designed to investigate CYPs of an agarwood producing plant, Aquilaria agallocha. We identified 136 CYP genes from A. agallocha genome (AaCYPs) and classified them into 8 clans and 38 families. The promoter regions had stress and hormone-related cis-regulatory elements which indicate their participation in the stress response. Duplication and synteny analysis revealed segmental and tandem duplicated and evolutionary related CYP members in other plants. Potential members involved in the biosynthesis of sesquiterpenoids and phenylpropanoids were identified and found to be upregulated in methyl jasmonate-induced callus and infected Aquilaria trees by real-time quantitative PCR analyses. This study highlights the possible involvement of AaCYPs in agarwood resin development and their complex regulation during stress exposure.
Collapse
Affiliation(s)
- Ankur Das
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Khaleda Begum
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Suraiya Akhtar
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Raja Ahmed
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014, India
| | | | - Ram Kulkarni
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 411042, India
| | - Sofia Banu
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014, India.
| |
Collapse
|
18
|
Liu X, Xu Y, Sun W, Wang J, Gao Y, Wang L, Xu W, Wang S, Jiu S, Zhang C. Strigolactones modulate stem length and diameter of cherry rootstocks through interaction with other hormone signaling pathways. FRONTIERS IN PLANT SCIENCE 2023; 14:1092654. [PMID: 36844087 PMCID: PMC9948674 DOI: 10.3389/fpls.2023.1092654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Stem growth and development has considerable effects on plant architecture and yield performance. Strigolactones (SLs) modulate shoot branching and root architecture in plants. However, the molecular mechanisms underlying SLs regulate cherry rootstocks stem growth and development remain unclear. Our studies showed that the synthetic SL analog rac-GR24 and the biosynthetic inhibitor TIS108 affected stem length and diameter, aboveground weight, and chlorophyll content. The stem length of cherry rootstocks following TIS108 treatment reached a maximum value of 6.97 cm, which was much higher than that following rac-GR24 treatments at 30 days after treatment. Stem paraffin section showed that SLs affected cell size. A total of 1936, 743, and 1656 differentially expressed genes (DEGs) were observed in stems treated with 10 μM rac-GR24, 0.1 μM rac-GR24, and 10 μM TIS108, respectively. RNA-seq results highlighted several DEGs, including CKX, LOG, YUCCA, AUX, and EXP, which play vital roles in stem growth and development. UPLC-3Q-MS analysis revealed that SL analogs and inhibitors affected the levels of several hormones in the stems. The endogenous GA3 content of stems increased significantly with 0.1 μM rac-GR24 or 10 μM TIS108 treatment, which is consistent with changes in the stem length following the same treatments. This study demonstrated that SLs affected stem growth of cherry rootstocks by changing other endogenous hormone levels. These results provide a solid theoretical basis for using SLs to modulate plant height and achieve sweet cherry dwarfing and high-density cultivation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Songtao Jiu
- *Correspondence: Songtao Jiu, ; Caixi Zhang,
| | - Caixi Zhang
- *Correspondence: Songtao Jiu, ; Caixi Zhang,
| |
Collapse
|
19
|
Liu X, Gong Q, Zhao C, Wang D, Ye X, Zheng G, Wang Y, Cao J, Sun C. Genome-wide analysis of cytochrome P450 genes in Citrus clementina and characterization of a CYP gene encoding flavonoid 3'-hydroxylase. HORTICULTURE RESEARCH 2023; 10:uhac283. [PMID: 36818367 PMCID: PMC9930397 DOI: 10.1093/hr/uhac283] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Cytochrome P450s (CYPs) are the largest family of enzymes in plant and play multifarious roles in development and defense but the available information about the CYP superfamily in citrus is very limited. Here we provide a comprehensive genome-wide analysis of the CYP superfamily in Citrus clementina genome, identifying 301 CYP genes grouped into ten clans and 49 families. The characteristics of both gene structures and motif compositions strongly supported the reliability of the phylogenetic relationship. Duplication analysis indicated that tandem duplication was the major driving force of expansion for this superfamily. Promoter analysis revealed numerous cis-acting elements related to various responsiveness. RNA-seq data elucidated their expression patterns in citrus fruit peel both during development and in response to UV-B. Furthermore, we characterize a UV-B-induced CYP gene (Ciclev10019637m, designated CitF3'H) as a flavonoid 3'-hydroxylase for the first time. CitF3'H catalyzed numerous flavonoids and favored naringenin in yeast assays. Virus-induced silencing of CitF3'H in citrus seedlings significantly reduced the levels of 3'-hydroxylated flavonoids and their derivatives. These results together with the endoplasmic reticulum-localization of CitF3'H in plant suggest that this enzyme is responsible for the biosynthesis of 3'-hydroxylated flavonoids in citrus. Taken together, our findings provide extensive information about the CYP superfamily in citrus and contribute to further functional verification.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Qin Gong
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Chenning Zhao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Dengliang Wang
- Institute of Fruit Tree Research, Quzhou Academy of Agriculture and Forestry Acience, Quzhou, China
| | - Xianming Ye
- Research and Development Department, Zhejiang Jianong Fruit &Vegetable Co., Ltd, Quzhou, China
| | - Guixia Zheng
- Research and Development Department, Zhejiang Jianong Fruit &Vegetable Co., Ltd, Quzhou, China
| | - Yue Wang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Wang Z, Zhang Y, Song M, Tang X, Huang S, Linhu B, Jin P, Guo W, Li F, Xing L, An R, Zhou X, Hao W, Mu J, Xie C. Genome-Wide Identification of the Cytochrome P450 Superfamily Genes and Targeted Editing of BnCYP704B1 Confers Male Sterility in Rapeseed. PLANTS (BASEL, SWITZERLAND) 2023; 12:365. [PMID: 36679080 PMCID: PMC9864081 DOI: 10.3390/plants12020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The cytochrome P450 (CYP450) monooxygenase superfamily, which is involved in the biosynthesis pathways of many primary and secondary metabolites, plays prominent roles in plant growth and development. However, systemic information about CYP450s in Brassica napus (BnCYP450) was previously undiscovered and their biological significance are far from understood. Members of clan 86 CYP450s, such as CYP704Bs, are essential for the formation of pollen exine in plant male reproduction, and the targeted mutagenesis of CYP704B genes has been used to create new male sterile lines in many crops. In the present study, a total of 687 BnCYP450 genes were identified in Brassica napus cultivar "Zhongshuang 11" (ZS11), which has nearly 2.8-fold as many CYP450 members as in Arabidopsis thaliana. It is rationally estimated since Brassica napus is a tetraploid oil plant with a larger genome compared with Arabidopsis thaliana. The BnCYP450 genes were divided into 47 subfamilies and clustered into nine clans. Phylogenetic relationship analysis reveals that CYP86 clan consists of four subfamilies and 109 BnCYP450s. Members of CYP86 clan genes display specific expression profiles in different tissues and in response to ABA and abiotic stresses. Two BnCYP450s within the CYP704 subfamily from CYP86 clan, BnCYP704B1a and BnCYP704B1b, display high similarity to MS26 (Male Sterility 26, also known as CYP704B1). These two BnCYP704B1 genes were specifically expressed in young buds. We then simultaneously knocked-out these two BnCYP704B1 genes through a clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) genome engineering system. The edited plants displayed a pollenless, sterile phenotype in mature anthers, suggesting that we successfully reproduced genic male sterility (GMS, also known as nuclear male sterility) lines in Brassica napus. This study provides a systemic view of BnCYP450s and offers a strategy to facilitate the commercial utility of the CRISPR/Cas9 system for the rapid generation of GMS in rapeseed via knocking-out GMS controlling genes.
Collapse
Affiliation(s)
- Zhilai Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Centre of Shaanxi Province, Yangling 712100, China
| | - Min Song
- Hybrid Rapeseed Research Centre of Shaanxi Province, Yangling 712100, China
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Xiuhua Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Shuhua Huang
- Hybrid Rapeseed Research Centre of Shaanxi Province, Yangling 712100, China
| | - Bin Linhu
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Ping Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Weike Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Fang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Liwen Xing
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Ran An
- Hybrid Rapeseed Research Centre of Shaanxi Province, Yangling 712100, China
| | - Xiaona Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Wenfang Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jianxin Mu
- Hybrid Rapeseed Research Centre of Shaanxi Province, Yangling 712100, China
| | - Changgen Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
21
|
Han SA, Xie H, Wang M, Zhang JG, Xu YH, Zhu XH, Caikasimu A, Zhou XW, Mai SL, Pan MQ, Zhang W. Transcriptome and metabolome reveal the effects of three canopy types on the flavonoids and phenolic acids in 'Merlot' (Vitis vinifera L.) berry pericarp. Food Res Int 2023; 163:112196. [PMID: 36596135 DOI: 10.1016/j.foodres.2022.112196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
The flavonoids and phenolic acids in grape berries greatly influence the quality of wine. Various methods are used to shape and prune grapevines, but their effects on the flavonoids and phenolic acids remain unclear. The flavonoids and phenolic acids in the berry pericarps from grapevines pruned using three types of leaf canopy, namely, V-shaped, T-shaped, and vertical shoot-positioned (VSP) canopies, were compared in this study. Results showed that the V-shaped canopy was more favorable for the accumulation of flavonoids and phenolic acids. Transcriptome and metabolome analyses revealed that the differentially expressed genes (DEGs) and differentially regulated metabolites (DRMs) were significantly enriched in the flavonoid and phenylpropanoid biosynthesis pathways. A total of 96 flavonoids and 32 phenolic acids were detected among the DRMs. Their contents were higher in the V-shaped canopy than in the T-shaped and VSP canopies. Conjoint analysis of transcriptome and metabolome showed that nine DEGs (e.g., cytochrome P450 98A9 and 98A2) were significantly correlated to nine phenolic acids (e.g., gentisic acid and neochlorogenic acid) and three genes (i.e., chalcone isomerase, UDP-glycosyltransferase 88A1, and caffeoyl-CoA O-methyltransferase) significantly correlated to 15 flavonoids (e.g., baimaside and tricin-7-O-rutinoside). These genes may be involved in the regulation of various flavonoids and phenolic acids in grape berries, but their functions need validation. This study provides novel insights into the effects of leaf canopy on flavonoids and phenolic acids in the skin of grape berries and reveals the potential regulatory networks involved in this phenomenon.
Collapse
Affiliation(s)
- Shou-An Han
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi 830001, Xinjiang, China; Scientific Observing and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture and Rural Affairs, Urumqi 830000, Xinjiang, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center, Urumqi 830091, Xinjiang, China; Key Laboratory of Horticulture Crop Genomics Research and Genetic Improvement in Xinjiang
| | - Hui Xie
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi 830001, Xinjiang, China; Scientific Observing and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture and Rural Affairs, Urumqi 830000, Xinjiang, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center, Urumqi 830091, Xinjiang, China; Key Laboratory of Horticulture Crop Genomics Research and Genetic Improvement in Xinjiang
| | - Min Wang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi 830001, Xinjiang, China; Scientific Observing and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture and Rural Affairs, Urumqi 830000, Xinjiang, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center, Urumqi 830091, Xinjiang, China; Key Laboratory of Horticulture Crop Genomics Research and Genetic Improvement in Xinjiang
| | - Jun-Gao Zhang
- Xinjiang Crop Chemical Regulation Engineering Technology Research Center, Urumqi 830091, Xinjiang, China; Institute of Nuclear Technology and Biotechnology of Xinjiang Academy of Agricultural Sciences, Urumqi 830001, Xinjiang, China
| | - Yu-Hui Xu
- Adsen Biotechnology Co, Ltd, Urumqi 830000, Xinjiang, China
| | - Xue-Hui Zhu
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi 830001, Xinjiang, China
| | - Aiermaike Caikasimu
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi 830001, Xinjiang, China; Scientific Observing and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture and Rural Affairs, Urumqi 830000, Xinjiang, China
| | - Xue-Wei Zhou
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi 830001, Xinjiang, China
| | - Si-Le Mai
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi 830001, Xinjiang, China
| | - Ming-Qi Pan
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi 830001, Xinjiang, China; Scientific Observing and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture and Rural Affairs, Urumqi 830000, Xinjiang, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center, Urumqi 830091, Xinjiang, China
| | - Wen Zhang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi 830001, Xinjiang, China; Scientific Observing and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture and Rural Affairs, Urumqi 830000, Xinjiang, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center, Urumqi 830091, Xinjiang, China; Key Laboratory of Horticulture Crop Genomics Research and Genetic Improvement in Xinjiang.
| |
Collapse
|
22
|
Insights into the Cytochrome P450 Monooxygenase Superfamily in Osmanthus fragrans and the Role of OfCYP142 in Linalool Synthesis. Int J Mol Sci 2022; 23:ijms232012150. [PMID: 36293004 PMCID: PMC9602793 DOI: 10.3390/ijms232012150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Osmanthus fragrans flowers have long been used as raw materials in food, tea, beverage, and perfume industries due to their attractive and strong fragrance. The P450 superfamily proteins have been reported to widely participate in the synthesis of plant floral volatile organic compounds (VOCs). To investigate the potential functions of P450 superfamily proteins in the fragrance synthesis of O. fragrans, we investigated the P450 superfamily genome wide. A total of 276 P450 genes were identified belonging to 40 families. The RNA-seq data suggested that many OfCYP genes were preferentially expressed in the flower or other organs, and some were also induced by multiple abiotic stresses. The expression patterns of seven flower-preferentially expressed OfCYPs during the five different flower aroma content stages were further explored using quantitative real-time PCR, showing that the CYP94C subfamily member OfCYP142 had the highest positive correlation with linalool synthesis gene OfTPS2. The transient expression of OfCYP142 in O. fragrans petals suggested that OfCYP142 can increase the content of linalool, an important VOC of the O. fragrans floral aroma, and a similar result was also obtained in flowers of OfCYP142 transgenic tobacco. Combined with RNA-seq data of the transiently transformed O. fragrans petals, we found that the biosynthesis pathway of secondary metabolites was significantly enriched, and many 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway genes were also upregulated. This evidence indicated that the OfCYP proteins may play critical roles in the flower development and abiotic response of O. fragrans, and that OfCYP142 can participate in linalool synthesis. This study provides valuable information about the functions of P450 genes and a valuable guide for studying further functions of OfCYPs in promoting fragrance biosynthesis of ornamental plants.
Collapse
|
23
|
Delineating biosynthesis of Huperzine A, A plant-derived medicine for the treatment of Alzheimer's disease. Biotechnol Adv 2022; 60:108026. [DOI: 10.1016/j.biotechadv.2022.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/01/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
|
24
|
Khatri P, Wally O, Rajcan I, Dhaubhadel S. Comprehensive Analysis of Cytochrome P450 Monooxygenases Reveals Insight Into Their Role in Partial Resistance Against Phytophthora sojae in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:862314. [PMID: 35498648 PMCID: PMC9048032 DOI: 10.3389/fpls.2022.862314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/10/2022] [Indexed: 05/31/2023]
Abstract
Cytochrome P450 monooxygenases (P450) participate in the catalytic conversion of biological compounds in a plethora of metabolic pathways, such as the biosynthesis of alkaloids, terpenoids, phenylpropanoids, and hormones in plants. Plants utilize these metabolites for growth and defense against biotic and abiotic stress. In this study, we identified 346 P450 (GmP450) enzymes encoded by 317 genes in soybean where 26 GmP450 genes produced splice variants. The genome-wide comparison of both A-type and non-A-type GmP450s for their motifs composition, gene structure, tissue-specific expression, and their chromosomal distribution were determined. Even though conserved P450 signature motifs were found in all GmP450 families, larger variation within a specific motif was observed in the non-A-type GmP450s as compared with the A-type. Here, we report that the length of variable region between two conserved motifs is exact in the members of the same family in majority of the A-type GmP450. Analyses of the transcriptomic datasets from soybean-Phytophthora sojae interaction studies, quantitative trait loci (QTL) associated with P. sojae resistance, and co-expression analysis identified some GmP450s that may be, in part, play an important role in partial resistance against P. sojae. The findings of our CYPome study provides novel insights into the functions of GmP450s and their involvements in metabolic pathways in soybean. Further experiments will elucidate their roles in general and legume-specific function.
Collapse
Affiliation(s)
- Praveen Khatri
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Owen Wally
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
25
|
Jiu S, Zhang Y, Han P, Han Y, Xu Y, Liu G, Leng X. Genome-Wide Identification and Expression Analysis of VviYABs Family Reveal Its Potential Functions in the Developmental Switch and Stresses Response During Grapevine Development. Front Genet 2022; 12:762221. [PMID: 35186002 PMCID: PMC8851417 DOI: 10.3389/fgene.2021.762221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Abstract
Plant-specific YABBY (YAB) transcription factors play multiple roles in plant growth and development process. However, no comprehensive study has been performed in grapevines, especially to determine their roles in berry development and abiotic stress response. A total of seven VviYABs allocated to six chromosomal positions in grapevines were identified and classified into five subfamilies based on phylogenetic and structural analysis. Promoter element analysis and tissue-specific transcriptional response of VviYABs suggested that VviYABs might play vital roles in plant growth and development. VviYAB1, 2, 3, and 5 showed significantly higher expression levels in vegetative/green organs than in mature/woody tissues, implying that VviYABs might be involved in the regulatory switch from immature to mature developmental phases. The expression of VviYAB1, 2, 3, and VviFAS were gradually downregulated during berry developmental and ripening, which can be considered as putative molecular biomarkers between vegetative/green and mature/woody samples, and were used to identify key developmental and metabolic processes in grapevines. Furthermore, VviYAB1 expression was not markedly increased by gibberellic acid (GA3) treatment alone, but displayed significant upregulation when GA3 in combination with N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) were applied, suggesting an involvement of VviYAB1 in fruit expansion by mediating cytokinin signaling pathway. Additionally, microarray and RNA-seq data suggested that VviYABs showed transcriptional regulation in response to various abiotic and biotic stresses, including salt, drought, Bois Noir, Erysiphe necator, and GLRaV-3 infection. Overall, our results provide a better understanding of the classification and functions of VviYABs during berry development and in response to abiotic and biotic stresses in grapevines.
Collapse
Affiliation(s)
- Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanping Zhang
- Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Peng Han
- Jiangbei Grape Research Institute of Shandong Province, Shandong, China
| | - Yubo Han
- Jiangbei Grape Research Institute of Shandong Province, Shandong, China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gengsen Liu
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Gengsen Liu, ; Xiangpeng Leng,
| | - Xiangpeng Leng
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Gengsen Liu, ; Xiangpeng Leng,
| |
Collapse
|
26
|
Suntichaikamolkul N, Sangpong L, Schaller H, Sirikantaramas S. Genome-wide identification and expression profiling of durian CYPome related to fruit ripening. PLoS One 2021; 16:e0260665. [PMID: 34847184 PMCID: PMC8631664 DOI: 10.1371/journal.pone.0260665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/14/2021] [Indexed: 11/24/2022] Open
Abstract
Durian (Durio zibethinus L.) is a major economic crop native to Southeast Asian countries, including Thailand. Accordingly, understanding durian fruit ripening is an important factor in its market worldwide, owing to the fact that it is a climacteric fruit with a strikingly limited shelf life. However, knowledge regarding the molecular regulation of durian fruit ripening is still limited. Herein, we focused on cytochrome P450, a large enzyme family that regulates many biosynthetic pathways of plant metabolites and phytohormones. Deep mining of the durian genome and transcriptome libraries led to the identification of all P450s that are potentially involved in durian fruit ripening. Gene expression validation by RT-qPCR showed a high correlation with the transcriptome libraries at five fruit ripening stages. In addition to aril-specific and ripening-associated expression patterns, putative P450s that are potentially involved in phytohormone metabolism were selected for further study. Accordingly, the expression of CYP72, CYP83, CYP88, CYP94, CYP707, and CYP714 was significantly modulated by external treatment with ripening regulators, suggesting possible crosstalk between phytohormones during the regulation of fruit ripening. Interestingly, the expression levels of CYP88, CYP94, and CYP707, which are possibly involved in gibberellin, jasmonic acid, and abscisic acid biosynthesis, respectively, were significantly different between fast- and slow-post-harvest ripening cultivars, strongly implying important roles of these hormones in fruit ripening. Taken together, these phytohormone-associated P450s are potentially considered additional molecular regulators controlling ripening processes, besides ethylene and auxin, and are economically important biological traits.
Collapse
Affiliation(s)
- Nithiwat Suntichaikamolkul
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Lalida Sangpong
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Supaart Sirikantaramas
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
27
|
Xiong R, He T, Wang Y, Liu S, Gao Y, Yan H, Xiang Y. Genome and transcriptome analysis to understand the role diversification of cytochrome P450 gene under excess nitrogen treatment. BMC PLANT BIOLOGY 2021; 21:447. [PMID: 34615481 PMCID: PMC8493724 DOI: 10.1186/s12870-021-03224-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Panax notoginseng (Burk.) F. H. Chen (P. notoginseng) is a medicinal plant. Cytochrome P450 (CYP450) monooxygenase superfamily is involved in the synthesis of a variety of plant hormones. Studies have shown that CYP450 is involved in the synthesis of saponins, which are the main medicinal component of P. notoginseng. To date, the P. notoginseng CYP450 family has not been systematically studied, and its gene functions remain unclear. RESULTS In this study, a total of 188 PnCYP genes were identified, these genes were divided into 41 subfamilies and clustered into 9 clans. Moreover, we identified 40 paralogous pairs, of which only two had Ka/Ks ratio greater than 1, demonstrating that most PnCYPs underwent purification selection during evolution. In chromosome mapping and gene replication analysis, 8 tandem duplication and 11 segmental duplication events demonstrated that PnCYP genes were continuously replicating during their evolution. Gene ontology (GO) analysis annotated the functions of 188 PnCYPs into 21 functional subclasses, suggesting the functional diversity of these gene families. Functional divergence analyzed the members of the three primitive branches of CYP51, CYP74 and CYP97 at the amino acid level, and found some critical amino acid sites. The expression pattern of PnCYP450 related to nitrogen treatment was studied using transcriptome sequencing data, 10 genes were significantly up-regulated and 37 genes were significantly down-regulated. Combined with transcriptome sequencing analysis, five potential functional genes were screened. Quantitative real-time PCR (qRT-PCR) indicated that these five genes were responded to methyl jasmonate (MEJA) and abscisic acid (ABA) treatment. CONCLUSIONS These results provide a valuable basis for comprehending the classification and biological functions of PnCYPs, and offer clues to study their biological functions in response to nitrogen treatment.
Collapse
Affiliation(s)
- Rui Xiong
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Ting He
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yamei Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Shifan Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yameng Gao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
28
|
Xu Y, Wang J, Wang R, Wang L, Zhang C, Xu W, Wang S, Jiu S. The Role of Strigolactones in the Regulation of Root System Architecture in Grapevine ( Vitis vinifera L.) in Response to Root-Restriction Cultivation. Int J Mol Sci 2021; 22:8799. [PMID: 34445508 PMCID: PMC8395845 DOI: 10.3390/ijms22168799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
This study investigated the effects of root-restriction cultivation on the root architecture, endogenous strigolactone (SL) content, and SL-related genes expression in grapevine (Vitis vinifera L.). In addition, we clarified the effects of synthetic SL analog GR24 application on grapevine roots to explore the role of SLs in their development. The results showed that the root architecture changed significantly under root-restriction cultivation. At 40 days after transplantation (DAT), the contents of two types of SLs in roots under root restriction were both significantly lower than that in roots of the control. SL content was significantly positively correlated with the expression levels of VvCCD8 and VvD27, indicating that they play vital roles in SLs synthesis. After GR24 treatment for 20 days, the root length was significantly shorter than in the control. A low concentration (0.1 μM) of GR24 significantly reduced the root diameter and increased the fine-root density, while a high concentration (10 μM) of GR24 significantly reduced the lateral root (LR) length and increased the LR density. Concomitantly, GR24 (0.1 μM) reduced endogenous SL content. After GR24 treatment for 5 days, the total content of two tested SLs was highly positively correlated with the expression levels of VvDAD2, whereas it was highly negatively correlated with VvSMAXL4 at 20 days after GR24 treatment. This study helps to clarify the internal mechanism of root-restriction cultivation affecting the changes in grapevine root architecture, as well as further explore the important role of SLs in the growth of grapevine roots in response to root-restriction treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.X.); (J.W.); (R.W.); (L.W.); (C.Z.); (W.X.); (S.W.)
| |
Collapse
|
29
|
Singh A, Panwar R, Mittal P, Hassan MI, Singh IK. Plant cytochrome P450s: Role in stress tolerance and potential applications for human welfare. Int J Biol Macromol 2021; 184:874-886. [PMID: 34175340 DOI: 10.1016/j.ijbiomac.2021.06.125] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/06/2023]
Abstract
Cytochrome P450s (CYPs) are a versatile group of enzymes and one of the largest families of proteins, controlling various physiological processes via biosynthetic and detoxification pathways. CYPs perform multiple roles through a critical irreversible enzymatic reaction in which an oxygen atom is inserted within hydrophobic molecules, converting them into the reactive and hydro soluble components. During evolution, plants have acquired significantly more number of CYPs and represent about 1% of the encoded genes . CYPs are highly conserved proteins involved in growth, development and tolerance against biotic and abiotic stresses. Furthermore, CYPs reinforce plants' molecular and chemical defense mechanisms by regulating the biosynthesis of secondary metabolites, enhancing reactive oxygen species (ROS) scavenging and controlling biosynthesis and homeostasis of phytohormones, including abscisic acid (ABA) and jasmonates. Thus, they are the critical targets of metabolic engineering for enhancing plant defense against environmental stresses. Additionally, CYPs are also used as biocatalysts in the fields of pharmacology and phytoremediation. Herein, we highlight the role of CYPs in plant stress tolerance and their applications for human welfare.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India.
| | - Ruby Panwar
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India
| | - Pooja Mittal
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India.
| |
Collapse
|
30
|
Jiu S, Guan L, Leng X, Zhang K, Haider MS, Yu X, Zhu X, Zheng T, Ge M, Wang C, Jia H, Shangguan L, Zhang C, Tang X, Abdullah M, Javed HU, Han J, Dong Z, Fang J. The role of VvMYBA2r and VvMYBA2w alleles of the MYBA2 locus in the regulation of anthocyanin biosynthesis for molecular breeding of grape (Vitis spp.) skin coloration. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1216-1239. [PMID: 33440072 PMCID: PMC8196647 DOI: 10.1111/pbi.13543] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/05/2020] [Accepted: 09/01/2020] [Indexed: 05/23/2023]
Abstract
In grape, MYBA1 and MYBA2 at the colour locus are the major genetic determinants of grape skin colour, and the mutation of two functional genes (VvMYBA1 and VvMYBA2) from these loci leads to white skin colour. This study aimed to elucidate the regulation of grape berry coloration by isolating and characterizing VvMYBA2w and VvMYBA2r alleles. The overexpression of VvMYBA2r up-regulated the expression of anthocyanin biosynthetic genes and resulted in higher anthocyanin accumulation in transgenic tobacco than wild-type (WT) plants, especially in flowers. However, the ectopic expression of VvMYBA2w inactivated the expression of anthocyanin biosynthetic genes and could not cause obvious phenotypic modulation in transgenic tobacco. Unlike in VvMYBA2r, CA dinucleotide deletion shortened the C-terminal transactivation region and disrupted the transcriptional activation activity of VvMYBA2w. The results indicated that VvMYBA2r positively regulated anthocyanin biosynthesis by forming the VvMYBA2r-VvMYCA1-VvWDR1 complex, and VvWDR1 enhanced anthocyanin accumulation by interacting with the VvMYBA2r-VvMYCA1 complex; however, R44 L substitution abolished the interaction of VvMYBA2w with VvMYCA1. Meanwhile, both R44 L substitution and CA dinucleotide deletion seriously affected the efficacy of VvMYBA2w to regulate anthocyanin biosynthesis, and the two non-synonymous mutations were additive in their effects. Investigation of the colour density and MYB haplotypes of 213 grape germplasms revealed that dark-skinned varieties tended to contain HapC-N and HapE2, whereas red-skinned varieties contained high frequencies of HapB and HapC-Rs. Regarding ploidy, the higher the number of functional alleles present in a variety, the darker was the skin colour. In summary, this study provides insight into the roles of VvMYBA2r and VvMYBA2w alleles and lays the foundation for the molecular breeding of grape varieties with different skin colour.
Collapse
Affiliation(s)
- Songtao Jiu
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
- Department of Plant ScienceSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Le Guan
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Xiangpeng Leng
- College of HorticultureQingdao Agricultural UniversityQingdaoShandong ProvinceChina
| | - Kekun Zhang
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Muhammad Salman Haider
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Xiang Yu
- School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xudong Zhu
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Ting Zheng
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Mengqing Ge
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Chen Wang
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Haifeng Jia
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Lingfei Shangguan
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Caixi Zhang
- Department of Plant ScienceSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoping Tang
- Shanxi Academy of Agricultural Sciences Pomology InstituteTaiguShanxi ProvinceChina
| | - Muhammad Abdullah
- Department of Plant ScienceSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hafiz Umer Javed
- Department of Plant ScienceSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jian Han
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Zhigang Dong
- Shanxi Academy of Agricultural Sciences Pomology InstituteTaiguShanxi ProvinceChina
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|