1
|
Xing W, Li S. LncRNA ENSGALG00000021686 regulates fat metabolism in chicken hepatocytes via miR-146b/AGPAT2 pathway. Anim Genet 2024; 55:420-429. [PMID: 38369771 DOI: 10.1111/age.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
The liver contributes to lipid metabolism as the hub of fat synthesis. Long non-coding RNAs (lncRNAs) are considered the regulators of cellular processes. Since LncRNA ENSGALG00000021686 (lncRNA 21 686) has been described as a regulator of lipid metabolism, the present study aimed to clarify the role of lncRNA 21 686 in chicken hepatocytes' lipid metabolism. Thirty-two chickens were divided into four groups and were treated with diets containing different amounts of fat, and the hepatic expression of lncRNA 21 686 and miR-146b along with the levels of proteins involved in the regulation of fat metabolism, lipid indices and oxidative stress were measured. Moreover, primary chicken hepatocytes were transfected with lncRNA 21 686 small interfering RNA or microRNA (miRNA, miR)-146b mimics to measure the consequences of suppressing lncRNA or inducing miRNA expression on the levels of proteins involved in fat metabolism and stress markers. The results showed that the high-fat diet modulated the expression of lncRNA 21 686 and miR-146b (p-value < 0.001). Moreover, there was a significant increase in 1-acyl-sn-glycerol-3-phosphate acyltransferase 2 (AGPAT2) gene expression and protein levels and modulated fat-related markers. Furthermore, the results showed that lncRNA 21 686 suppression reduced the expression of AGPAT2 and its downstream proteins (p-value < 0.05). Overexpression of miR-146b regulated fat metabolism indicator expression. Transfection experiments revealed that lncRNA 21 686 suppression increased miR-146b expression. The findings suggested a novel mechanism containing lncRNA 21 686/miR-146b/AGPAT2 in the regulation of fat metabolism in chicken hepatocytes.
Collapse
Affiliation(s)
- Wenhao Xing
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shijie Li
- Dongying Jintengsheng Medical Device Sales Co., Ltd., Dongying, Shandong Province, China
| |
Collapse
|
2
|
Isa AM, Sun Y, Wang Y, Li Y, Yuan J, Ni A, Ma H, Shi L, Tesfay HH, Zong Y, Wang P, Ge P, Chen J. Transcriptome analysis of ovarian tissues highlights genes controlling energy homeostasis and oxidative stress as potential drivers of heterosis for egg number and clutch size in crossbred laying hens. Poult Sci 2024; 103:103163. [PMID: 37980751 PMCID: PMC10684806 DOI: 10.1016/j.psj.2023.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 11/21/2023] Open
Abstract
Heterosis is the major benefit of crossbreeding and has been exploited in laying hens breeding for a long time. This genetic phenomenon has been linked to various modes of nonadditive gene action. However, the molecular mechanism of heterosis for egg production in laying hens has not been fully elucidated. To fill this research gap, we sequenced mRNAs and lncRNAs of the ovary stroma containing prehierarchical follicles in White Leghorn, Rhode Island Red chickens as well as their reciprocal crossbreds that demonstrated heterosis for egg number and clutch size. We further delineated the modes of mRNAs and lncRNAs expression to identify their potential functions in the observed heterosis. Results showed that dominance was the principal mode of nonadditive expression exhibited by mRNAs and lncRNAs in the prehierarchical follicles of crossbred hens. Specifically, low-parent dominance was the main mode of mRNA expression, while high-parent dominance was the predominant mode of lncRNA expression. Important pathways enriched by genes that showed higher expression in crossbreds compared to either one or both parental lines were cell adhesion molecules, tyrosine and purine metabolism. In contrast, ECM-receptor interaction, focal adhesion, PPAR signaling, and ferroptosis were enriched in genes with lower expression in the crossbred. Protein network interaction identified nonadditively expressed genes including apolipoprotein B (APOB), transferrin, acyl-CoA synthetase medium-chain family member (APOBEC) 3, APOBEC1 complementation factor, and cathepsin S as hub genes. Among these potential hub genes, APOB was the only gene with underdominance expression common to the 2 reciprocal crossbred lines, and has been linked to oxidative stress. LncRNAs with nonadditive expression in the crossbred hens targeted natriuretic peptide receptor 1, epidermal differentiation protein beta, spermatogenesis-associated gene 22, sperm-associated antigen 16, melanocortin 2 receptor, dolichol kinase, glycine amiinotransferase, and prolactin releasing hormone receptor. In conclusion, genes with nonadditive expression in the crossbred may play crucial roles in follicle growth and atresia by improving follicle competence and increasing oxidative stress, respectively. These 2 phenomena could underpin heterosis for egg production in crossbred laying hens.
Collapse
Affiliation(s)
- Adamu Mani Isa
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Animal Science, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Yanyan Sun
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuanmei Wang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunlei Li
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingwei Yuan
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Aixin Ni
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Ma
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lei Shi
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hailai Hagos Tesfay
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunhe Zong
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Panlin Wang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pingzhuang Ge
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jilan Chen
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Guo Y, Tian W, Wang D, Yang L, Wang Z, Wu X, Zhi Y, Zhang K, Wang Y, Li Z, Jiang R, Sun G, Li G, Tian Y, Wang H, Kang X, Liu X, Li H. LncHLEF promotes hepatic lipid synthesis through miR-2188-3p/GATA6 axis and encoding peptides and enhances intramuscular fat deposition via exosome. Int J Biol Macromol 2023; 253:127061. [PMID: 37751822 DOI: 10.1016/j.ijbiomac.2023.127061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
Long noncoding RNAs (lncRNAs) have emergingly been implicated in mammalian lipid metabolism. However, their biological functions and regulatory mechanisms underlying adipogenesis remain largely elusive in chicken. Here, we systematically characterized the genome-wide full-length lncRNAs in the livers of pre- and peak-laying hens, and identified a novel intergenic lncRNA, lncHLEF, an RNA macromolecule with a calculated molecular weight of 433 kDa. lncHLEF was primarily distributed in cytoplasm of chicken hepatocyte and significantly up-regulated in livers of peak-laying hens. Functionally, lncHLEF could promote hepatocyte lipid droplet formation, triglycerides and total cholesterol contents. Mechanistically, lncHLEF could not only serve as a competitive endogenous RNA to modulate miR-2188-3p/GATA6 axis, but also encode three small functional polypeptides that directly interact with ACLY protein to enable its stabilization. Importantly, adeno-associated virus-mediated liver-specific lncHLEF overexpression resulted in increased hepatic lipid synthesis and intramuscular fat (IMF) deposition, but did not alter abdominal fat (AbF) deposition. Furthermore, hepatocyte lncHLEF could be delivered into intramuscular and abdominal preadipocytes via hepatocyte-secreted exosome to enhance intramuscular preadipocytes differentiation without altering abdominal preadipocytes differentiation. In conclusion, this study revealed that the lncHLEF could promote hepatic lipid synthesis through two independent regulatory mechanisms, and could enhance IMF deposition via hepatocyte-adipocyte communications mediated by exosome.
Collapse
Affiliation(s)
- Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Dandan Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Liyu Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yihao Zhi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Ke Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yangyang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Hongjun Wang
- Center for Cellular Therapy, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China.
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China.
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China.
| |
Collapse
|
4
|
Luo Y, Hu S, Yan P, Wu J, Guo H, Zhao L, Tang Q, Ma J, Long K, Jin L, Jiang A, Li M, Li X, Wang X. Analysis of mRNA and lncRNA Expression Profiles of Breast Muscle during Pigeon ( Columbalivia) Development. Genes (Basel) 2022; 13:genes13122314. [PMID: 36553580 PMCID: PMC9777807 DOI: 10.3390/genes13122314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The breast muscle is essential for flight and determines the meat yield and quality of the meat type in pigeons. At present, studies about long non-coding RNA (lncRNA) expression profiles in skeletal muscles across the postnatal development of pigeons have not been reported. Here, we used transcriptome sequencing to examine the White-King pigeon breast muscle at four different ages (1 day, 14 days, 28 days, and 2 years old). We identified 12,918 mRNAs and 9158 lncRNAs (5492 known lncRNAs and 3666 novel lncRNAs) in the breast muscle, and 7352 mRNAs and 4494 lncRNAs were differentially expressed in the process of development. We found that highly expressed mRNAs were mainly related to cell-basic and muscle-specific functions. Differential expression and time-series analysis showed that differentially expressed genes were primarily associated with muscle development and functions, blood vessel development, cell cycle, and energy metabolism. To further predict the possible role of lncRNAs, we also conducted the WGCNA and trans/cis analyses. We found that differentially expressed lncRNAs such as lncRNA-LOC102093252, lncRNA-G12653, lncRNA-LOC110357465, lncRNA-G14790, and lncRNA-LOC110360188 might respectively target UBE2B, Pax7, AGTR2, HDAC1, Sox8 and participate in the development of the muscle. Our study provides a valuable resource for studying the lncRNAs and mRNAs of pigeon muscles and for improving the understanding of molecular mechanisms in muscle development.
Collapse
Affiliation(s)
- Yi Luo
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Silu Hu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Peiqi Yan
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Wu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianzi Tang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Jideng Ma
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Keren Long
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Long Jin
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Anan Jiang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (X.L.); (X.W.)
| | - Xun Wang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (X.L.); (X.W.)
| |
Collapse
|
5
|
Huang L, Wu H, Li H, Hou Y, Hu J, Huang L, Lu Y, Liu X. Hepatic glycerolipid metabolism is critical to the egg laying rate of Guangxi Ma chickens. Gene 2022; 830:146500. [PMID: 35472624 DOI: 10.1016/j.gene.2022.146500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 11/28/2022]
Abstract
Yolk formation in liver is an important process for egg production in hens. The correlations between egg laying rate decline and liver function changes in Guangxi Ma chickens remain unclear. In this study, a total of 21,750 genes and 76,288 transcripts were identified in the RNA expression profiles isolated from liver tissues of 5 groups of Guangxi Ma chickens divided according to the age and egg laying rate. Numerous differential genes (DEGs) were identified after pairwise comparison among samples, and time series analysis categorization (age-related factors) revealed that down-regulated DEGs with aging were predominantly involved in lipid transportation and metabolic processes in the low egg laying rate groups. Notably, functional enrichment analysis confirmed that DGAT2, LIPG, PNPLA2, LPL, CEL, LIPC, DGKD, AGPAT2, AGPAT1 and AGPAT3 were highlighted as hub genes in glycerolipid metabolism pathway, which may be an essential non-age related factors of egg laying rate by regulating the synthesis of triacylglycerol (TAG) in liver. Finally, we categorized DEGs in Guangxi Ma chickens with different egg laying rate caused by age-related factors and found that DEGs with different expression patterns performing different biological functions. The analysis of DEGs with lower egg laying rate caused by non-age related factors and showed that the transportation of TAG was suppressed. Furthermore, critical genes and pathways involved in the synthesis of TAG in livers were identified, which dynamically regulated the formation of yolk precursors. Our results expanded the knowledge of the molecular mechanisms of the yolk precursor synthesis in chicken livers. The results will be helpful to explore the factors that affect egg laying rate from the perspective of yolk synthesis and provide a theoretical basis for improving the egg production of Guangxi Ma chickens.
Collapse
Affiliation(s)
- Liangfeng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hanxiao Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuanyuan Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jianing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xingting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China.
| |
Collapse
|
6
|
Karimi P, Bakhtiarizadeh MR, Salehi A, Izadnia HR. Transcriptome analysis reveals the potential roles of long non-coding RNAs in feed efficiency of chicken. Sci Rep 2022; 12:2558. [PMID: 35169237 PMCID: PMC8847365 DOI: 10.1038/s41598-022-06528-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Feed efficiency is an important economic trait and reduces the production costs per unit of animal product. Up to now, few studies have conducted transcriptome profiling of liver tissue in feed efficiency-divergent chickens (Ross vs native breeds). Also, molecular mechanisms contributing to differences in feed efficiency are not fully understood, especially in terms of long non-coding RNAs (lncRNAs). Hence, transcriptome profiles of liver tissue in commercial and native chicken breeds were analyzed. RNA-Seq data along with bioinformatics approaches were applied and a series of lncRNAs and target genes were identified. Furthermore, protein-protein interaction network construction, co-expression analysis, co-localization analysis of QTLs and functional enrichment analysis were used to functionally annotate the identified lncRNAs. In total, 2,290 lncRNAs were found (including 1,110 annotated, 593 known and 587 novel), of which 53 (including 39 known and 14 novel), were identified as differentially expressed genes between two breeds. The expression profile of lncRNAs was validated by RT-qPCR. The identified novel lncRNAs showed a number of characteristics similar to those of known lncRNAs. Target prediction analysis showed that these lncRNAs have the potential to act in cis or trans mode. Functional enrichment analysis of the predicted target genes revealed that they might affect the differences in feed efficiency of chicken by modulating genes associated with lipid metabolism, carbohydrate metabolism, growth, energy homeostasis and glucose metabolism. Some gene members of significant modules in the constructed co-expression networks were reported as important genes related to feed efficiency. Co-localization analysis of QTLs related to feed efficiency and the identified lncRNAs suggested several candidates to be involved in residual feed intake. The findings of this study provided valuable resources to further clarify the genetic basis of regulation of feed efficiency in chicken from the perspective of lncRNAs.
Collapse
Affiliation(s)
- Parastoo Karimi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | | | - Abdolreza Salehi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Hamid Reza Izadnia
- Animal Science Improvement Research Department, Agricultural and Natural Resources Research and Education Center, Safiabad AREEO, Dezful, Iran
| |
Collapse
|
7
|
Lagarrigue S, Lorthiois M, Degalez F, Gilot D, Derrien T. LncRNAs in domesticated animals: from dog to livestock species. Mamm Genome 2021; 33:248-270. [PMID: 34773482 PMCID: PMC9114084 DOI: 10.1007/s00335-021-09928-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Animal genomes are pervasively transcribed into multiple RNA molecules, of which many will not be translated into proteins. One major component of this transcribed non-coding genome is the long non-coding RNAs (lncRNAs), which are defined as transcripts longer than 200 nucleotides with low coding-potential capabilities. Domestic animals constitute a unique resource for studying the genetic and epigenetic basis of phenotypic variations involving protein-coding and non-coding RNAs, such as lncRNAs. This review presents the current knowledge regarding transcriptome-based catalogues of lncRNAs in major domesticated animals (pets and livestock species), covering a broad phylogenetic scale (from dogs to chicken), and in comparison with human and mouse lncRNA catalogues. Furthermore, we describe different methods to extract known or discover novel lncRNAs and explore comparative genomics approaches to strengthen the annotation of lncRNAs. We then detail different strategies contributing to a better understanding of lncRNA functions, from genetic studies such as GWAS to molecular biology experiments and give some case examples in domestic animals. Finally, we discuss the limitations of current lncRNA annotations and suggest research directions to improve them and their functional characterisation.
Collapse
Affiliation(s)
| | - Matthias Lorthiois
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 2 av Prof Leon Bernard, F-35000, Rennes, France
| | - Fabien Degalez
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, 35590, Saint-Gilles, France
| | - David Gilot
- CLCC Eugène Marquis, INSERM, Université Rennes, UMR_S 1242, 35000, Rennes, France
| | - Thomas Derrien
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 2 av Prof Leon Bernard, F-35000, Rennes, France.
| |
Collapse
|
8
|
Systematic Analysis of Long Noncoding RNA and mRNA in Granulosa Cells during the Hen Ovulatory Cycle. Animals (Basel) 2021; 11:ani11061533. [PMID: 34070248 PMCID: PMC8225051 DOI: 10.3390/ani11061533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Chicken is one of the most economically important farm poultry, and providing many food products, such as meat and eggs for human consumption. However, follicle transcriptome studies in chickens with timepoints relating to changes in luteinizing hormone level remain unknown. In this study, the largest preovulatory follicle of chicken underwent the early, middle, and terminal stages of ovulatory cycle. Our work provides a comprehensive analysis of lncRNAs and mRNAs in chicken granulosa cells during the ovulatory cycle. A total of 12,479 mRNAs and 7528 lncRNAs were identified among the three stages. Thousands of lncRNAs were annotated, and the most differentially abundant genes were detected in the luteinizing hormone surge stage. Functional features of the lncRNAs and mRNAs at each stage were revealed, which was also associated with the changes in serum luteinizing hormone level. Especially, genes related to oxidative stress, steroids regulation, and inflammatory process were enriched in the luteinizing hormone surge stage, The comprehensive data generated in this study provides the foundation for future investigations to improve the reproductive performance of chickens and explore the mechanisms responsible for female ovarian diseases. Abstract Long non-coding RNAs (lncRNAs) and mRNAs are temporally expressed during chicken follicle development. However, follicle transcriptome studies in chickens with timepoints relating to changes in luteinizing hormone (LH) levels are rare. In this study, gene expression in Rohman layers was investigated at three distinct stages of the ovulatory cycle: zeitgeber time 0 (ZT0, 9:00 a.m.), zeitgeber time 12 (ZT12, 9:00 p.m.), and zeitgeber time 20 (ZT20, 5:00 a.m.) representing the early, middle, and LH surge stages, respectively, of the ovulatory cycle. Gene expression profiles were explored during follicle development at ZT0, ZT12, and ZT20 using Ribo-Zero RNA sequencing. The three stages were separated into two major stages, including the pre-LH surge and the LH surge stages. A total of 12,479 mRNAs and 7528 lncRNAs were identified among the three stages, and 4531, 523 differentially expressed genes (DEGs) and 2367, 211 differentially expressed lncRNAs (DELs) were identified in the ZT20 vs. ZT12, and ZT12 vs. ZT0, comparisons. Functional enrichment analysis revealed that genes involved in cell proliferation and metabolism processes (lipid-related) were mainly enriched in the ZT0 and ZT12 stages, respectively, and genes related to oxidative stress, steroids regulation, and inflammatory process were enriched in the ZT20 stage. These findings provide the basis for further investigation of the specific genetic and molecular functions of follicle development in chickens.
Collapse
|
9
|
Ren J, Li Q, Zhang Q, Clinton M, Sun C, Yang N. Systematic screening of long intergenic noncoding RNAs expressed during chicken embryogenesis. Poult Sci 2021; 100:101160. [PMID: 34058566 PMCID: PMC8170422 DOI: 10.1016/j.psj.2021.101160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important regulators of many biological processes, including embryogenesis and development. To provide a systematic analysis of lncRNAs expressed during chicken embryogenesis, we used Iso-Seq and RNA-Seq to identify potential lncRNAs at embryonic stages from d 1 to d 8 of incubation: sequential stages covering gastrulation, somitogenesis, and organogenesis. The data characterized an expanded landscape of lncRNAs, yielding 45,410 distinct lncRNAs (31,282 genes). Amongst these, a set of 13,141 filtered intergenic lncRNAs (lincRNAs) transcribed from 9803 lincRNA gene loci, of which, 66.5% were novel, were further analyzed. These lincRNAs were found to share many characteristics with mammalian lincRNAs, including relatively short lengths, fewer exons, lower expression levels, and stage-specific expression patterns. Functional studies motivated by "guilt-by-association" associated individual lincRNAs with specific GO functions, providing an important resource for future studies of lincRNA function. Most importantly, a weighted gene co-expression network analysis suggested that genes of the brown module were specifically associated with the day 2 stage. LincRNAs within this module were co-expressed with proteins involved in hematopoiesis and lipid metabolism. This study presents the systematic identification of lincRNAs in developing chicken embryos and will serve as a powerful resource for the study of lincRNA functions.
Collapse
Affiliation(s)
- Junxiao Ren
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Quanlin Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qinghe Zhang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Michael Clinton
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9RG, United Kingdom
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
10
|
Tan Y, Gan M, Shen L, Li L, Fan Y, Chen Y, Chen L, Niu L, Zhao Y, Jiang A, Jiang D, Zhang S, Zhu L. Profiling and Functional Analysis of Long Noncoding RNAs and mRNAs during Porcine Skeletal Muscle Development. Int J Mol Sci 2021; 22:ijms22020503. [PMID: 33419093 PMCID: PMC7825455 DOI: 10.3390/ijms22020503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 11/16/2022] Open
Abstract
Gene transcripts or mRNAs and long noncoding RNAs (lncRNAs) are differentially expressed during porcine skeletal muscle development. However, only a few studies have been conducted on skeletal muscle transcriptome in pigs based on timepoints according to the growth curve for porcine. Here, we investigated gene expression in Qingyu pigs at three different growth stages: the inflection point with the maximum growth rate (MGI), the inflection point of the gradually increasing stage to the rapidly increasing stage (GRI), and the inflection point of the rapidly increasing stage to the slowly increasing stage (RSI). Subsequently, we explored gene expression profiles during muscle development at the MGI, GRI and RSI stages by Ribo-Zero RNA sequencing. Qingyu pigs reached the MGI, GRI and RSI stages at 156.40, 23.82 and 288.97 days of age with 51.73, 3.14 and 107.03 kg body weight, respectively. A total of 14,530 mRNAs and 11,970 lncRNAs were identified at the three stages, and 645, 323 differentially expressed genes (DEGs) and 696, 760 differentially expressed lncRNAs (DELs) were identified in the GRI vs. MGI, and RSI vs. MGI, comparisons. Functional enrichment analysis revealed that genes involved in immune system development and energy metabolism (mainly relate to amino acid, carbohydrate and lipid) were enriched at the GRI and MGI stages, respectively, whereas genes involved in lipid metabolism were enriched at the RSI stage. We further characterized G1430, an abundant lncRNA. The full-length sequence (316 nt) of lncRNA G1430 was determined by rapid amplification of cDNA ends (RACE). Subcellular distribution analysis by quantitative real-time PCR (qRT-PCR) revealed that G1430 is a cytoplasmic lncRNA. Binding site prediction and dual luciferase assay showed that lncRNA G1430 directly binds to microRNA 133a (miR-133a). Our findings provide the basis for further investigation of the regulatory mechanisms and molecular genetics of muscle development in pigs.
Collapse
Affiliation(s)
- Ya Tan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Science, Guiyang 550005, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Science, Guiyang 550005, China
| | - Yuan Fan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
| | - Ying Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
| | - Anan Jiang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
| | - Dongmei Jiang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
- Correspondence: (S.Z.); (L.Z.); Tel.: +86-28-8629-1133 (S.Z. & L.Z.)
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (M.G.); (L.S.); (L.L.); (Y.F.); (Y.C.); (L.C.); (L.N.); (Y.Z.); (A.J.); (D.J.)
- Correspondence: (S.Z.); (L.Z.); Tel.: +86-28-8629-1133 (S.Z. & L.Z.)
| |
Collapse
|