1
|
Zhao Z, Niu Q, Wu J, Wu T, Xie X, Wang Z, Zhang L, Gao H, Gao X, Xu L, Zhu B, Li J. Integrating multi-layered biological priors to improve genomic prediction accuracy in beef cattle. Biol Direct 2024; 19:147. [PMID: 39741345 DOI: 10.1186/s13062-024-00574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Integrating multi-layered information can enhance the accuracy of genomic prediction for complex traits. However, the improvement and application of effective strategies for genomic prediction (GP) using multi-omics data remains challenging. METHODS We generated 11 feature sets for sequencing variants from genomics, transcriptomics, metabolomics, and epigenetics data in beef cattle, then we assessed the contribution of functional variants using genomic restricted maximum likelihood (GREML). We next estimated and ranked variant scores for 43 economically important traits, and compared the prediction accuracy of the top and bottom sets using genomic best linear unbiased prediction (GBLUP) and BayesB model. In addition, we annotated the variants from GWAS with functional feature sets and performed enrichment analysis. RESULTS We observed significant enrichments for 32 functional categories in 11 feature sets. The evolutionary related sets (conservation regions and selection signatures) contributed significantly to heritability (31.78-fold and 14.48-fold enrichment), while metabolomics and transcriptomics showed low heritability enrichments. We observed a significant increase in prediction accuracy using the top feature set variants compared to whole-genome sequencing (WGS) data. The prediction accuracy based on the top 10% variant set showed an average increase of 11.6% and 7.54% using BayesB and GBLUP across traits, respectively. Notably, the greatest increase of 31.52% was obtained for spleen weight (SW) using BayesB. Also, we found that the top 10% of variants show strong enrichment with weight related QTLs based on the Cattle QTL database. CONCLUSIONS Our findings suggest that integrating biological prior information from multiple layers can enhance our understanding of the genetic architecture underlying complex traits and further improve genomic prediction in beef cattle.
Collapse
Affiliation(s)
- Zhida Zhao
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qunhao Niu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiayuan Wu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tianyi Wu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xueyuan Xie
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zezhao Wang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lupei Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huijiang Gao
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue Gao
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lingyang Xu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Bo Zhu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Northern Agriculture and Livestock Husbandry Technology Innovation Center, Hohhot, 010010, China.
| | - Junya Li
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
2
|
Jin L, Xu L, Jin H, Zhao S, Jia Y, Li J, Hua J. Accuracy of Genomic Predictions Cross Populations with Different Linkage Disequilibrium Patterns. Genes (Basel) 2024; 15:1419. [PMID: 39596619 PMCID: PMC11594128 DOI: 10.3390/genes15111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES There is a considerable global population of beef cattle, with numerous small-scale groups. Establishing separate reference groups for each breed in breeding practices is challenging, severely limiting the genome selection (GS) application. Combining data from multiple populations becomes particularly attractive and practical for small-scale populations, offering increased reference population size, operational ease, and data sharing. METHODS To evaluate potential for Chinese indigenous cattle, we evaluated the influence of combining multiple populations on genomic prediction reliability for 10 breeds using simulated data. RESULTS Within-breed evaluations consistently yielded the highest accuracies across various simulated genetic architectures. Genomic selection accuracy was lower in Group B populations referencing a Group A population (n = 400), but significantly higher in Group A populations with the addition of a small Group B (n = 200). However, accuracy remained low when using the Group A reference group (n = 400) to predict Group B. Incorporating a few Group B individuals (n = 200) into the reference group resulted in relatively high accuracy (~60% of Group A predictions). Accuracy increased with the growing number of individuals from Group B joining the reference group. CONCLUSIONS Our results suggested that multi-breed genomic selection was feasible for Chinese indigenous cattle populations with genetic relationships. This study's results also offer valuable insights into genome selection of multipopulations.
Collapse
Affiliation(s)
- Lei Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China;
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (L.X.); (H.J.); (S.Z.); (Y.J.)
| | - Lei Xu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (L.X.); (H.J.); (S.Z.); (Y.J.)
| | - Hai Jin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (L.X.); (H.J.); (S.Z.); (Y.J.)
| | - Shuanping Zhao
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (L.X.); (H.J.); (S.Z.); (Y.J.)
| | - Yutang Jia
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (L.X.); (H.J.); (S.Z.); (Y.J.)
| | - Junya Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinling Hua
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China;
| |
Collapse
|
3
|
Schneider H, Krizanac AM, Falker-Gieske C, Heise J, Tetens J, Thaller G, Bennewitz J. Genomic dissection of the correlation between milk yield and various health traits using functional and evolutionary information about imputed sequence variants of 34,497 German Holstein cows. BMC Genomics 2024; 25:265. [PMID: 38461236 PMCID: PMC11385139 DOI: 10.1186/s12864-024-10115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/13/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Over the last decades, it was subject of many studies to investigate the genomic connection of milk production and health traits in dairy cattle. Thereby, incorporating functional information in genomic analyses has been shown to improve the understanding of biological and molecular mechanisms shaping complex traits and the accuracies of genomic prediction, especially in small populations and across-breed settings. Still, little is known about the contribution of different functional and evolutionary genome partitioning subsets to milk production and dairy health. Thus, we performed a uni- and a bivariate analysis of milk yield (MY) and eight health traits using a set of ~34,497 German Holstein cows with 50K chip genotypes and ~17 million imputed sequence variants divided into 27 subsets depending on their functional and evolutionary annotation. In the bivariate analysis, eight trait-combinations were observed that contrasted MY with each health trait. Two genomic relationship matrices (GRM) were included, one consisting of the 50K chip variants and one consisting of each set of subset variants, to obtain subset heritabilities and genetic correlations. In addition, 50K chip heritabilities and genetic correlations were estimated applying merely the 50K GRM. RESULTS In general, 50K chip heritabilities were larger than the subset heritabilities. The largest heritabilities were found for MY, which was 0.4358 for the 50K and 0.2757 for the subset heritabilities. Whereas all 50K genetic correlations were negative, subset genetic correlations were both, positive and negative (ranging from -0.9324 between MY and mastitis to 0.6662 between MY and digital dermatitis). The subsets containing variants which were annotated as noncoding related, splice sites, untranslated regions, metabolic quantitative trait loci, and young variants ranked highest in terms of their contribution to the traits` genetic variance. We were able to show that linkage disequilibrium between subset variants and adjacent variants did not cause these subsets` high effect. CONCLUSION Our results confirm the connection of milk production and health traits in dairy cattle via the animals` metabolic state. In addition, they highlight the potential of including functional information in genomic analyses, which helps to dissect the extent and direction of the observed traits` connection in more detail.
Collapse
Affiliation(s)
- Helen Schneider
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany.
| | - Ana-Marija Krizanac
- Department of Animal Sciences, University of Göttingen, 37077, Göttingen, Germany
| | | | - Johannes Heise
- Vereinigte Informationssysteme Tierhaltung w.V. (VIT), 27283, Verden, Germany
| | - Jens Tetens
- Department of Animal Sciences, University of Göttingen, 37077, Göttingen, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts University of Kiel, 24098, Kiel, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| |
Collapse
|
4
|
Zhang Y, Zhuang Z, Liu Y, Huang J, Luan M, Zhao X, Dong L, Ye J, Yang M, Zheng E, Cai G, Wu Z, Yang J. Genomic prediction based on preselected single-nucleotide polymorphisms from genome-wide association study and imputed whole-genome sequence data annotation for growth traits in Duroc pigs. Evol Appl 2024; 17:e13651. [PMID: 38362509 PMCID: PMC10868536 DOI: 10.1111/eva.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 10/31/2023] [Accepted: 01/13/2024] [Indexed: 02/17/2024] Open
Abstract
The use of whole-genome sequence (WGS) data is expected to improve genomic prediction (GP) power of complex traits because it may contain mutations that in strong linkage disequilibrium pattern with causal mutations. However, a few previous studies have shown no or small improvement in prediction accuracy using WGS data. Incorporating prior biological information into GP seems to be an attractive strategy that might improve prediction accuracy. In this study, a total of 6334 pigs were genotyped using 50K chips and subsequently imputed to the WGS level. This cohort includes two prior discovery populations that comprise 294 Landrace pigs and 186 Duroc pigs, as well as two validation populations that consist of 3770 American Duroc pigs and 2084 Canadian Duroc pigs. Then we used annotation information and genome-wide association study (GWAS) from the WGS data to make GP for six growth traits in two Duroc pig populations. Based on variant annotation, we partitioned different genomic classes, such as intron, intergenic, and untranslated regions, for imputed WGS data. Based on GWAS results of WGS data, we obtained trait-associated single-nucleotide polymorphisms (SNPs). We then applied the genomic feature best linear unbiased prediction (GFBLUP) and genomic best linear unbiased prediction (GBLUP) models to estimate the genomic estimated breeding values for growth traits with these different variant panels, including six genomic classes and trait-associated SNPs. Compared with 50K chip data, GBLUP with imputed WGS data had no increase in prediction accuracy. Using only annotations resulted in no increase in prediction accuracy compared to GBLUP with 50K, but adding annotation information into the GFBLUP model with imputed WGS data could improve the prediction accuracy with increases of 0.00%-2.82%. In conclusion, a GFBLUP model that incorporated prior biological information might increase the advantage of using imputed WGS data for GP.
Collapse
Affiliation(s)
- Yuling Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular BreedingSouth China Agricultural UniversityGuangzhouChina
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular BreedingSouth China Agricultural UniversityGuangzhouChina
| | - Yiyi Liu
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular BreedingSouth China Agricultural UniversityGuangzhouChina
| | - Jinyan Huang
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular BreedingSouth China Agricultural UniversityGuangzhouChina
| | - Menghao Luan
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular BreedingSouth China Agricultural UniversityGuangzhouChina
| | - Xiang Zhao
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular BreedingSouth China Agricultural UniversityGuangzhouChina
| | - Linsong Dong
- Guangdong Zhongxin Breeding Technology Co., LtdGuangzhouChina
| | - Jian Ye
- Guangdong Zhongxin Breeding Technology Co., LtdGuangzhouChina
| | - Ming Yang
- College of Animal Science and TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular BreedingSouth China Agricultural UniversityGuangzhouChina
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular BreedingSouth China Agricultural UniversityGuangzhouChina
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular BreedingSouth China Agricultural UniversityGuangzhouChina
- Guangdong Zhongxin Breeding Technology Co., LtdGuangzhouChina
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular BreedingSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
5
|
Wu J, Wu T, Xie X, Niu Q, Zhao Z, Zhu B, Chen Y, Zhang L, Gao X, Niu X, Gao H, Li J, Xu L. Genetic Association Analysis of Copy Number Variations for Meat Quality in Beef Cattle. Foods 2023; 12:3986. [PMID: 37959106 PMCID: PMC10647706 DOI: 10.3390/foods12213986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Meat quality is an economically important trait for global food production. Copy number variations (CNVs) have been previously implicated in elucidating the genetic basis of complex traits. In this article, we detected a total of 112,198 CNVs and 10,102 CNV regions (CNVRs) based on the Bovine HD SNP array. Next, we performed a CNV-based genome-wide association analysis (GWAS) of six meat quality traits and identified 12 significant CNV segments corresponding to eight candidate genes, including PCDH15, CSMD3, etc. Using region-based association analysis, we further identified six CNV segments relevant to meat quality in beef cattle. Among these, TRIM77 and TRIM64 within CNVR4 on BTA29 were detected as candidate genes for backfat thickness (BFT). Notably, we identified a 34 kb duplication for meat color (MC) which was supported by read-depth signals, and this duplication was embedded within the keratin gene family including KRT4, KRT78, and KRT79. Our findings will help to dissect the genetic architecture of meat quality traits from the aspects of CNVs, and subsequently improve the selection process in breeding programs.
Collapse
Affiliation(s)
- Jiayuan Wu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Tianyi Wu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Xueyuan Xie
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Qunhao Niu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Zhida Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Bo Zhu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Yan Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Lupei Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Xue Gao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Xiaoyan Niu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Huijiang Gao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Junya Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| | - Lingyang Xu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (B.Z.); (L.Z.); (J.L.)
| |
Collapse
|
6
|
Vahedi SM, Salek Ardetani S, Brito LF, Karimi K, Pahlavan Afshari K, Banabazi MH. Expanding the application of haplotype-based genomic predictions to the wild: A case of antibody response against Teladorsagia circumcincta in Soay sheep. BMC Genomics 2023; 24:335. [PMID: 37330501 PMCID: PMC10276919 DOI: 10.1186/s12864-023-09407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/24/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Genomic prediction of breeding values (GP) has been adopted in evolutionary genomic studies to uncover microevolutionary processes of wild populations or improve captive breeding strategies. While recent evolutionary studies applied GP with individual single nucleotide polymorphism (SNP), haplotype-based GP could outperform individual SNP predictions through better capturing the linkage disequilibrium (LD) between the SNP and quantitative trait loci (QTL). This study aimed to evaluate the accuracy and bias of haplotype-based GP of immunoglobulin (Ig) A (IgA), IgE, and IgG against Teladorsagia circumcincta in lambs of an unmanaged sheep population (Soay breed) based on Genomic Best Linear Unbiased Prediction (GBLUP) and five Bayesian [BayesA, BayesB, BayesCπ, Bayesian Lasso (BayesL), and BayesR] methods. RESULTS The accuracy and bias of GPs using SNP, haplotypic pseudo-SNP from blocks with different LD thresholds (0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.00), or the combinations of pseudo-SNPs and non-LD clustered SNPs were obtained. Across methods and marker sets, higher ranges of genomic estimated breeding values (GEBV) accuracies were observed for IgA (0.20 to 0.49), followed by IgE (0.08 to 0.20) and IgG (0.05 to 0.14). Considering the methods evaluated, up to 8% gains in GP accuracy of IgG were achieved using pseudo-SNPs compared to SNPs. Up to 3% gain in GP accuracy for IgA was also obtained using the combinations of the pseudo-SNPs with non-clustered SNPs in comparison to fitting individual SNP. No improvement in GP accuracy of IgE was observed using haplotypic pseudo-SNPs or their combination with non-clustered SNPs compared to individual SNP. Bayesian methods outperformed GBLUP for all traits. Most scenarios yielded lower accuracies for all traits with an increased LD threshold. GP models using haplotypic pseudo-SNPs predicted less-biased GEBVs mainly for IgG. For this trait, lower bias was observed with higher LD thresholds, whereas no distinct trend was observed for other traits with changes in LD. CONCLUSIONS Haplotype information improves GP performance of anti-helminthic antibody traits of IgA and IgG compared to fitting individual SNP. The observed gains in the predictive performances indicate that haplotype-based methods could benefit GP of some traits in wild animal populations.
Collapse
Affiliation(s)
- Seyed Milad Vahedi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, B2N5E3, Canada
| | | | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Karim Karimi
- Molecular Diagnostics Program, Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Kian Pahlavan Afshari
- Department of Animal Sciences, Islamic Azad University, Varamin, Varamin-Pishva Branch3381774895, Iran
| | - Mohammad Hossein Banabazi
- Department of Animal Breeding and Genetics (HGEN), Centre for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), 75007, Uppsala, Sweden.
- Department of Biotechnology, Animal Science Research Institute of IRAN (ASRI), Agricultural Research, Education & Extension Organization (AREEO), Karaj, 3146618361, Iran.
| |
Collapse
|
7
|
Araujo AC, Carneiro PLS, Oliveira HR, Lewis RM, Brito LF. SNP- and haplotype-based single-step genomic predictions for body weight, wool, and reproductive traits in North American Rambouillet sheep. J Anim Breed Genet 2023; 140:216-234. [PMID: 36408677 PMCID: PMC10099590 DOI: 10.1111/jbg.12748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/23/2022] [Indexed: 11/22/2022]
Abstract
Rambouillet sheep are commonly raised in extensive grazing systems in the US, mainly for wool and meat production. Genomic evaluations in US sheep breeds, including Rambouillet, are still incipient. Therefore, we aimed to evaluate the feasibility of performing genomic prediction of breeding values for various traits in Rambouillet sheep based on single nucleotide polymorphisms (SNP) or haplotypes (fitted as pseudo-SNP) under a single-step GBLUP approach. A total of 28,834 records for birth weight (BWT), 23,306 for postweaning weight (PWT), 5,832 for yearling weight (YWT), 9,880 for yearling fibre diameter (YFD), 11,872 for yearling greasy fleece weight (YGFW), and 15,984 for number of lambs born (NLB) were used in this study. Seven hundred forty-one individuals were genotyped using a moderate (50 K; n = 677) or high (600 K; n = 64) density SNP panel, in which 32 K SNP in common between the two SNP panels (after genotypic quality control) were used for further analyses. Single-step genomic predictions using SNP (H-BLUP) or haplotypes (HAP-BLUP) from blocks with different linkage disequilibrium (LD) thresholds (0.15, 0.35, 0.50, 0.65, and 0.80) were evaluated. We also considered different blending parameters when constructing the genomic relationship matrix used to predict the genomic-enhanced estimated breeding values (GEBV), with alpha equal to 0.95 or 0.50. The GEBV were compared to the estimated breeding values (EBV) obtained from traditional pedigree-based evaluations (A-BLUP). The mean theoretical accuracy ranged from 0.499 (A-BLUP for PWT) to 0.795 (HAP-BLUP using haplotypes from blocks with LD threshold of 0.35 and alpha equal to 0.95 for YFD). The prediction accuracies ranged from 0.143 (A-BLUP for PWT) to 0.330 (A-BLUP for YGFW) while the prediction bias ranged from -0.104 (H-BLUP for PWT) to 0.087 (HAP-BLUP using haplotypes from blocks with LD threshold of 0.15 and alpha equal to 0.95 for YGFW). The GEBV dispersion ranged from 0.428 (A-BLUP for PWT) to 1.035 (A-BLUP for YGFW). Similar results were observed for H-BLUP or HAP-BLUP, independently of the LD threshold to create the haplotypes, alpha value, or trait analysed. Using genomic information (fitting individual SNP or haplotypes) provided similar or higher prediction and theoretical accuracies and reduced the dispersion of the GEBV for body weight, wool, and reproductive traits in Rambouillet sheep. However, there were no clear improvements in the prediction bias when compared to pedigree-based predictions. The next step will be to enlarge the training populations for this breed to increase the benefits of genomic predictions.
Collapse
Affiliation(s)
- Andre C. Araujo
- Graduate Program in Animal SciencesState University of Southwestern BahiaItapetingaBahiaBrazil
- Department of Animal SciencesPurdue UniversityWest LafayetteIndianaUSA
| | | | | | - Ronald M. Lewis
- Department of Animal SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Luiz F. Brito
- Department of Animal SciencesPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
8
|
Ye H, Xu Z, Bello SF, Zhu Q, Kong S, Zheng M, Fang X, Jia X, Xu H, Zhang X, Nie Q. Haplotype analysis of genomic prediction by incorporating genomic pathway information based on high-density SNP marker in Chinese yellow-feathered chicken. Poult Sci 2023; 102:102549. [PMID: 36907129 PMCID: PMC10024239 DOI: 10.1016/j.psj.2023.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Genomic selection using single nucleotide polymorphism (SNP) markers is now intensively investigated in breeding and has been widely utilized for genetic improvement. Currently, several studies have used haplotype (consisting of multiallelic SNPs) for genomic prediction and revealed its performance advantage. In this study, we comprehensively evaluated the performance of haplotype models for genomic prediction in 15 traits, including 6 growth, 5 carcass, and 4 feeding traits in a Chinese yellow-feathered chicken population. We adopted 3 methods to define haplotypes from high-density SNP panels, and our strategy included combining Kyoto Encyclopedia of Genes and Genomes pathway information and considering linkage disequilibrium (LD) information. Our results showed an increase in prediction accuracy due to haplotypes ranging from -0.04∼27.16% in all traits, where the significant improvements were found in 12 traits. The estimates of haplotype epistasis heritability were strongly correlated with the accuracy increase by haplotype models. In addition, incorporating genomic annotation information could further increase the accuracy of the haplotype model, where the further increase in accuracy is significantly relative to the increase of relative haplotype epistasis heritability. The genomic prediction using LD information for constructing haplotypes has the best prediction performance among the 4 traits. These results uncovered that haplotype methods were beneficial for genomic prediction, and the accuracy could be further increased by incorporating genomic annotation information. Moreover, using LD information would potentially improve the performance of genomic prediction.
Collapse
Affiliation(s)
- Haoqiang Ye
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 China
| | - Zhenqiang Xu
- Wen's Nanfang Poultry Breeding Co. Ltd, Guangdong Province, Yunfu 527400, China
| | - Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 China
| | - Qianghui Zhu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Shaofen Kong
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 China
| | - Ming Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 China
| | - Xiang Fang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 China
| | - Xinzheng Jia
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, 528225 China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 China.
| |
Collapse
|
9
|
Li H, Wang Z, Xu L, Li Q, Gao H, Ma H, Cai W, Chen Y, Gao X, Zhang L, Gao H, Zhu B, Xu L, Li J. Genomic prediction of carcass traits using different haplotype block partitioning methods in beef cattle. Evol Appl 2022; 15:2028-2042. [PMID: 36540636 PMCID: PMC9753827 DOI: 10.1111/eva.13491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/18/2022] [Indexed: 09/22/2023] Open
Abstract
Genomic prediction (GP) based on haplotype alleles can capture quantitative trait loci (QTL) effects and increase predictive ability because the haplotypes are expected to be in linkage disequilibrium (LD) with QTL. In this study, we constructed haploblocks using LD-based and the fixed number of single nucleotide polymorphisms (fixed-SNP) methods with Illumina BovineHD chip in beef cattle. To evaluate the performance of different haplotype block partitioning methods, we constructed haploblocks based on LD thresholds (from r 2 > 0.2 to r 2 > 0.8) and the number of fixed-SNPs (5, 10, 20). The performance of predictive methods for three carcass traits including liveweight (LW), dressing percentage (DP), and longissimus dorsi muscle weight (LDMW) was evaluated using three approaches (GBLUP and BayesB model based on the SNP, GHBLUP, and BayesBH models based on the haploblock, and GHBLUP+GBLUP and BayesBH+BayesB models based on the combined haploblock and the nonblocked SNPs, which were located between blocks). In this study, we found the accuracies of LD-based and fixed-SNP haplotype Bayesian methods outperformed the Bayesian models (up to 8.54 ± 7.44% and 5.74 ± 2.95%, respectively). GHBLUP showed a high improvement (up to 11.29 ± 9.87%) compared with GBLUP. The Bayesian models have higher accuracies than BLUP models in most scenarios. The average computing time of the BayesBH+BayesB model can reduce by 29.3% compared with the BayesB model. The prediction accuracies using the LD-based haplotype method showed higher improvements than the fixed-SNP haplotype method. In addition, to avoid the influence of rare haplotypes generated from haplotype construction, we compared the performance of GP by filtering four types of minor haplotype allele frequency (MHAF) (0.01, 0.025, 0.05, and 0.1) under different conditions (LD levels were set at r 2 > 0.3, and the fixed number of SNPs was 5). We found the optimal MHAF threshold for LW was 0.01, and the optimal MHAF threshold for DP and LDMW was 0.025.
Collapse
Affiliation(s)
- Hongwei Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zezhao Wang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Lei Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Qian Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Han Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Haoran Ma
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Wentao Cai
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Lupei Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Bo Zhu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
10
|
Zhang Y, Cai W, Li Q, Wang Y, Wang Z, Zhang Q, Xu L, Xu L, Hu X, Zhu B, Gao X, Chen Y, Gao H, Li J, Zhang L. Transcriptome Analysis of Bovine Rumen Tissue in Three Developmental Stages. Front Genet 2022; 13:821406. [PMID: 35309117 PMCID: PMC8928727 DOI: 10.3389/fgene.2022.821406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/21/2022] [Indexed: 01/23/2023] Open
Abstract
Rumen development is a crucial physiological challenge for ruminants. However, the molecular mechanism regulating rumen development has not been clearly elucidated. In this study, we investigated genes involved in rumen development in 13 rumen tissues from three developmental stages (birth, youth, and adult) using RNA sequencing. We identified that 6,048 genes were differentially expressed among three developmental stages. Using weighted correlation network analysis, we found that 12 modules were significantly associated with developmental stages. Functional annotation and protein–protein interaction (PPI) network analysis revealed that CCNB1, CCNB2, IGF1, IGF2, HMGCL, BDH1, ACAT1, HMGCS2, and CREBBP involved in rumen development. Integrated transcriptome with GWAS information of carcass weight (CW), stomach weight (SW), marbling score (MS), backfat thickness (BFT), ribeye area (REA), and lean meat weight (LMW), we found that upregulated DEGs (fold change 0∼1) in birth–youth comparison were significantly enriched with GWAS signals of MS, downregulated DEGs (fold change >3) were significantly enriched with GWAS signals of SW, and fold change 0∼1 up/downregulated DEGs in birth–adult comparison were significantly enriched with GWAS signals of CW, LMW, REA, and BFT. Furthermore, we found that GWAS signals for CW, LMW, and REA were enriched in turquoise module, and GWAS signals for CW was enriched in lightgreen module. Our study provides novel insights into the molecular mechanism underlying rumen development in cattle and highlights an integrative analysis for illustrating the genetic architecture of beef complex traits.
Collapse
Affiliation(s)
- Yapeng Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Cai
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yahui Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zezhao Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Animal Husbandry and Veterinary Research, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xin Hu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Junya Li, ; Lupei Zhang,
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Junya Li, ; Lupei Zhang,
| |
Collapse
|
11
|
Li J, Wang Y, Mukiibi R, Karisa B, Plastow GS, Li C. Integrative analyses of genomic and metabolomic data reveal genetic mechanisms associated with carcass merit traits in beef cattle. Sci Rep 2022; 12:3389. [PMID: 35232965 PMCID: PMC8888742 DOI: 10.1038/s41598-022-06567-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/01/2022] [Indexed: 11/09/2022] Open
Abstract
Improvement of carcass merit traits is a priority for the beef industry. Discovering DNA variants and genes associated with variation in these traits and understanding biological functions/processes underlying their associations are of paramount importance for more effective genetic improvement of carcass merit traits in beef cattle. This study integrates 10,488,742 imputed whole genome DNA variants, 31 plasma metabolites, and animal phenotypes to identify genes and biological functions/processes that are associated with carcass merit traits including hot carcass weight (HCW), rib eye area (REA), average backfat thickness (AFAT), lean meat yield (LMY), and carcass marbling score (CMAR) in a population of 493 crossbred beef cattle. Regression analyses were performed to identify plasma metabolites associated with the carcass merit traits, and the results showed that 4 (3-hydroxybutyric acid, acetic acid, citric acid, and choline), 6 (creatinine, L-glutamine, succinic acid, pyruvic acid, L-lactic acid, and 3-hydroxybutyric acid), 4 (fumaric acid, methanol, D-glucose, and glycerol), 2 (L-lactic acid and creatinine), and 5 (succinic acid, fumaric acid, lysine, glycine, and choline) plasma metabolites were significantly associated with HCW, REA, AFAT, LMY, and CMAR (P-value < 0.1), respectively. Combining the results of metabolome-genome wide association studies using the 10,488,742 imputed SNPs, 103, 160, 83, 43, and 109 candidate genes were identified as significantly associated with HCW, REA, AFAT, LMY, and CMAR (P-value < 1 × 10-5), respectively. By applying functional enrichment analyses for candidate genes of each trait, 26, 24, 26, 24, and 28 significant cellular and molecular functions were predicted for HCW, REA, AFAT, LMY, and CMAR, respectively. Among the five topmost significantly enriched biological functions for carcass merit traits, molecular transport and small molecule biochemistry were two top biological functions associated with all carcass merit traits. Lipid metabolism was the most significant biological function for LMY and CMAR and it was also the second and fourth highest biological function for REA and HCW, respectively. Candidate genes and enriched biological functions identified by the integrative analyses of metabolites with phenotypic traits and DNA variants could help interpret the results of previous genome-wide association studies for carcass merit traits. Our integrative study also revealed additional potential novel genes associated with these economically important traits. Therefore, our study improves understanding of the molecular and biological functions/processes that influence carcass merit traits, which could help develop strategies to enhance genomic prediction of carcass merit traits with incorporation of metabolomic data. Similarly, this information could guide management practices, such as nutritional interventions, with the purpose of boosting specific carcass merit traits.
Collapse
Affiliation(s)
- Jiyuan Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Yining Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Robert Mukiibi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Brian Karisa
- Results Driven Agriculture Research, Edmonton, AB, Canada
| | - Graham S Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| | - Changxi Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada. .,Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada.
| |
Collapse
|
12
|
Abstract
In this chapter, we discuss the motivation for integrating other types of omics data into genomic prediction methods. We give an overview of literature investigating the performance of omics-enhanced predictions, and highlight potential pitfalls when applying these methods in breeding. We emphasize that the statistical methods available for genomic data can be transferred to the general omics case. However, when using a framework of omic relationship matrices, the standardization of the variables may be more relevant than it is for a genomic relationship matrix based on single-nucleotide polymorphisms.
Collapse
Affiliation(s)
- Johannes W R Martini
- International Maize and Wheat Improvement Center (CIMMYT), Veracruz, CP, Mexico.
| | - Ning Gao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - José Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Veracruz, CP, Mexico
| |
Collapse
|
13
|
Shi S, Zhang Z, Li B, Zhang S, Fang L. Incorporation of Trait-Specific Genetic Information into Genomic Prediction Models. Methods Mol Biol 2022; 2467:329-340. [PMID: 35451781 DOI: 10.1007/978-1-0716-2205-6_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to the rapid development of high-throughput sequencing technology, we can easily obtain not only the genetic variants at the whole-genome sequence level (e.g., from 1000 Genomes project and 1000 Bull Genomes project), but also a wide range of functional annotations (e.g., enhancers and promoters from ENCODE, FAANG, and FarmGTEx projects) across a wide range of tissues, cell types, developmental stages, and environmental conditions. This huge amount of information leads to a revolution in studying genetics and genomics of complex traits in humans, livestock, and plant species. In this chapter, we focused on and reviewed the genomic prediction methods that incorporate external biological information into genomic prediction, such as sequence ontology, linkage disequilibrium (LD) of SNPs, quantitative trait loci (QTL), and multi-layer omics data (e.g., transcriptome, epigenome, and microbiome).
Collapse
Affiliation(s)
- Shaolei Shi
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhe Zhang
- Department of Animal Breeding and genetics, College of Animal Science, South China Agricultural University (SCAU), Guangzhou, China
| | - Bingjie Li
- The Roslin Institute Building, Scotland's Rural College, Edinburgh, UK
| | - Shengli Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
14
|
Araujo AC, Carneiro PLS, Oliveira HR, Schenkel FS, Veroneze R, Lourenco DAL, Brito LF. A Comprehensive Comparison of Haplotype-Based Single-Step Genomic Predictions in Livestock Populations With Different Genetic Diversity Levels: A Simulation Study. Front Genet 2021; 12:729867. [PMID: 34721524 PMCID: PMC8551834 DOI: 10.3389/fgene.2021.729867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
The level of genetic diversity in a population is inversely proportional to the linkage disequilibrium (LD) between individual single nucleotide polymorphisms (SNPs) and quantitative trait loci (QTLs), leading to lower predictive ability of genomic breeding values (GEBVs) in high genetically diverse populations. Haplotype-based predictions could outperform individual SNP predictions by better capturing the LD between SNP and QTL. Therefore, we aimed to evaluate the accuracy and bias of individual-SNP- and haplotype-based genomic predictions under the single-step-genomic best linear unbiased prediction (ssGBLUP) approach in genetically diverse populations. We simulated purebred and composite sheep populations using literature parameters for moderate and low heritability traits. The haplotypes were created based on LD thresholds of 0.1, 0.3, and 0.6. Pseudo-SNPs from unique haplotype alleles were used to create the genomic relationship matrix ( G ) in the ssGBLUP analyses. Alternative scenarios were compared in which the pseudo-SNPs were combined with non-LD clustered SNPs, only pseudo-SNPs, or haplotypes fitted in a second G (two relationship matrices). The GEBV accuracies for the moderate heritability-trait scenarios fitting individual SNPs ranged from 0.41 to 0.55 and with haplotypes from 0.17 to 0.54 in the most (Ne ≅ 450) and less (Ne < 200) genetically diverse populations, respectively, and the bias fitting individual SNPs or haplotypes ranged between -0.14 and -0.08 and from -0.62 to -0.08, respectively. For the low heritability-trait scenarios, the GEBV accuracies fitting individual SNPs ranged from 0.24 to 0.32, and for fitting haplotypes, it ranged from 0.11 to 0.32 in the more (Ne ≅ 250) and less (Ne ≅ 100) genetically diverse populations, respectively, and the bias ranged between -0.36 and -0.32 and from -0.78 to -0.33 fitting individual SNPs or haplotypes, respectively. The lowest accuracies and largest biases were observed fitting only pseudo-SNPs from blocks constructed with an LD threshold of 0.3 (p < 0.05), whereas the best results were obtained using only SNPs or the combination of independent SNPs and pseudo-SNPs in one or two G matrices, in both heritability levels and all populations regardless of the level of genetic diversity. In summary, haplotype-based models did not improve the performance of genomic predictions in genetically diverse populations.
Collapse
Affiliation(s)
- Andre C Araujo
- Postgraduate Program in Animal Sciences, State University of Southwestern Bahia, Itapetinga, Brazil.,Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Paulo L S Carneiro
- Department of Biology, State University of Southwestern Bahia, Jequié, Brazil
| | - Hinayah R Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States.,Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Renata Veroneze
- Department of Animal Sciences, Federal University of Viçosa, Viçosa, Brazil
| | - Daniela A L Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
15
|
Wang Z, Cheng H. Single-Trait and Multiple-Trait Genomic Prediction From Multi-Class Bayesian Alphabet Models Using Biological Information. Front Genet 2021; 12:717457. [PMID: 34707638 PMCID: PMC8542848 DOI: 10.3389/fgene.2021.717457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Genomic prediction has been widely used in multiple areas and various genomic prediction methods have been developed. The majority of these methods, however, focus on statistical properties and ignore the abundant useful biological information like genome annotation or previously discovered causal variants. Therefore, to improve prediction performance, several methods have been developed to incorporate biological information into genomic prediction, mostly in single-trait analysis. A commonly used method to incorporate biological information is allocating molecular markers into different classes based on the biological information and assigning separate priors to molecular markers in different classes. It has been shown that such methods can achieve higher prediction accuracy than conventional methods in some circumstances. However, these methods mainly focus on single-trait analysis, and available priors of these methods are limited. Thus, in both single-trait and multiple-trait analysis, we propose the multi-class Bayesian Alphabet methods, in which multiple Bayesian Alphabet priors, including RR-BLUP, BayesA, BayesB, BayesCΠ, and Bayesian LASSO, can be used for markers allocated to different classes. The superior performance of the multi-class Bayesian Alphabet in genomic prediction is demonstrated using both real and simulated data. The software tool JWAS offers open-source routines to perform these analyses.
Collapse
Affiliation(s)
- Zigui Wang
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Hao Cheng
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
16
|
Runs of homozygosity analysis reveals consensus homozygous regions affecting production traits in Chinese Simmental beef cattle. BMC Genomics 2021; 22:678. [PMID: 34548021 PMCID: PMC8454143 DOI: 10.1186/s12864-021-07992-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic regions with a high frequency of runs of homozygosity (ROH) are related to important traits in farm animals. We carried out a comprehensive analysis of ROH and evaluated their association with production traits using the BovineHD (770 K) SNP array in Chinese Simmental beef cattle. RESULTS We detected a total of 116,953 homozygous segments with 2.47Gb across the genome in the studied population. The average number of ROH per individual was 99.03 and the average length was 117.29 Mb. Notably, we detected 42 regions with a frequency of more than 0.2. We obtained 17 candidate genes related to body size, meat quality, and reproductive traits. Furthermore, using Fisher's exact test, we found 101 regions were associated with production traits by comparing high groups with low groups in terms of production traits. Of those, we identified several significant regions for production traits (P < 0.05) by association analysis, within which candidate genes including ECT2, GABRA4, and GABRB1 have been previously reported for those traits in beef cattle. CONCLUSIONS Our study explored ROH patterns and their potential associations with production traits in beef cattle. These results may help to better understand the association between production traits and genome homozygosity and offer valuable insights into managing inbreeding by designing reasonable breeding programs in farm animals.
Collapse
|
17
|
Li H, Zhu B, Xu L, Wang Z, Xu L, Zhou P, Gao H, Guo P, Chen Y, Gao X, Zhang L, Gao H, Cai W, Xu L, Li J. Genomic Prediction Using LD-Based Haplotypes Inferred From High-Density Chip and Imputed Sequence Variants in Chinese Simmental Beef Cattle. Front Genet 2021; 12:665382. [PMID: 34394182 PMCID: PMC8358323 DOI: 10.3389/fgene.2021.665382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/30/2021] [Indexed: 01/05/2023] Open
Abstract
A haplotype is defined as a combination of alleles at adjacent loci belonging to the same chromosome that can be transmitted as a unit. In this study, we used both the Illumina BovineHD chip (HD chip) and imputed whole-genome sequence (WGS) data to explore haploblocks and assess haplotype effects, and the haploblocks were defined based on the different LD thresholds. The accuracies of genomic prediction (GP) for dressing percentage (DP), meat percentage (MP), and rib eye roll weight (RERW) based on haplotype were investigated and compared for both data sets in Chinese Simmental beef cattle. The accuracies of GP using the entire imputed WGS data were lower than those using the HD chip data in all cases. For DP and MP, the accuracy of GP using haploblock approaches outperformed the individual single nucleotide polymorphism (SNP) approach (GBLUP_In_Block) at specific LD levels. Hotelling’s test confirmed that GP using LD-based haplotypes from WGS data can significantly increase the accuracies of GP for RERW, compared with the individual SNP approach (∼1.4 and 1.9% for GHBLUP and GHBLUP+GBLUP, respectively). We found that the accuracies using haploblock approach varied with different LD thresholds. The LD thresholds (r2 ≥ 0.5) were optimal for most scenarios. Our results suggested that LD-based haploblock approach can improve accuracy of genomic prediction for carcass traits using both HD chip and imputed WGS data under the optimal LD thresholds in Chinese Simmental beef cattle.
Collapse
Affiliation(s)
- Hongwei Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,National Centre of Beef Cattle Genetic Evaluation, Beijing, China
| | - Ling Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zezhao Wang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peinuo Zhou
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peng Guo
- College of Computer and Information Engineering, Tianjin Agricultural University, Tianjin, China
| | - Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lupei Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,National Centre of Beef Cattle Genetic Evaluation, Beijing, China
| | - Wentao Cai
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,National Centre of Beef Cattle Genetic Evaluation, Beijing, China
| |
Collapse
|
18
|
Validation of the Prediction Accuracy for 13 Traits in Chinese Simmental Beef Cattle Using a Preselected Low-Density SNP Panel. Animals (Basel) 2021; 11:ani11071890. [PMID: 34202066 PMCID: PMC8300368 DOI: 10.3390/ani11071890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary To reduce the breeding costs and promote the application of genomic selection (GS) in Chinese Simmental beef cattle, we developed a customized low-density single-nucleotide polymorphism (SNP) panel consisting of 30,684 SNPs. When comparing the predictive performance of the low-density SNP panel to that of the BovineHD Beadchip for 13 traits, we found that this ~30 K panel achieved moderate to high prediction accuracies for most traits, while reducing the prediction accuracies of six traits by 0.04–0.09 and decreasing the prediction accuracy of one trait by 0.2. For the remaining six traits, the usage of the low-density SNP panel was associated with a slight increase in prediction accuracy. Our studies suggested that the low-density SNP panel (~30 K) is a feasible and promising tool for cost-effective genomic prediction in Chinese Simmental beef cattle, which may provide breeding organizations with a cheaper option and greater returns on investment. Abstract Chinese Simmental beef cattle play a key role in the Chinese beef industry due to their great adaptability and marketability. To achieve efficient genetic gain at a low breeding cost, it is crucial to develop a customized cost-effective low-density SNP panel for this cattle population. Thirteen growth, carcass, and meat quality traits and a BovineHD Beadchip genotyping of 1346 individuals were used to select trait-associated variants and variants contributing to great genetic variance. In addition, highly informative SNPs with high MAF in each 500 kb sliding window and in each genic region were also included separately. A low-density SNP panel consisting of 30,684 SNPs was developed, with an imputation accuracy of 97.4% when imputed to the 770 K level. Among 13 traits, the average prediction accuracy levels evaluated by genomic best linear unbiased prediction (GBLUP) and BayesA/B/Cπ were 0.22–0.47 and 0.18–0.60 for the ~30 K array and BovineHD Beadchip, respectively. Generally, the predictive performance of the ~30 K array was trait-dependent, with reduced prediction accuracies for seven traits. While differences in terms of prediction accuracy were observed among the 13 traits, the low-density SNP panel achieved moderate to high accuracies for most of the traits and even improved the accuracies for some traits.
Collapse
|
19
|
An B, Liang M, Chang T, Duan X, Du L, Xu L, Zhang L, Gao X, Li J, Gao H. KCRR: a nonlinear machine learning with a modified genomic similarity matrix improved the genomic prediction efficiency. Brief Bioinform 2021; 22:6271997. [PMID: 33963831 DOI: 10.1093/bib/bbab132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Nowadays, advances in high-throughput sequencing benefit the increasing application of genomic prediction (GP) in breeding programs. In this research, we designed a Cosine kernel-based KRR named KCRR to perform GP. This paper assessed the prediction accuracies of 12 traits with various heritability and genetic architectures from four populations using the genomic best linear unbiased prediction (GBLUP), BayesB, support vector regression (SVR), and KCRR. On the whole, KCRR performed stably for all traits of multiple species, indicating that the hypothesis of KCRR had the potential to be adapted to a wide range of genetic architectures. Moreover, we defined a modified genomic similarity matrix named Cosine similarity matrix (CS matrix). The results indicated that the accuracies between GBLUP_kinship and GBLUP_CS almost unanimously for all traits, but the computing efficiency has increased by an average of 20 times. Our research will be a significant promising strategy in future GP.
Collapse
Affiliation(s)
- Bingxing An
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Mang Liang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Tianpeng Chang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xinghai Duan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Lili Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
20
|
Lopez BIM, An N, Srikanth K, Lee S, Oh JD, Shin DH, Park W, Chai HH, Park JE, Lim D. Genomic Prediction Based on SNP Functional Annotation Using Imputed Whole-Genome Sequence Data in Korean Hanwoo Cattle. Front Genet 2021; 11:603822. [PMID: 33552124 PMCID: PMC7859490 DOI: 10.3389/fgene.2020.603822] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Whole-genome sequence (WGS) data are increasingly being applied into genomic predictions, offering a higher predictive ability by including causal mutations or single-nucleotide polymorphisms (SNPs) putatively in strong linkage disequilibrium with causal mutations affecting the trait. This study aimed to improve the predictive performance of the customized Hanwoo 50 k SNP panel for four carcass traits in commercial Hanwoo population by adding highly predictive variants from sequence data. A total of 16,892 Hanwoo cattle with phenotypes (i.e., backfat thickness, carcass weight, longissimus muscle area, and marbling score), 50 k genotypes, and WGS imputed genotypes were used. We partitioned imputed WGS data according to functional annotation [intergenic (IGR), intron (ITR), regulatory (REG), synonymous (SYN), and non-synonymous (NSY)] to characterize the genomic regions that will deliver higher predictive power for the traits investigated. Animals were assigned into two groups, the discovery set (7324 animals) used for predictive variant detection and the cross-validation set for genomic prediction. Genome-wide association studies were performed by trait to every genomic region and entire WGS data for the pre-selection of variants. Each set of pre-selected SNPs with different density (1000, 3000, 5000, or 10,000) were added to the 50 k genotypes separately and the predictive performance of each set of genotypes was assessed using the genomic best linear unbiased prediction (GBLUP). Results showed that the predictive performance of the customized Hanwoo 50 k SNP panel can be improved by the addition of pre-selected variants from the WGS data, particularly 3000 variants from each trait, which is then sufficient to improve the prediction accuracy for all traits. When 12,000 pre-selected variants (3000 variants from each trait) were added to the 50 k genotypes, the prediction accuracies increased by 9.9, 9.2, 6.4, and 4.7% for backfat thickness, carcass weight, longissimus muscle area, and marbling score compared to the regular 50 k SNP panel, respectively. In terms of prediction bias, regression coefficients for all sets of genotypes in all traits were close to 1, indicating an unbiased prediction. The strategy used to select variants based on functional annotation did not show a clear advantage compared to using whole-genome. Nonetheless, such pre-selected SNPs from the IGR region gave the highest improvement in prediction accuracy among genomic regions and the values were close to those obtained using the WGS data for all traits. We concluded that additional gain in prediction accuracy when using pre-selected variants appears to be trait-dependent, and using WGS data remained more accurate compared to using a specific genomic region.
Collapse
Affiliation(s)
- Bryan Irvine M Lopez
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
| | - Narae An
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
| | - Krishnamoorthy Srikanth
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
| | - Seunghwan Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Jae-Don Oh
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, South Korea
| | - Dong-Hyun Shin
- Department of Agricultural Convergence Technology, Chonbuk National University, Jeonju, South Korea
| | - Woncheoul Park
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
| | - Han-Ha Chai
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
| | - Jong-Eun Park
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
| | - Dajeong Lim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
| |
Collapse
|
21
|
Xiang R, Breen EJ, Prowse-Wilkins CP, Chamberlain AJ, Goddard ME. Bayesian genome-wide analysis of cattle traits using variants with functional and evolutionary significance. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an21061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Context
Functional genomics studies have highlighted genomic regions with regulatory and evolutionary significance. Such information independent of association analysis may benefit fine-mapping and genomic selection of economically important traits. However, systematic evaluation of the use of functional information in mapping, and genomic selection of cattle traits, is lacking. Also, single-nucleotide polymorphisms (SNPs) from the high-density (HD) panel are known to tag informative variants, but the performance of genomic prediction using HD SNPs together with variants supported by different functional genomics is unknown.
Aims
We selected six sets of functionally important variants and modelled each set together with HD SNPs in Bayesian models to map and predict protein, fat and milk yield as well as mastitis, somatic cell count and temperament of dairy cattle.
Methods
Two models were used, namely (1) BayesR, which includes priors of four distribution of variant effects, and (2) BayesRC, which includes additional priors of different functional classes of variants. Bayesian models were trained in three breeds of 28 000 cows of Holstein, Jersey and Australian Red and predicted into 2600 independent bulls.
Key results
Adding functionally important variants significantly increased the enrichment of genetic variance explained for mapped variants, suggesting improved genome-wide mapping precision. Such improvement was significantly higher when the same set of variants was modelled by BayesRC than by BayesR. Combining functional variant sets with HD SNPs improves genomic prediction accuracy in the majority of the cases and such improvement was more common and stronger for non-Holstein breeds and traits such as mastitis, somatic cell count and temperament. In contrast, adding a large number of random sequence variants to HD SNPs reduces mapping precision and has a worse or similar prediction accuracy, compared with using HD SNPs alone to map or predict. While BayesRC tended to have better genomic prediction accuracy than did BayesR, the overall difference in prediction accuracy between the two models was insignificant.
Conclusions
Our findings demonstrated the usefulness of functional data in genomic mapping and prediction.
Implications
We have highlighted the need for effective tools exploiting complex functional datasets to improve genomic prediction.
Collapse
|